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Abstract—An online approach to learn elementary groups
containing only two targets, i.e., pedestrians, for inferring high
level context is introduced to improve multi-person tracking. In
most existing data association-based tracking approaches, only
low level information (e.g., time, appearance, and motion) are
used to build the affinity model, and each target is considered
as an independent agent. Unlike those previous methods, in this
paper, an online learned social grouping behavior model is used
to provide more robust tracklets affinities. A disjoint grouping
graph is used to encode social grouping behavior of pairwise
targets, where each node represents an elementary group of two
targets, and two nodes are connected if they share a common
target. Probabilities of the uncertain target in two connected
nodes being the same person are inferred from each edge of
the grouping graph. Relationships between elementary groups
are discovered by group tracking, and a non-linear motion
map is used for explaining non-linear motion pattern between
elementary groups. The proposed method is efficient, able to
handle group split and merge, and can be easily integrated into
any basic affinity model. The approach is evaluated on four
datasets, and it shows significant improvements compared with
state-of-the-art methods.

Index Terms—multi-target tracking, data association, social
grouping behavior, elementary grouping model.

I. INTRODUCTION

Automatic tracking of multiple targets simultaneously in
real-world scenes has been an active research topic in com-
puter vision for many years, as it is crucial for many industrial
applications and high level analysis, such as visual surveil-
lance, human-computer interaction, and anomaly detection.
The goal of multi-target tracking is to recover trajectories of
all targets while maintaining consistent identity labels. There
are many challenges for this problem, such as illumination and
appearance variation, occlusion, and sudden change in motion
[1][2]. As great improvement has been achieved in object
detection, data association-based tracking (DAT) has become
popular recently [3][4][5][6][7]. In the DAT framework, often
a pre-learned detector is applied on each frame to produce de-
tection responses of all targets, and short-term tracking results
(i.e., tracklets) are generated by associating responses from
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Fig. 1. Examples in which grouping information is helpful under the
challenging conditions for tracking in a video. The same color indicates
the same target. Note that for both targets with bounding boxes there are
significant appearance and motion changes due to occlusions and cluttered
background. Images are from CAVIAR dataset [8]

consecutive frames that have high probability to contain the
same target. These tracklets are further linked to produce long-
term tracking results. An affinity model integrating multiple
visual cues (appearance and motion information) is formulated
to find the linking probability between tracklets, and the global
optimal solution is often obtained by solving the maximum
a posteriori (MAP) problem using various optimization algo-
rithms.

Although much progress has been made in building more
discriminative appearance and motion models, problems such
as identity switch and track fragmentation still exist in cur-
rent association based tracking approaches, especially under
challenging conditions where appearance or motion of the
target changes abruptly and drastically, as shown in Fig. 1.
The goal of association optimization is to find the best set
of associations with the highest probability for all targets,
which makes it not necessarily capable of linking each of
the difficult tracklet pairs. In this paper, we explore high
level contextual information, i.e., social grouping behavior, for
associating tracklets that are very challenging by using only
lower level features (time, appearance, and motion).

When there are only a few interactions and occlusions
among targets, DAT achieves robust performance. Discrimi-
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Fig. 2. Overview of the elementary grouping model.

native descriptors of targets are usually generated using ap-
pearance and motion information from tracklets. Appearance
model often uses global or part-based color histograms to
match tracklets, and a linear motion model that assumes
all targets maintain constant speed without motion direction
change is often adopted to constrain motion smoothness of two
tracklets. However, these low level descriptors generally fail
to associate tracklet pairs with long time gap. This is because
the appearance of a target might change drastically due to
heavy occlusion, and the linear motion model is unreliable for
predicting location of a target after a large time interval.

Nevertheless, there is often other useful high level contex-
tual information in the scene which can be effectively used
to mitigate the aforementioned shortcomings. For instance,
sociologists have found that up to 70% of pedestrians tend
to walk in groups in a crowd, and people in the same group
are more likely to have similar motion pattern and be spatially
close to each other for better group interaction [9]. Moreover,
pedestrians in the crowd often either consciously or uncon-
sciously follow other individuals with similar destination to
facilitate navigation [10]. It is also observed in many real world
surveillance videos that if two people are walking together at
certain time then it is very likely that these two people will
still walk together after a short time period.

