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Abstract— With the recent advancements and wide usage of
location detection devices, large quantities of data are collected by
GPS and cellular technologies in the form of trajectories. While
most previous work on trajectory-based queries has concentrated
on traditional range, nearest-neighbor and similarity queries,
there is still the need to query trajectories using complex, yet
more intuitive to users, motion patterns. In this paper, we
describe several types of motion pattern queries for trajectories.
In particular, we describe in detail two types of motion pattern
queries: the flexible pattern queries, which focus on trajectories
that follow a sequence of spatiotemporal events; and the density-
based pattern queries, where the goal is to search trajectories
that “stay together” for a long period of time. We then conclude
this paper by briefly describing two other novel complex motion
pattern queries that are currently under development.

I. INTRODUCTION AND MOTIVATION

The wide availability of location and mobile technologies
(cheap GPS devices, ubiquitous cellular networks, RFIDs,
etc.), as well as the improved location accuracy (e.g. A-
GPS, E911) has enabled many applications that generate
and maintain data in the form of trajectories. A trajectory
has a unique identifier and consists of location data (e.g.
latitude/longitude) gathered for a specific moving object over
an ordered sequence of time instants.

Past research efforts on querying trajectory data has mainly
concentrated on traditional spatiotemporal queries, such as
range and nearest neighbors searches (e.g. finding trajectories
that passed by a predefined area), or similarity/clustering
based tasks, such as extracting similar movement patterns and
periodicities from trajectory data (e.g. finding all trajectories
that are similar to a given query trajectory according to some
similarity measure). Nevertheless, trajectories are complex
objects whose behavior over space and time can be better
captured as a sequence of interesting events. Only recently
a few works have concentrated on “motion patterns” to query
trajectories, which is the main focus of this research.

In the first part of this paper, Section II, we describe
flexible pattern queries [12], [9], which allow users to select
trajectories based on specific interesting events. Such patterns
are described as regular expressions over a spatial alphabet that
can be implicitly or explicitly “anchored” to the time domain.
Moreover, it allows users to include “variables” in the query
pattern, and thus greatly increase its expressive power.

We then describe in Section III density-based pattern
queries [11], [8], which search for trajectories that follow a
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pattern that captures the “aggregate” behavior of trajectories as
groups. Consider, for example, finding groups of trajectories
that move “together”, i.e. within a predefined distance to each
other, for a certain continuous period of time. Such queries typ-
ically arise in surveillance applications, e.g., identify groups
of suspicious people, convoys of vehicles, etc. We describe
several strategies to discover such patterns in trajectorial data.

In Section IV, we conclude this paper by briefly describing
two novel motion pattern queries that are currently under
development as part of this research.

II. FLEXIBLE PATTERN QUERIES

Given the nature of trajectories as typically long sequences
of events, a single range predicate may provide too many
results (e.g., many trajectories passed through region A),
while a similarity-based query may be too restrictive (e.g.,
not many trajectories match the full extent or large part of
the query trajectory). Instead, here we propose a framework
for processing flexible pattern queries over trajectories. Such
queries combine the ability of fixed and variable predicates,
with explicit or implicit temporal constraints and distance-
based constraints.

A flexible pattern query specifies a combination of spa-
tiotemporal predicates that can thus capture only the parts of
trajectories that are of interest to the user. For example: “find
all trajectories that first went by region A, then were closest to
C, and ended up in E between 10pm and 11pm”. This query
simply provides a collection of range and Nearest-Neighbor
(NN) conditions, as well as a explicit time constraint that all
have to be satisfied in the specified order (implicit temporal
constraint). Another predicate that can also be used to build
very complex patterns is “variables” (“..., and they started and
ended up by the same area in an interval of 10 hours apart.”).
Conceptually, flexible pattern queries cover the query choices
between single predicates and similarity queries.

We note that patterns as effective ways to query data have
been examined in the past. [2] examine patterns over event
streams. Nevertheless, trajectories differ since they have both
spatial and temporal behavior, which makes the work in [2] not
efficient for querying trajectories. In spatiotemporal databases,
patterns have been examined in [3], [5], but they concentrate
on language/modeling related issues, providing less query
support (e.g., no temporal and/or numerical constraints) and
have less efficient/general evaluation methods.



Q → (S [
⋃

D])
S → S.S|P |!P |P#|P+|P ∗|?+|?∗
P → 〈op,R[, t]〉, R ∈ {Σ ∪ Γ}

op→ disjoint|meet|overlap|equal|inside|
contains|covers|coveredBy

Σ = {A,B,C, ...}, Γ = {@a,@b,@c, ...}
t→ (tfrom : tto) | ts | tr

Fig. 1. The Flexible Pattern Query Language.

