
A Generalized Kalman Consensus Filter for Wide-Area Video Networks

A. T. Kamal, C. Ding, B. Song, J. A. Farrell and A. K. Roy-Chowdhury

University of California, Riverside, CA-92521

Abstract— Distributed analysis of video captured by a large
network of cameras has received significant attention lately.
Tracking moving targets is one of the most fundamental tasks in
this regard and the well-known Kalman Consensus Filter (KCF)
has been applied to this problem. However, existing solutions
do not consider the specific characteristics of video sensor
networks, which are necessary for robustness across various
application scenarios. Cameras are directional sensors with
limited sensing range (field-of-view), and thus, targets are often
not observed by many of the cameras. The network may also
be spread over a wide area, preventing direct communication
between all of the cameras. This limited field-of-view, combined
with sparse communication and coverage topologies, motivates
us to propose modifications to the traditional KCF framework.
Specifically, we consider the covariance matrices of the state
estimates of the neighbors and compute a weighted average
consensus estimate at each node. Also, the update at each node
is computed in two steps, first towards the weighted consensus
estimate and then towards the final Kalman measurement
update. This leads us to propose a Generalized KCF herein.
Experimental results clearly show the advantage of the GKCF
compared to the KCF in the considered application scenario.

I. INTRODUCTION

As large networks of cameras become common, it is

necessary to develop efficient solutions for analyzing their

sensed data. Tracking targets in the captured video is one

of the most basic tasks in this regard. In many applications,

a distributed network architecture is necessitated whereby

video is analyzed in a distributed manner over the entire

network rather than at a central server. An example could be

a wireless network with limited bandwidth, which is easy

to install and can be mobile. In this paper, we consider

such distributed camera networks and propose a consensus-

based framework that is capable of tracking multiple targets

throughout the network.

The problem of tracking multiple targets in a distributed

sensor network has been studied previously. The Kalman

Consensus Filter (KCF) [1] is a state-of-the-art distributed

algorithm for fusing multiple measurements from different

sensors. It is a distributed approach that combines the Dis-

tributed Kalman Filter (DKF) [2] and the average consensus

algorithm [3]. At each camera (i.e., node), the KCF fuses the

measurements from that node and its immediate neighbors

into the state estimate to attain convergence toward the

optimal state estimate and uses average consensus to ensure

that the state estimates of the node and its neighbors converge

toward the same values.

This work was partially supported by ONR award N00014091066 titled
Distributed Dynamic Scene Analysis in a Self-Configuring Multimodal
Sensor Network.

The KCF is a very appropriate framework for camera

networks and has been applied in [4], [5]. However, certain

issues that are specific to video sensors have not been con-

sidered in the existing solutions. A camera is a unidirectional

sensor with a limited sensing region which is called the

field-of-view (FOV). Thus, in a realistic camera network, a

target would usually be seen in only a few of the nodes.

In a distributed decision making process, the nodes are

assumed to have peer-to-peer communication channels. Thus,

when a sensor gets new measurements for a target, say

Tj , it shares this measurement information with its network

neighbors. This measurement information is used to update

the estimate of Tj’s state and error covariance at each node

that directly observes Tj or receives measurement of Tj

from their neighbor(s). At the same time, the nodes also

share their previous state estimate with each other and try to

compensate the difference between their state estimates of

Tj using a consensus scheme. Thus, at some nodes in the

network that are neither sensing Tj directly nor are neighbor

to a node sensing Tj (termed as naive nodes for Tj), the state

estimate for this target is only adjusted by the consensus

scheme and its error covariance is not adjusted; therefore,

the error covariance matrices of each target may diverge.

Even if the consensus term maintains consistency of the state

estimates, the different covariance matrices at each node can

have a profound effect on the convergence transients, as each

agent uses its local covariance matrix in the computation for

incorporating measurement information.

Such issues are important for networks with sparse com-

munication topology. For example, camera networks are

often spread over a wide area which prevents each cam-

era from communicating directly with all other cameras.