Based on the above observations, we propose an elementary
grouping model with non-linear motion context to compensate
the errors caused by using basic appearance model and linear
motion model. A grouping graph is constructed based on input
tracklets with high confidence, where each node represents a
pair of tracklets that form an elementary group (a group of two
targets) and each edge indicates that the connected two nodes
(two elementary groups) have at least one target in common.
The group trajectories of any two linked nodes are used to
estimate the probability of the other target in each group
being the same person. Neighboring tracklets that have time
overlap and similar motion pattern are possible candidates for
elementary groups. Relationships between elementary groups
are further discovered with the help of group tracking, in
which a non-linear motion map is used to explain large time
gap between two elementary groups. The elementary grouping
model is summarized in Fig. 2.

The size of a group may change dynamically as people
join and leave the group, but a group of any size can always
be considered as a set of elementary groups. Therefore,
focusing on finding elementary groups instead of the complete
group makes our approach capable of modeling flexible group
evolution [11] in the real world. Note that the social group
in this paper refers to a number of individuals with correlated
movements and does not indicate a group of people who know
each other.

The rest of the paper is organized as follows: Section II
discusses related work and contributions of this paper; the pro-
posed elementary grouping model is described in Section III;
experiments are presented in Section IV; and Section V
concludes this paper.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

Visual tracking has attracted extensive research efforts in
recent years, from individual tracker design [12][13] to multi-
tracker fusion [14]. The method proposed in [14] was the
first work which can jointly exploit both the spatial and the
temporal correlation from multiple tracking results, leading
to the state-of-the-art tracking performance. Specifically, the
temporal information helps identify individual tracker consis-
tency, and the spatial information is used to establish pairwise
correlation among multiple trackers.

Traditional filtering-based multi-target tracking methods
process videos on a frame-by-frame basis, which are more
suitable for time-critical applications [12][15]. However, such
greedy methods tend to get stuck at a local optimum, with
the possible solution space growing exponentially in the
presence of observation gaps. Recently, the focus of multi-
target tracking has shifted to robust DAT schemes, due to their
global reasoning ability of the solution space. With a deferred
global inference, DAT is more robust against observation gaps
resulting from heavy interactions and occlusions [16].

Huang et al. [13] first propose to hierarchically associate
detection responses for multi-person tracking. Since then,
most follow-up works focus on designing features for more
reliable association scores or developing effective optimization
schemes. In the first regime, affinity scores are generally
extracted from appearance information such as color his-
tograms and motion features such as motion smoothness.
Global appearance constraints are exploited to prevent identity
switches in multi-target tracking [17]. Part-based appearance
models have been applied in multi-target tracking to mitigate
occlusions [18]. For optimization, bipartite matching via the
Hungarian algorithm is among the most popular and simplest
algorithms [7][13]. A lot of other optimization frameworks
have been proposed, such as K-shortest path [19], set-cover
[20], Linear Programming [21], and Quadratic Boolean Pro-
gramming [22].

Most of the work only considers pairwise similarities,
without referring to high level contextual information. Thus,
problems such as possible abrupt motion changes cannot be
properly accounted for. Yang et al. [23] use a Conditional
Random Field (CRF) for tracking while modeling motion
dependencies among associated tracklet pairs. Butt et al. [24]
carry out a Lagrangian relaxation to make higher-order reason-
ing tractable in the min-cost flow framework. These methods
focus on higher-order constraints such as constant velocity.
However, both of them [23][24] concentrate on individuals
and may fail in real-world scenarios, in which individuals may
possess a lot of freedom.

In this paper, we focus on utilizing social grouping informa-
tion for more natural high-level contextual constraints. Social
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Fig. 3. Block diagram of our tracking system. After initial tracklets are generated by linking detection responses, confident tracklets are selected to form
elementary groups. The relationships between elementary groups are identified by group tracking with non-linear motion context. Then a disjoint grouping
graph is constructed, from which high level information (i.e., grouping behavior) is extracted. Finally, tracklet association is carried out based on affinity
model that combines both high level and low level information. Tracklets with the same color contain the same target. For the legends in this figure please
see the box in the upper right hand side. Best viewed in color.