A. Proposal of Solutions

We assume that the spatial domain is partitioned to a fixed
set Σ of non-overlapping regions. Several levels of partitions
can be created in order to define a hierarchy of regions (see
Figure 2), where the user has the ability to define queries with
finer alphabet granularity (zoom in) for the portions of greater
interest and higher granularity (zoom out) elsewhere. Regions
correspond to areas of interest (e.g. school districts, airports)
and form the alphabet used in our query pattern specification.
In the following we use capital letters to represent the region
alphabet, Σ = {A,B,C, ...}.

A general pattern query Q = (S [
⋃
D]), Figure 1, consists

of a sequence of spatiotemporal predicates P , specified using
regions from Σ, while D represents a collection of constraints
and distance functions (e.g. NN). Modifiers can also be used
with P , e.g., “P+”: one or more occurrences of P . Each
spatiotemporal predicate P ∈ S is defined by R, which corre-
sponds to a predefined spatial region in Σ (fixed predicate) or a
variable in Γ, the operator op, which describes the topological
relationship that a trajectory and the spatial region R must
satisfy over the optional time interval t.

A predefined region R ∈ Σ is explicitly specified by the
user in the query predicate, e.g., A. In contrast, a variable
denotes an arbitrary region in Σ and it is denoted by using
symbols in Γ = {@a,@b,@c, ...}. A variable takes a single
value (instance) from Σ (e.g. @a=C), but one can also specify
the possible values of a variable as a subset of Σ (e.g., “any
city district with museums”). Moreover, the same variable can
appear in several different predicates of S. This is useful for
specifying complex queries that involve revisiting the same
region many times. For example, a query like “@x.?∗.B.@x”
finds trajectories that started from some region, then at some
point passed by region B and immediately after they visited
the same region they started from. Note that for our purposes,
the wild-card “?” is also considered a variable; however it
refers to any region, and not necessarily the same region if it
occurs multiple times within a pattern.

Spatiotemporal predicates however cannot answer queries
with constraints (e.g. NN type of queries). This is because
topological predicates are binary and thus cannot capture
distance based properties of trajectories. The D compo-
nent is thus used to describe constraints among the vari-
ables used in the S part. One interesting kind of con-
straint is the distance-based constraint that can have the form
(AGGR(d1, d2, ...);θ). For example, consider the following
query Q = {A.?∗.B.@x.@y.C.?∗.@z, SUM(d1, d2) < 100,
d1 = d(@x,@y), d2 = d(@z, E), which selects trajectories,
among the ones that satisfy S, that have the sum of the

Fig. 2. Region-based trajectory representation.

distance between regions @x and @y and the distance between
@z and a fixed region E less than 100 feet. Hence D
contains a collection of distance terms d1, d2, ..., where term
di represents the distance between two variable regions or
between a variable region and a fixed one. In the above
example, the aggregate AGGR and checking θ functions are,
respectively, SUM and “< 100”, but other functions can be
used (e.g. AVG, MIN for the aggregate function, and MIN,
Top-k for the checking function).

We now proceed with the proposed index structures and
algorithms used to efficiently evaluate flexible pattern queries.
We use two lightweight index structures in the form of ordered
lists, that are stored in addition to the trajectory data. There is
one region-list per region and one trajectory-list per trajectory.
The region-list LI of a given region I, which does not have to
be in Σ (see [12], [9]), acts as an inverted index that contains
all trajectories that passed by region I. Each entry in LI is a
record that contains a trajectory identifier Tid, the time interval
(ts-entry:ts-exit] during which the trajectory was inside I, and
a pointer to the trajectory-list of Tid. Records in a region-list
are ordered first by Tid and then by ts-entry.

In order to fast prune trajectories that do not satisfy the
query S, each trajectory is approximated by the sequence of
regions it visited. A record in the trajectory-list of trajectory
Tid contains the region and the time interval (ts-entry:ts-exit]
during which this region was visited by Tid, ordered by ts-
entry. Note that entries in trajectory-list index point to their
corresponding original trajectories in the trajectory archive.
Given the index structures available, we propose four different
strategies for evaluating flexible pattern queries:

1. Index Join Pattern (IJP): this method is based on a merge
join operation performed over the region-lists corresponding
to every fixed predicate in S. The IJP uses the region-lists for
pruning and the trajectory-lists for the variable binding (for
more details, see [12]);

2. Dynamic Programming Pattern (DPP): this method per-
forms a subsequence matching between the query pattern S



TABLE I
EVALUATION OF FLEXIBLE PATTERN QUERIES.