There can be many naive nodes in sparse communication

topologies. The presence of these naive nodes motivates

us to propose certain modifications to the KCF framework

for application in camera networks. In such scenarios, the

proposed Generalized Kalman Consensus Filter (GKCF)

outperforms the standard KCF. Although the paper is focused

on camera networks (since it is a common scenario where

these constraints apply), the GKCF approach is applicable

to other sensor networks that have similar characteristics. If

the network is fully (or close to fully) connected, then the

effect of naive nodes is usually very low and the standard

KCF [4], [5] performs well.

To allow for a clear discussion of the literature and our

motivation, Sec II states the problem of interest and its

related notation. Section III presents a technical description

of our motivation, overviews the contributions of the paper,

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-801-3/11/$26.00 ©2011 IEEE 7863

and reviews the related literature. In Sec IV-A, we derive

our Generalized Kalman Consensus Filter algorithm for a

single target. Sec IV-B shows the implementation of GKCF

in a multi-target scenario, where data association is neces-

sary. Finally Sec V, shows simulation results comparing the

performance of our approach with other methods.

II. PROBLEM FORMULATION

We assume that sensors {Ci}
NC

i=1 are monitoring an area

containing targets {Tj}
NT

j=1. The sensors are interconnected

via a network represented by the undirected connected graph

G. NCi
is the collection of sensors which are directly

connected to Ci. The state xj of target Tj evolves in discrete

time model according to

xj(k + 1) = Φxj(k) + γj(k), (1)

where xj(k) is the state vector of Tj at time k, Φ is the state

propagation matrix and γj(k) ∼ N (0,Q) is the process

noise. For the simulations and certain discussion herein,

without loss of generality, xj is a 6-dimensional vector which

consists of the 3d position and velocity components of the

target Tj . The state of the system is the concatenation of the

target states: x = [x1; . . . ;xNT] and x ∈ ℜ(6NTX1).

Let x̂
j+
i (k) and W

j+
i (k) denote the state estimate and

information matrix for target j at node i. Throughout this

paper, we will use the information matrix notation, where

the information matrix is the inverse of the state covariance

matrix. The time propagation equation for each estimate is

x̂j−(k + 1) = Φx̂j+(k), (2)

Wj−(k + 1)
−1

= ΦWj+(k)
−1

ΦT +Q. (3)

The state transition matrix Φ is assumed to have its eigen-

values in the closed unit disk, with at least one eigenvalue

on the unit disk (i.e., neutral stability). When T j is observed

by Ci, we assume the following sensing model:

z
j
i = H

j
ix

j + ηji (4)

where ηji ∼ N (0,Rj
i) is measurement noise.

When the sensor is a camera, z
j
i is the 2-dimensional

coordinate of the projection of T j on Ci’s image plane.

The matrix H
j
i ∈ ℜ(2X6) is the transformation (linearized

camera calibration matrix [6]) from the 3d target position to

the camera image plane. The matrix H
j
i is a time varying

function of the state estimates. For simplicity of notation, we

drop the time index from H
j
i hereafter.

Let W ∈ ℜ(6NTX6NT) be the information matrix of

the state vector x. Under the (reasonable) assumptions that

the initial information matrix W(0) = cov(x(0))
−1

is

block diagonal, the measurement noise between targets is

uncorrelated (cov(ηji , η
j′

i′) = 0), and the process noise

between targets is uncorrelated (cov(γj , γj′) = 0). Then

it is straightforward to show that W(t) = cov(x(t))
−1

is

block diagonal for all times. This is true for the centralized

Kalman filter and for the consensus based filters in this

article. Due to this block diagonal structure of W(t), the

DKF and KCF algorithms can be considered for each target

separately, which greatly decreases the amount of required

calculations.

As explained in Sec I, specific characteristics of video net-

works leads to naive nodes, which we now define precisely.

Definition: Naive Node. In a realistic camera network a

node might exist where neither the node Ci nor its immediate

neighbors Ci′ , i
′ ∈ NCi

can see a specific target T j . In this

particular scenario, Ci is naive about T j in the sense that it

cannot directly receive any observation update about T j . We

call such a node Ci ‘Naive’ relative to target T j .