factors have attracted a lot of attentions in multi-target tracking
recently, since they are complementary to unreliable visual
features and are motivated by sociology research. Pellegrini et
al. [25] propose a more effective dynamic model by leveraging
nearby people’s positions. Brendel et al. [26] also consider
nearby tracks as contextual constraints. Alahi et al. [27]
study large-scale crowd destination forecasting with social
context. Pellegrini et al. improve trajectory prediction accuracy
by inferring pedestrian groups [28]. In the DAT context,
Qin et al. [29] seek the consistency of trajectories in both
tracklet association space and tracklet group assignment space
based on visual and grouping cues. They use gradient-based
optimization and K-means clustering with multiple random
initializations. Bazzani et al. [30] consider joint individual-
group tracking, with a decentralized particle filter sampling in
both individual and group spaces. Yan et al. [31] explicitly
consider group structures to improve tracking consistency
across time. Compared to these methods, our approach is
deterministic with a closed-form solution. Furthermore, the
previous work assumes a static group structure or a fixed
number of groups, while our grouping scheme is more flex-
ible by using elementary groups and allows for more local
refinements.

B. Contributions of This Paper

The contributions of this paper include:

• An approach estimating elementary groups online is
proposed, which infers grouping information to adjust the
affinity model for data association-based tracking. This
approach is independent of detection methods, affinity
models, and optimization algorithms.

• A motion model that takes advantage of nearby non-
linear motion patterns is integrated into group tracking. It

enables the proposed method to explain reasonable non-
linear motions of targets.

• The proposed approach based on elementary grouping is
simple and computationally efficient, while it is effective
and robust.

• Four real-world surveillance datasets are used for evalua-
tion and extensive experiments are carried out to validate
the effectiveness of the proposed method.

A preliminary version of this work appeared in [32]. In this
paper, we have the following major changes and improvements
as compared to [32]: 1) We study the related work more
extensively and more recent advances are discussed; 2) We
improve our elementary grouping framework by incorporating
a modified motion model for group tracking to handle non-
linear motions of targets; 3) We include more details for
better understanding of the technical approach; 4) We conduct
more in-depth experiments on more datasets, provide more
comparisons to the state-of-the-art methods.

III. TECHNICAL APPROACH

In this section, we introduce how the elementary grouping
model is integrated into the basic tracking framework for
tracklet association. An overview of the proposed method is
presented in Fig. 3.

A. Tracking Framework with Grouping

Given a video sequence, a human detector is first applied
to each frame to obtain detection responses. Finding the
best set of detection associations with the maximum linking
probability is the aim of detection-based tracking. In an
ideal association, each disjoint string of detections should
correspond to the trajectory of a specific target in the ground-
truth. However, object detector is prone to errors, such as
false alarms and inaccurate detections. Also, directly linking
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detections incur a high computational cost. In order to generate
a set of reliable tracklets (trajectory fragments), therefore, it is
a common practice to pre-link detection responses that have
high probability to contain the same person. Next, a global
optimization method is employed to associate tracklets accord-
ing to multiple cues. Finally, missed detections are inserted by
interpolation between the linked tracklets. Detections that do
not belong to any tracklet or tracklets that are too short are
considered as false alarms and removed from the final results.

A mathematical formulation of the tracking problem is given
as follows. Suppose a set of tracklets T = {T1, .., Tn} is
generated from a video sequence. A tracklet Ti is a consecutive
sequence of detection responses or interpolated responses that
contain the same target. The goal is to associate tracklets that
correspond to the same target, given certain spatial-temporal
constraints. Let association aij defines the hypothesis that
tracklet Ti and Tj contain the same target, assuming Ti occurrs
before Tj . A valid association matrix A is defined as follows:

A = {aij}, aij =

{
1, if Ti is associated to Tj ,
0, otherwise,

(1)

s.t.
∑n

i=1
aij = 1 and

∑n

j=1
aij = 1.

The constraints for matrix A indicate that each tracklet should
be associated to and associated by only one other tracklet (the
initial and the terminating tracklets of a track are discussed in
Section IV-A).

We define Sij as the basic cost for linking tracklet Ti and Tj
based on low level information (time, appearance, and motion).
It is computed as the negative log-likelihood of Ti and Tj
being the same target (explained in detail in Section IV-A).
Note that Sij =∞ if Ti and Tj have overlap in time.