P Dataset |S| |Sf | |A| E-NFA E-KMP DPP IJP

S1 Buses 10 3 57 2.46 1.90 1.11 1.53
S2 Buses 20 7 29 89.62 62.75 28.99 3.03
S3 Trucks 20 7 76 111.91 54.68 30.28 10.57
S4 Trucks 46 29 11 3.06 0.73 0.22 1.56

(including variables) and the trajectory approximations stored
as the trajectory-lists. The DPP uses mainly the trajectory-lists
for the subsequence matching and performs an intersection-
based pruning on the region-lists to find candidate trajectories;

3. Extended-KMP (E-KMP): this method is an extended
version of the KMP method [3], which finds subsequence
matches between the trajectory representations and the query
pattern. The E-KMP contains extensions to handle the variable
predicates (?, ?+), topological operations and implicit/explicit
temporal constraints;

4. Extended-NFA (E-NFA): this method extends the work in
[2] to cover topological operations, temporal constraints, and
variables proposed in our language. This method, as well as
the E-KMP, also performs an intersection-based pruning on
the region-lists to fast prune trajectories that do not satisfy the
fixed spatial predicates in S.

B. Results

We proceed with some experimental results that evaluate
four flexible pattern queries using the Buses and Truck datasets
[1]. For simplicity, we assume that the spatial domain is
partitioned into regions using a uniform grid of 100×100 in a
single level.

Since in these two real datasets trajectories move in rela-
tively similar ways, we experimented with larger number of
predicates so as to create more selective queries. Moreover, all
queries contain between 2 and 4 variables and several wild-
cards ?+ and ?∗. Table I shows the total number of predicates
(|S|), the number of fixed predicates (|Sf |), the number of
trajectories returned (|A|) and running time (in seconds) for
all four evaluation methods.

The results show that the E-NFA algorithm performs worse
for all queries. This is because it cannot take advantage of
the existing indexing structures so as to focus the search
only on those parts of the trajectories that might contain
answer (except from the original trajectory pruning using the
region-list intersection). Our proposed two algorithms, DPP
and IJP, have typically more robust behavior; nevertheless,
E-KMP still shows competitive behavior for some queries.
A thorough experimental evaluation with other datasets and
query parameters can be found in [12], [9].

III. FLOCK PATTERN QUERIES

Recently, there has been increased interest in querying
patterns capturing “collaborative” or “group” behavior in space
and time between trajectories. This includes queries like
moving clusters [7], convoy queries [6] and longest flocks
patterns [4]. The difference between all those patterns is the
way they define the relationship between the trajectories and

Fig. 3. Flock pattern examples: {T1, T2, T3}1−3, {T4, T5, T6}2−4.

their duration in time. Different from all the above definitions,
here we consider the problem of identifying all groups of
trajectories that stay “close” together for a given duration
(not the longest as in [4]). Existing methods for flock pattern
discovery [4] suffer from severe limitations. Such methods
either find approximate solutions, or can be applied only for
a single time instance of the problem (i.e. the solution does
not support the minimum time duration in the query).

We consider trajectories T to be part of a flock F if they
are all within a maximum distance ε > 0 to each other (i.e.
if there exists a disk ctik in time instance ti and diameter ε
covering all trajectories in F for a duration of δ consecutive
time instants). A trajectory satisfies the above pattern as long
as at least µ trajectories are contained inside the disk for the
the time duration δ > 1. The ctik is called the center of the
flock fk at time ti. Intuitively, a flock pattern can be viewed
as a “tube” shape formed by the centers c and expanded with
diameter ε in the space dimension, and having length δ in the
time dimension, such that there are at least µ trajectories which
stay inside the tube all the time. Figure 3 shows two examples
of flock patterns for F(µ=3,ε,δ=3): f1 = {T1, T2, T3}1−3 and
f2 = {T4, T5, T6}2−4.

A. Proposal of Solutions

The major challenge in evaluating flock pattern queries is
to compute disks ctik . Since any point in the spatial domain
can be a center of a flock, there is an infinite number of
possible locations to test. Nevertheless, if we can find a disk
ctik with diameter ε that covers all trajectories in the flock f
at time instance ti, then there exists another disk with the
same diameter but with different center c′tik that also covers
all trajectories covered by the first one and has at least two
common points on its circumference.