III. MOTIVATION

We briefly review the KCF [1], [7] (see Algorithm 1)

and explain the motivation for proposing the GKCF. Here

Algorithm 1 KCF for T j at Ci

Given Wi(1), x̂
−
i (1), ǫ and K

for k = 1 to K do

1) Get measurement zi.
2) Compute information vector and matrix

ui = (Hi)
T (Ri)

−1zi (5)

Ui = (Hi)
T (Ri)

−1Hi (6)

3) Broadcast message Mi to neighbors containing ui, Ui, x̂
−
i (k)

4) Receive message Mi′ from neighbors i′ǫNCi

5) Fuse the information vectors and matrices and calculate weight
matrices

yi =
∑

i′∈NCi
∪{i}

ui′ (7)

Si =
∑

i′∈NCi
∪{i}

Ui′ (8)

6) Compute Kalman Consensus estimate

Mi = (Wi + Si)
−1 (9)

x̂+

i (k) = x̂−
i (k) +Mi

(

yi − Six̂
−
i (k)

)

(10)

+γWi(k)
−1

∑

i′∈NCi

(

x̂−
i′
(k)− x̂−

i (k)
)

γ = ǫ/(1 + ||Wi(k)
−1||), ||X|| = tr(XTX)

1

2 (11)

7) Update the state of the Kalman-Consensus filter

Wi(k + 1)← (ΦMiΦ
T +Q)

−1
(12)

x̂−
i (k + 1)← Φx̂+

i (k) (13)

end for

K is the total number of imaging time instants and ǫ
is a parameter, specified by the designer, that affects the

rate of convergence toward consensus. If ǫ is set too high,

oscillations or divergence might occur in the state estimation

process. If it is set too low, the convergence speed will be

slow. It has been shown that we must choose 0 < ǫ < 1/∆
for convergence [7] where ∆ is the maximum degree of the

network G. Thus, a value close to (but less than) 1/∆ can

be chosen for ǫ for the fastest convergence.

It should be noted that the KCF algorithm described

above works under the assumption that all the sensors have

sensed all the targets. The issue of limited sensing range

7864

in the distributed estimation process has been considered

previously. In [8], the authors considered the case where

not all sensors get measurements of the target. However,

the solution was not fully distributed; rather it was a hybrid

solution consisting of a distributed and a centralized scheme

for information fusion. The nodes used the KCF algorithm

to update their state estimates. These state estimates were

sent along with the state covariance information to a fusion

center. For larger networks a hierarchical tree structure of

fusion centers was proposed, where the information of all

the nodes reached a root fusion center. In this paper, we

are interested in solving the problem using a completely

distributed architecture.

With the above introductory materials, we are in a position

to discuss various specific conditions that require attention

when the KCF is applied to sparse (e.g., camera) networks

with naive nodes, and to propose solution strategies for each

of them.

1) Average vs. weighted average: The basic KCF algorithm

uses average consensus to combine state estimates from

neighboring nodes (see eqn. (10)). With average consensus,

the state estimates of all the nodes get the same weight in

the summation. Since naive nodes do not have observations

of the target, their estimates are often highly erroneous.

This results in reduced performance in the presence of naive

nodes.

2) Covariance/Information Matrix Propagation: The in-

formation matrix measurement update of eqn. (9) considers

the node’s own information matrix and the local neigh-

borhood’s measurement covariance. It does not account for

cross covariance between the estimates by the node and its

neighbors. In the theoretical proof of optimality for KCF, the

cross covariances terms between neighbors’ state estimates

were present [1]. It has been stated in [1] that dropping these

cross covariance terms is a valid approximation when the

state estimate error covariance matrices are almost equal in

all the nodes.

However, when Ci is naive w.r.t. T j , yi and Si are both

zero. Therefore, Mi = Wi
−1 at eqn. (9). Consequently,

from eqn. (12) it can be seen that the diagonal elements of

Wi tend to zero at each time update as long as Ci remains

naive with respect to T j . This makes the covariance matrix

diverge. From this, it can be clearly seen that omitting the

cross covariances in the covariance update equation is not

valid for sparse networks with naive agents. The correlation

between the two dependent variables is the unknown param-

eter making this computation difficult. There has been some

work, e.g. [9] and [10], where the authors incorporated cross

covariance information, which should lead to the optimum

result. But, no method for computing these terms were

provided and predefined fixed values were used instead.