Let Ω be the set of all possible association matrices,
the multi-target tracking can be formulated as the following
optimization problem:

A∗ = arg min
A∈Ω

∑
ij

aijSij . (2)

This assignment problem can be solved optimally by the
Hungarian algorithm in polynomial time. In order to reduce
computational cost, the video is segmented by a pre-defined
time sliding window, which is fixed to be 12 seconds long.
Tracklet association is carried out in each time sliding window.
There has to be a 50% overlap between two neighboring time
windows. To handle association conflicts in the overlapping
part of two windows, we use a method similar to [23]. More
specifically, the overlapped part is evenly divided into two
parts. In the first half, tracking results produced by the previous
time window is kept, while in the second half, original input
tracklets are used despite the association results from the
previous time window.

As low level information is not sufficient to distinguish
targets under challenging situations, we consider to integrate
high-level information from social grouping behavior into
the cost matrix to regularize the solution. However, group
configuration is often not known a priori. Also, it is not
fixed for the entire video, as people might change groups.

Therefore, we propose elementary groups that are learned and
updated “online”, during the tracking process to provide useful
social grouping information while maintaining the flexibility
of the group structure. Two tracklets Ti and Tj are likely to
correspond to the same target if they satisfy the following
constraints: 1) each of them forms an elementary group with
the same tracklet, namely, the same target; 2) the trajectory
obtained by linking Ti and Tj has a small distance to the group
mean trajectory. The first constraint is based on the observation
that if two people are walking together for a certain time,
then there is high probability that they will still walk together
after a short time period. The second constraint prevents us
from linking wrong pair of tracklets. Let Pij be the inferred
high level information for Ti and Tj , the tracklet association
problem can be refined as:

A∗ = arg min
A∈Ω

∑
ij

aij(Sij − αPij), (3)

where α is a weighting parameter. It is selected by coarse
binary search in only one time window and kept fixed for all
the others.

In the following, we introduce an online method for group
analysis and obtain Pij by making inferences from the group-
ing graph.

B. Learning of the Elementary Groups

In this part, we explain how the nodes (elementary groups)
of the grouping graph are created. A set of tracklets is gen-
erated after low level association, but only confident tracklets
are considered for grouping analysis, as there might be false
alarms which may lead to incorrect associations in the input
tracklets. Based on the observation that inaccurate tracklets
are often the short ones, we define a tracklet as confident if it
is long enough (e.g., it exists for at least 10 frames).

Two tracklets Ti and Tj form an elementary group if they
have the following properties: 1) Ti and Tj have overlap in
time for more than l frames (l is set to 5 in our experiments);
2) they are spatially close to each other; 3) they have similar
velocities. Mathematically, we use Gij to denote the probabil-
ity of Ti and Tj forming an elementary group:

Gij = Pt(Ti, Tj) · Pd(Ti, Tj) · Pv(Ti, Tj), (4)

where Pt(·), Pd(·) and Pv(·) are the grouping probabilities
based on overlap in time, distance and velocity, respectively.
Their definitions are given in Eq. (5), Eq. (6), Eq. (7).

Pt(Ti, Tj) =
Lij

Lij + l
, (5)

Pd(Ti, Tj) =
1

Lij

∑Lij

n=1
(1− 2

π
arctan(distn)), (6)

Pv(Ti, Tj) =
cosθ + 1

2
, (7)

where Lij is the length of overlapped frames for Ti and Tj ,
distn is the normalized center distance for Ti and Tj on the
nth overlapped frame, and θ is the angle between the average
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Fig. 4. Examples of generating incorrect elementary groups if the distances
are not normalized.

velocities of the two tracklets during the overlapped frames.
In our experiments, distn is set as follows:

distn = ration · d/0.5(widthi + widthj), (8)

where ration is the size of the larger target over the size of
the smaller target, d is the Euclidean distance between the
two object centers, and 0.5(widthi + widthj) is the smallest
distance in the image space for two people that walk side by
side. The term ration prevents tracklets as shown in Fig. 4
to be considered as a group, where the distance in the image
space is small while the distance in the 3D space is quite large.

We create a node for each pair of tracklets that have non-
zero grouping probability G. Thus, each node contains two
tracklets/targets and is associated with a probability G, its
value indicates the similarity of motion patterns for these two
tracklets during their co-existence period.

Note that if two tracklets form an elementary group, their
group mean trajectory is obtained by computing the mean
position using only their overlapping parts, as the grouping is
only meaningful for the overlapped time period. For example,
if Ta and Tb are in the same elementary group, this only
indicates that Ta and Tb have similar motion patterns for
the period that they have time overlap. During the non-
overlapping period, Ta may form elementary groups with
other tracklets/targets that are even in a different group than
the group of Tb. Such property makes the elementary group
flexible to handle group split and merge.