In order to find the disk ctik , we use two trajectories’
locations in ti that have distance not greater than ε to each
other. To efficiently find such pairs, we partition the spatial
domain using a grid-based structure containing cells of size
ε× ε. We use several optimizations with this structure, which
can be found in [11]. Using the above property to find disks ctik
for ti, and the grid-based structure, we propose four strategies
for evaluating flock pattern queries:

1. Basic Flock Evaluation Algorithm (BFE): this approach
incrementally computes disks for ti, and then joins them, using
the |c∩ f | ≥ µ joining condition, with disks previously found
for ti−1. The BFE reports a flock if there are at least δ join
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Fig. 4. Evaluating flock pattern queries with µ varying from 4 to 20.

consecutive operations applied over the same candidate set of
trajectories, i.e. u.tend − u.tstart=δ;

2. Top Down Evaluation (TDE): this method first selects
candidate flocks by joining disks in ti and tδ . This is based
on the assumption that the total number of candidate flocks
generated using disks in ti and tδ is smaller than using disks in
ti and ti+1 (consecutive time instances). The set of candidate
flocks still need to be further refined for ti and tδ . For this
last refinement phase, the BFE method is used to evaluate each
candidate flock in the candidate set;

3. The Pipe Filter Evaluation (PFE): this method employs
the filter-and-refine paradigm. It first filters all trajectories that
have at least µ objects within distance ε of them for a duration
of at least δ time instances. Then, in a refinement step, for each
candidate set, this method searches for flock patterns using the
BFE method;

4. The Continuous Refinement Evaluation (CRE): this
method uses the candidate disk generation step for time
instance ti as a filtering step to find candidate trajectories.
These candidate trajectories are then analyzed in the next ti−δ
time instances, using the BFE method;

5. The Cluster Filtering Evaluation (CFE): this heuristic has
two phases: (1) the DBSCAN clustering algorithm (eps=ε and
minPts=µ) is used in each time instance ti. This is similar to
how convoys patterns are computed [6]; (2) then, each cluster
found in ti is further joined with clusters for ti−1. If a cluster u
can be augmented in this way for δ consecutive time instances
(u.tend − u.tstart = δ), then the candidate trajectories in the
cluster are analyzed using the BFE method.

B. Results

Figure 4 shows the average time (in seconds) to evaluate
flock queries using ε=1.2, δ=10 and µ varying from 4 to 20.
As it can be seen, when increasing µ, the average time needed
to discover flock patterns for all methods decreases. This is
expected since the flock queries become more selective and we
have to maintain fewer candidate trajectories during the query
evaluation. The number of flocks discovered range from 2,988
(µ=4) to 0 (µ=20) for the Buses dataset, and 14,935 (µ=4) to
309 (µ=20) for the Trucks dataset.

The TDE and CRE methods have significantly better per-
formance compared to the other methods. The gap between
those methods and the rest increases when the selectivity of
the queries becomes low for small µ values. This is due to
the large number of partial intermediate results which have to
be maintained by the other two methods (PFE and CFE) and

the increase of the total time needed to process those partial
results. This is due to the fact that these two methods keep
the trajectory history in a time window δ before computing
the disks for each time instant.

The CFE algorithm has the worst performance among all
methods. This is due to the fact that the filtering step in this
approach employs clustering which can be very expensive
for large datasets. This approach however works significantly
better when the datasets are relatively small and the moving
objects in those datasets have similar moving patterns. In
scenarios like those, the cost for clustering is not that high
which explains the improved performance.

IV. CONCLUSION AND CURRENT WORKS

In this paper we propose querying trajectories using complex
motion pattern queries. In particular, we described in detail
two interesting kind of motion pattern queries: the flexible
pattern queries and density-based pattern queries.

As the next steps of this research, we are working on
pattern-based join queries, which return pairs of trajectories
that have at least a number of fixed or variable predicates
in common. An example of such pattern query is “find pairs
of trajectories that have at least 3 regions in common in the
interval of 10 hours”.

There are cases where a motion pattern query can easily
lead to a vast number of trajectories in the result. Besides the
result set having trajectories that all match the pattern query,
they may also have other parts that are very similar to each
other. Navigating through such a result set requires effort, and
users give up after perusing through the first few answers. To
address this problem, we are currently developing a framework
to present the user with the most diverse trajectories among
the answers. To define the diversity criteria among trajectories,
we are currently exploring similarity-based functions. This
framework is based on our previous work on query result
diversification [10], where here we explore optimizations and
heuristics specifically designed for trajectories.
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