3) Over-correction of the states: The measurement update

term and consensus term in eqn. (10) are both functions of

the prior state estimate x̂−

i (k). Both terms apply corrections

to the prior state estimate, from different information sources.

Thus the state estimate might get over-corrected. This is

usually not a big issue in sensor networks without naive

−100 −80 −60 −40 −20 0 20 40 60 80 100
−80

−60

−40

−20

0

20

40

60

80

x axis

y
a
x
is

Average

KCF Convergence

Weighted Avg

Fig. 1: This figure shows the distribution of the estimates for
different algorithms (after removing the ground state offset from
the estimates) in the presence of naive nodes in the network. Green
dots represent the average state estimates of the nodes. Black dots
represent the converged states of the KCF algorithm. Red dots
represent the weighted average of all the nodes’ estimates.

nodes because every node’s state estimate will be close to

the consensus. In sparse networks, the estimates of naive

nodes may lag behind by a significant time. This happens

because naive nodes do not have direct access to new

observation of a target, the only way they can get updated

information about a target is through a neighbor’s state

estimate which was updated in the previous iteration. Thus

a naive node might be multiple iterations away from getting

new information about a target. This information imbalance

can cause large oscillations. In the KCF algorithms this effect

can be decreased by choosing a smaller rate parameter ǫ.
However, decreasing ǫ yields slower convergence of the naive

node’s state estimate.

The above issues can be problematic for tracking applica-

tions involving a camera network with naive nodes. A naive

node may associate an observation to a wrong target. This

can affect the tracking performance of nodes that are actually

observing the target by influencing them to drift away from

their estimates. Since KCF is a very appropriate framework

to build a distributed tracker in a camera network, we propose

some changes to address the above challenges leading to a

Generalized Kalman Consensus Filter. The following are the

main proposed modifications.

1) The consensus portion of the GKCF correction step

at each node will take into account the state covariances

of neighbors. The nodes will then converge towards the

weighted mean, instead the unweighted mean.

2) Each node and its neighbors’ state covariance matrices

will be used jointly at consensus step to update that node’s

error covariance matrix. This will prevent the state covari-

ance of the naive nodes from monotonically increasing.

3) Weighted average consensus will correct the prior estimate

towards the weighted mean. Then the DKF algorithm will use

measurements to update this consensus state and covariance,

thus preventing the overcorrection issue mentioned above.

The motivation for using weighted average consensus

instead of average consensus can be verified from Fig 1.

7865

This figure (from our simulation explained in Sec V) shows

the position of the average state estimates over all sensors

(green dots), the convergence value of the KCF approach

(black dots) and the weighted average of the state estimates

over all sensors (red dots), relative to the ground truth state.

It is evident from the plot that weighted average is a better

estimate of the state.

IV. GENERALIZED KALMAN CONSENSUS FILTER

The proposed GKCF approach is presented in Algorithm

2. For the first portion of the discussion, we assume that there

is only one target present in the scene. Next we generalize the

concept for multiple targets. The notation in the Algorithm 2

is generalized for multiple targets. Thus, for the single target

case we can just omit the target ID j and also omit Steps 2

and 6 from the algorithm, which are specifically needed for

the multi-target case and will be elaborated on later.

A. Generalized Kalman Consensus Filter for a Single Target

To derive our approach in Algorithm 2, we first introduce

the weighted average consensus. Next, we show how to

incorporate this consensus scheme into our framework. We

then implement the Distributed Kalman Filter (DKF) with

the results from the weighted average consensus and show

how to propagate our covariance and state estimates.

1) Weighted Average Consensus: Let the initial state

estimate of all NC agents be xi(0) with information matrix

Wi(0). As we use this information matrix term as weights in

the weighted average consensus algorithm, the terms weight

and information matrix will be used interchangeably. Also

let W(0) =
∑NC

i=1 Wi(0). So, the global weighted average

of the initial states is

x∗ = W(0)−1
∑

i=1:NC

Wi(0)xi(0). (14)

Define the weighted initial state of each agent as

x̃i(0) = Wi(0)xi(0). (15)

Weighted average consensus [7] states that if the iterative

update in eqns. (21) and (22) is performed for all i =
1, . . . , Nc, then each of the terms Wi(κ)

−1
x̃i(κ) tends to the

global weighted average x∗ as κ → ∞. As a by-product, the

weights also converge to the average of the initial weights.