C. Group Tracking

The relationship between two elementary groups is identi-
fied by group tracking. Inspired by association-based multi-
target tracking, we define our group tracking as a problem
of finding globally optimal associations between elementary
groups based on the three most commonly used features:
time, appearance, and motion. More specifically, given a set
of elementary groups, we compute the linking cost for any
two groups and obtain the association results by finding the
association set with the minimum total cost.

Let {T gi
1 , T gi

2 } denote the two tracklets in an elementary
group gi. Given two elementary groups gi and gj , assuming gi
starts before gj , their linking cost is Cg(gi, gj) = Cg

t (gi, gj)+
Cg

appr(gi, gj) + Cg
mt(gi, gj), where Cg

t (·), Cg
appr(·), and

Cg
mt(·) are linking costs based on time, appearance, and

motion, respectively. Similar to Eq. (2), let Φ be the set of all
possible group association matrices, then the group tracking
can be formulated as the following optimization problem:

Ag∗ = arg min
Ag∈Φ

∑
ij

aijC
g(gi, gj). (9)

Hungarian algorithm is used to solve this assignment problem.
1) Time Model for Group Tracking: For the linking cost

based on time, we defined it as:

Cg
t (gi, gj) =

{
0, gi is not overlapped with gj ,
∞, otherwise,

(10)

where the non-overlapping constraint means any tracklet in gi
has no time overlap with any tracklet in gj .

If gi and gj contain the same two targets, there are only
two matching possibilities: 1) T gi

1 and T gj
1 are the same target,

T gi
2 and T gj

2 are the same target; 2) T gi
1 and T gj

2 are the same
target, T gi

2 and T gj
1 are the same target. We explain in detail

for matching option 1), note that the computation for matching
option 2) is similar. For each matching option, we compute the
linking cost based on appearance and motion, and use the one
with the smaller sum for Cg

appr(gi, gj) + Cg
mt(gi, gj). Also,

the matching option is recorded for each group association.
2) Appearance Model for Group Tracking: Let S(·) be the

appearance similarity for two tracklets, the group linking cost
based on appearance is defined as:

Cg
appr(gi, gj) = −ln(0.5(S(T gi

1 , T
gj
1 ) + S(T gi

2 , T
gj
2 ))). (11)

As there might be appearance variations in a single tracklet
due to occlusion and lighting changes, it is hard to generate
features that can robustly represent the appearance of a target.
In order to more reliably compute the similarity between two
tracklets, we adopt the modified Hausdorff metric [33] which
is able to compute the similarity of two sets of images. Given
a tracklet Ti that has length mi, let Ti = {di1, di2, ..., dimi

}
where dix is the xth estimation of Ti, then S(·) is defined as:

S(Ti, Tj) = min(
1

mi

∑
di
x∈Ti

s(dix, Tj),
1

mj

∑
dj
y∈Tj

s(djy, Ti)),

(12)
where s(d, T ) = maxd′∈T (scos(d, d

′)) is the Hausdorff sim-
ilarity between an estimation and a tracklet. A modified
cosine similarity measure [34] scos(·) is used to compute the
similarity between two estimations, which is defined as

scos(u, v) =

∣∣uT · v∣∣
‖u‖ ‖v‖ (‖u− v‖p + ε)

, (13)

where u, v are the feature descriptors from two images, ‖·‖p is
the lp norm (we set p = 2), and ε is a small positive number
to avoid dividing by zero. In our experiments, we use the
concatenation of HSV color histogram and HOG features as
the feature descriptors.
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3) Motion Model for Group Tracking: We measure the
motion affinity of two elementary groups by the motion
smoothness between the group mean trajectories of the two
corresponding elementary groups. The motion cost for linking
two group mean trajectories is defined as the negative loga-
rithm of the motion affinity:

Cg
mt(gi, gj) =− ln(G(fpredict(gi,+∆t)− pgjhead,Σp) (14)

·G(fpredict(gj ,−∆t)− pgitail,Σp)),

where G(·) is a zero mean Gaussian distribution, ∆t is the time
gap between gi and gj , fpredict(gi,±∆t) gives the location
prediction for the group mean trajectory of gi after (+) or
before (−) ∆t, phead and ptail are the head and tail locations
for a group mean trajectory.