Both these properties of the weighted average consensus will

be utilized in our approach.

We assume that the initial information matrix Wi(0),
is provided at the initial time step by the target detection

mechanism. It would ideally be zero for nodes that are not

detecting the target. For nodes that are detecting the target,

the initial value would be Wi(k − 1) = Hi
⊤R−1Hi.

At the kth iteration, the agents communicate with each

other with the Wi(k− 1) and x̃i(k− 1) information. Then,

using the previously discussed average consensus scheme,

they get an updated prior state estimate x̂−

i (k) and weight

estimate Wi(k) (see eqns. (21), (22) and (23)). This prior

estimate tends towards the global normalized weighted aver-

age as stated before.

Algorithm 2 Multi-target GKCF on sensor Ci

Given W
j
i (0), x̂

j+
i (0), ǫ and K. Also let,

x̃
j
i (0) = W

j
i (0)x̂

j+
i (0) (16)

for k = 1 to K do

1) Get measurements { zi
l
}L
l=1

2) Associate observations to targets using Hungarian Algorithm. Let

the observation associated with Tj in Ci be z
j
i .

If no observation in associated, set z
j
i = 0 and (Rj

i)
−1 = 0

3) Compute information vector and matrix

u
j
i = (Hj

i)
T
(Rj

i)
−1

z
j
i (17)

U
j
i = (Hj

i)
T
(Rj

i)
−1

H
j
i (18)

4) Broadcast message Mi to neighbors containing

u
j
i ,U

j
i , x̃

j
i (k − 1),wj

i (k − 1) ∀j

5) Receive message Mi′ from neighbors i′ ∈ NCi

6) Compute cross camera data association (CCDA) matchings using
the method described in IV-B.2 and sort all data accordingly.

7) Fuse the information matrices and vectors

y
j
i =

∑

i′∈NCi
∪{i}

u
j

i′
(19)

S
j
i =

∑

i′∈NCi
∪{i}

U
j

i′
(20)

8) Compute weighted average consensus estimate

x̃
j
i (k) = x̃

j
i (k − 1) + ǫ

∑

i′∈NCi

(

x̃
j

i′
(k − 1)− x̃

j
i (k − 1)

)

(21)

W
j
i (k) = W

j
i (k − 1) + ǫ

∑

i′∈NCi

(

W
j

i′
(k − 1)−W

j
i (k − 1)

)

(22)

x̂
j−
i (k) = W

j
i (k)

−1
x̃
j
i (k) (23)

9) Compute Kalman consensus estimate

W
j
i (k) = W

j
i (k) + S

j
i (24)

x̂
j+
i (k) = x̂

j−
i (k) +W

j
i (k)

−1
(

y
j
i − S

j
i x̂

j−
i (k)

)

(25)

10) Propagate weight and weighted state estimate

W
j
i (k)← (ΦW

j
i (k)

−1
ΦT +Q)

−1

(26)

x̃
j
i (k)←W

j
i (k)Φx̂

j+
i (k) (27)

end for

2) Covariance/Information Matrix Propagation: After

communicating with its neighbors and prior to using mea-

surement information, the optimal state estimate at Ci is

a linear combination of the information from Ci and its

neighbors. Since these variables are not independent, optimal

estimation would require knowledge of the cross correlation

structure between each pair of these random variables. Since,

it is usually quite difficult to compute this cross correlation,

we need some other way to approximate the covariance or

in this case the information matrix. The update operation

of the information matrix Wi(k) in eqn. (22) can be used

as an approximation of the information matrix due to the

incoming information from the neighbors’ states. A property

of the weighted average consensus is that the weights also

converge to the average of the weights as the state estimates

7866

converge towards the weighted average. Thus, this kind of

covariance/weight propagation enables the weights to be

updated accordingly when informative state estimates arrive

at a naive node.

After computing the state and weight estimates with all

the available information, we need to propagate the weight

and state in time. One should note that instead of propagating

the state estimate, we have to propagate the weighted state

estimate as necessitated by the weighted average consensus

equations. Thus the weight propagation equation takes the

form of eqn. (26).

3) Two-stage Update: To resolve the issue of overcor-

rection of the states, we divide the estimation process in

two stages. First, as mentioned above, Ci updates its state

and information matrix using its neighbors’ states and in-

formation matrices. Next, we further update our state and

information matrix with current measurement information,

which we explain below.

Consider that a node that has completed Step 3 in Al-

gorithm 2. If it did not have any observation, then zi and

(Ri)
−1 were set to zero. Using the fused information vector

and matrix and the updated prior weight and state estimate

(from the weighted average consensus step of eqns. (22)

and (23)) appropriately in a standard Distributed Kalman

Filter, we get the final state and weight estimate at time

k. Thus using DKF in eqns. (24) and (25) we can estimate

the state and weight which includes the properly weighted

innovations from the measurements and the state estimates

of the neighbors.

Note that in a more general algorithm, at the expense of

additional communications, the weighted consensus of Step

8 could be performed multiple times between measurements.

Then the state estimates would converge even closer to the

global weighted average (by virtue of the weighted average

consensus steps). Also note that the GKCF achieves its

improved performance at the expense of additional commu-

nication, as it requires communication of the information

matrix for each observed target whereas the KCF does not.

B. Generalized Kalman Consensus Filter for Multiple Tar-

gets

This section discusses tracking of multiple targets in a

distributed sensor network. The main difference between

single and multi-target tracking is the requirement of data

association. Several methods have been proposed for data

association in multi-target multi-sensor scenarios. The au-

thors in [11] used Joint Probabilistic Data Association to

perform data association and embedded it into the KCF. We

will show how the proposed GKCF can be used with data

association.

We assume that all the sensors know the total number of

targets and their initial states (this can be done in many ways

like observing the entrances and exits). The sensor which

detects a target gets an initial covariance/weight prior of the

target state from the detection mechanism. The initial weights

for that target in other sensors have to be set to zero (because

they are not initially observing the target). To track multiple

targets, two extra steps (Steps 2 and 6 in Algorithm 2) are

needed relative to the single target GKCF algorithm. We

describe these two additional steps in detail in this section.

Since a camera does not know the association between its

observations and the targets, data association becomes nec-

essary. When two sensors communicate information about

multiple targets, they should also be able to associate the

different targets more reliably than without communication.

Data association is performed in two different stages. The

self data association step is where a cameras associates

its observations with the targets. The cross camera data

association step is where two cameras associate the different

targets among themselves.

1) Self Data Association: At the beginning of an iteration,

assume that Ci has Li observations: { zi l}
Li

l=1. The weighted

state estimates of all the targets are available from the

previous iteration. In order to compare an observation with

a target, the weighting factors need to be removed from the

weighted state estimates and transformed to the observation

space. The unweighted prior state estimate at iteration k is

X̂ j−
i (k) = W

j
i (k − 1)−1x̃

j
i (k − 1). (28)

So in the observation space, the state estimate and its

covariance would have the form H
j
i X̂

j−

i
(k) and H

j
iW

j
i (k−

1)−1H
jT
i respectively. Let us also define the covariance of

the lth observation in Ci as Rl
i. We then compute the self

data association using the Mahalanobis distance:

d(T j
i , zi l)(k) =

(

H
j
i X̂

j−

i
(k)− zi l

)T

(

H
j
iW

j
i (k − 1)−1H

jT
i +Rl

i

)−1 (

H
j
i X̂

j−

i
(k)− zi l

)

. (29)

We can now perform a matching between the observation set

and the target set. In our experiments, we use the Hungarian

algorithm [12], which is a bipartite matching algorithm that

finds the association across two sets by minimizing the sum

of the distances over all associated pairs. We do not consider

matching pairs that have a distance over a certain threshold.

After this association is done, we denote the observation

associated with Tj in Ci as z
j
i . If Tj is not associated to any

of the observations in Ci, we set z
j
i = 0 and (Rj

i)
−1 = 0.

2) Cross Camera Data Association: After the cameras

communicate their weighted state estimates, weights and

measurement information, we need to associate the targets

across the cameras. If the cameras maintain a consistent

ordering scheme for the targets, then this step is not nec-

essary. If that ordering information is not available, the

cameras can estimate this association using a cross-camera

data association scheme. Just as in the self data association

issue, we use the bipartite matching between the targets

across two cameras using Mahalanobis distance as

d(T j
i , T

j′

i′)(k) =
(

X̂ j−
i (k)− X̂ j′−

i′ (k)
)T

(

W
j
i (k−1)

−1+W
j′

i′ (k−1)
−1

)−1(

X̂ j−
i (k)−X̂ j′−

i′ (k)
)

. (30)

For simplicity of notation, let us assume that after the cross

camera data association is performed, the information from

7867

each neighboring camera is sorted such that all data with the

index j in camera i represents Tj’s information.

V. EXPERIMENTAL EVALUATION

To validate our approach, we prepared a simulation frame-

work. In our simulation, we considered a 500× 500 grid. In

that area, we considered four moving targets. Each target’s

state vector is 4 × 1, i.e. 2d position and 2d velocity

components. The initial positions were uniformly picked

from the grid. The starting velocity was uniformly picked

from 2-20 and with a random direction. The targets were

propagated through time using the dynamics similar to (1).

The values of the parameters we used for this dynamical

model are as follows:

Φ =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









, Q =









50 5 5 5
5 50 5 5
5 5 50 5
5 5 5 50









.

The targets were also programmed to randomly change

direction and to be deflected back when they reached the

boundary of the grid. The tracks were propagated for 40

iterations.

There were 5 cameras monitoring the area. The partially

overlapping FOVs are depicted by the smaller black rectan-

gles in Fig 3. The communication adjacency matrix A for

the cameras is given below. The observations were generated

using the same model as (4). The parameters used in this

sensing and network model are as follows:

H=

[

1 0 0 0
0 1 0 0

]

, R=

[

10 0
0 10

]

,A=













0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0













.

The initial state of all the targets were provided to each of

the cameras. The initial weights were selected depending on

whether a camera was viewing the target or not as

Wviewing(0) = (0.05)I4, Wnotviewing(0) = (1.0e−6)I4.

Ground truth states of different targets

Fig. 2: This figure shows the
ground truth tracks for the state
estimates in Fig 3.

The targets were

tracked using both KCF

and GKCF methods

separately. The tracking

results using both KCF

and GKCF methods are

shown in Fig 3 (ground

truth tracks are given in

Fig 2). In this figure,

the left column shows

the state estimates in

different cameras using

the KCF algorithm and right column shows the state

estimates in different cameras using the GKCF algorithm.

Here the circle at one end of the tracks symbolizes the final

point on the track. From the left column, we can see that

KCF GKCF

C1

C3

C4

C5

C2

Fig. 3: This figure shows multi-target tracking (i.e., consensus
estimates of the state vectors) results for four targets (shown in
red, green, blue and magenta colors) using the KCF (left column)
and the GKCF (right column) approaches. The cameras’ FOVs are
represented by black rectangles. The ground truth states for this
simulation are shown in Fig 2.

the cameras’ tracks lagged from the ground truths (e.g.,

blue target) and in some cases got associated with another

target’s track (red and green target). In the right column, we

can clearly see that the tracking was successful using the

GKCF approach.

Next, we compute the error statistics to compare the

GKCF and KCF against each other and against the cen-

tralized Kalman filter. Fig 4 shows the mean square errors

(MSE) relative to the ground truth states for the different

methods. To construct this graph, the simulation was run

50 times with different randomly generated tracks. For a

particular target, the mean square error of estimation is

defined as,

MSEj = E
[

(x̂j
i − xj)

T
(x̂j

i − xj)
]

. (31)

Here, xj is the ground truth state. The expectation is over

all iterations and all cameras. From the figure, it is evident

that the performance of the GKCF was very close to the

centralized Kalman filter. Please note that in this simulation

only one target was used to remove the effect from data

association errors. In the legend of this figure, the average

7868

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000

16000

Simulation RunsM
ea
n
S
q
u
a
re

E
rr
o
r
F
ro
m

G
ro
u
n
d
T
ru
th

GKCF (Avg Err = 590)

KCF (Avg Err = 2698)

CKF (Avg Err = 378)

Fig. 4: This figure shows the mean square errors (MSE) relative
to the ground truth states for the different methods. The x-axis is
the different runs of the simulation with random tracks. The y-axis
is average of the squared errors over all the iterations and cameras
for each run.

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Iteration

M
S
E

fr
o
m

g
ro
u
n
d
tr
u
th

Weighted Average

GKCF

Average

KCF

Fig. 5: In this figure we show experimentally how the KCF and
GKCF schemes converge if multiple iterations are allowed before
getting new measurements or propagating in time. The y-axis of
this graph is the mean squared distance from the ground truth state
and the x-axis is the number of iterations.

MSE for each method is shown.

In Fig 5, we show the convergence analysis for the

KCF and GKCF algorithms. At a random iteration of the

simulation, we programmed the algorithms to keep iterating

without getting any new measurement or propagating in time.

By doing this, we can see to which values these consensus

schemes converge. The x-axis of the graph is the iteration

number and the y-axis is the mean squared distance from

the ground truth state. We have already shown in Fig 1 that

statistically, the weighted average estimate is closer to the

ground truth than the average estimate or the converging

value of the KCF approach. This effect can also be observed

in this graph, i.e. the GKCF algorithm is converging to a

value much closer to the ground truth and that value is the

weighted average indeed.

The states in the GKCF algorithm converged much faster

and closer to the ground truth state. The average number

of iterations needed to converge for the GKCF algorithm

is 2.707 whereas it is 36.278 for the KCF algorithm. If

within the ith to (i + 10)th iterations, the state did not

change more than 0.1% of the value at the ith iteration,

it was considered to have converged at the ith iteration. This

statistic was generated from 1000 simulation runs. It shows

that the convergence of the GKCF method is much faster

than the KCF method.

VI. CONCLUSION

In this paper, we introduced a novel method for distributed

state estimation based on the Kalman Consensus Filter

(KCF). We discussed under what circumstances the assump-

tions of KCF are not valid and hence modifications are

necessary. This is especially true in camera networks where

each sensor has a limited FOV and they are geographically

separated by distances that do not allow full communication.

Then we proposed a generalized framework, Generalized

KCF, which outperformed the KCF approach under such

conditions. We showed the theoretical derivation of our

framework and also showed simulation results to compare

the performance of our algorithm with other approaches.

REFERENCES

[1] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability, and
performance,” in IEEE Conference on Decision and Control, 2009.

[2] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” in IEEE Conference on Decision and Control, 2005.

[3] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in American Control Conference, 2003.

[4] B. Song, A. T. Kamal, C. Soto, C. Ding, A. K. Roy-Chowdhury, and
J. A. Farrell, “Tracking and Activity Recognition Through Consensus
in Distributed Camera Networks,” in IEEE Trans. on Image Process-

ing, 2010.
[5] B. Song, C. Ding, A. T. Kamal, J. A. Farrell, and A. K. Roy-

Chowdhury, “Distributed Wide Area Scene Analysis in Reconfigurable
Camera Networks,” in IEEE Signal Processing Magazine - Special

Issue on Distributed Image Processing and Communications, May
2011.

[6] A. Morye, C. Ding, B. Song, A. R. Chowdhury, and J. A. Farrell,
“Optimized Imaging and Target Tracking within a Distributed Camera
Network,” in American Control Conference, 2011.

[7] R. Olfati-saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” in Proceedings of the

IEEE, vol. 95, Jan 2007.
[8] R. Olfati-Saber and N. F. Sandell, “Distributed tracking in sensor net-

works with limited sensing range,” in American Control Conference,
2008.

[9] W. Ren, A. W. Beard, and D. B. Kingston, “Multi-agent Kalman
consensus with relative uncertainty,” in American Control Conference,
2005.

[10] M. Alighanbari and J. P. How, “An unbiased Kalman consensus
algorithm,” in American Control Conference, 2006.

[11] N. Sandell and R. Olfati-Saber, “Distributed data association for multi-
target tracking in sensor networks,” in IEEE Conference on Decision

and Control, 2008.
[12] M. Junger, T. M. Liebling, D. Naddef, G. L. Nemhausera, W. R.

Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, 50 Years of

Integer Programming 1958-2008. Springer-Verlag Berlin Heidelber,
2010.

7869