In most previous tracking frameworks [2][29][35], tar-
gets are commonly assumed to maintain linear motion
pattern. Thus, fpredict(gi,+∆t) = pgitail + vgitail∆t and
fpredict(gj ,−∆t) = p

gj
head− v

gj
head∆t. However, in real world

scenarios, it is common to observe several non-linear motion
patterns in the scene. In order to produce more robust motion
affinity for two elementary groups, we use the non-linear
motion map [5] to explain large non-linear time gaps between
group mean trajectories. Note that in [5] the non-linear motion
map is directly used to estimate the motion affinity of two
tracklets, whereas we use it for explaining non-linear gap
between two elementary groups.

The non-linear motion map M is a set of all existing non-
linear tracklets in current time sliding window, and the track-
lets are selected only from the confident ones. An example
of estimating motion affinity between ga and gb using a non-
linear motion pattern Tx in the motion map is illustrated in
Fig. 5. The tracklet Tx ∈ M is a non-linear motion pattern
that has co-existed in time with both ga and gb and is a
matched tracklet for the group mean trajectories of ga and
gb. Tx is a matched tracklet indicates that it is spatially close
to the elementary group and has similar motion direction as
the elementary group. Then a quadratic curve that best fits
positions at the tail part of ga and the head part of gb is
estimated to fill the path between ga and gb. Therefore, each
group association has a specific quadratic function for its non-
linear motion estimation. The estimated path is only valid if

Tx is a matched tracklet for it. The motion cost for linking
ga and gb based on non-linear prediction of locations can be
computed according to Eq. (14).

For each pair of elementary groups, both linear and non-
linear motion models are used, and the score with a lower
cost is selected. Note that when only linear motion model
is used, any trajectory not following the pattern is penalized.
With the non-linear motion model, we are able to explain non-
linear motion in the scene without producing extra penalties
for individuals who do not follow a linear motion pattern.

D. Creation of Virtual Nodes

Our goal is to encode grouping structure of the tracklets
by the elementary grouping graph. With elementary groups
as nodes of the graph, we define an edge between two nodes
indicating the existence of at least one common target in the
corresponding two elementary groups. For simple cases where
two nodes have one tracklet in common, we link these two
nodes directly, such as nodes g1 and g2, g4 and g5 shown
in Fig. 3. For difficult cases where there are four different
tracklets in two nodes, we use the results of group tracking to
find their relationship.

Suppose gi and gj are associated by group tracking, namely,
these two elementary groups contain the same two targets.
We create two virtual nodes vp and vq , set their grouping
probability G to be the same as that of node gj , and build
edges between gi and the virtual nodes. Note that the virtual
nodes can also be added in the other way (i.e., set G to be
the same as gi and link the virtual nodes to gj), but these two
options are exclusive to each other. Each virtual node also
contains two tracklets, one is a virtual tracklet generated by
linking a pair of matched tracklets in gi and gj , the other is
the tracklet left in gj . An example of virtual node creation is
presented in Fig. 3. Based on the association of g2 and g3, two
virtual nodes v1 and v2 are created and connected to g2. Two
virtual nodes are used since there are two pairs of tracklets
that need inference (edge for g2 and v1 indicates inference for
T2 and T8; edge for g2 and v2 indicates inference for T3 and
T7). In the following, we show that by using the virtual node
inference can be easily done.

E. Inference from the Grouping Graph

In the grouping graph, each node is an elementary group and
each edge indicates that the two connected elementary groups
have one target in common. According to the observation that
two people walk together at certain time are likely to walk
together after a short period, given two directly connected
groups, we can infer the probability of the uncertain target
in each group to be the same.

Suppose there is an edge between nodes gi and gj in the
grouping graph, assuming T i

1 = T j
1 = Tk, T i

2 = Tl, and
T j

2 = Tm without loss of generality, the probability of T i
2 and

T j
2 contain the same target is defined as follows:

plm = 0.5(Gkl +Gkm)× TSimi(T{l,m}, G{k,l,m}), (15)
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Fig. 6. Inference for each edge in the grouping graph in Fig. 3: (a) edge
between g1 and g2, (b) edge between g2 and v1, (c) edge between g2 and v2,
(d) edge between g4 and g5 (see Fig. 3 for group annotations). Black solid line
represents interpolation between the two tracklets that need inference, black
dashed line is the group mean trajectory, and colored dotted line indicates a
virtual tracklet. Best viewed in color.

T2 
T3 

T1 

T4 

Input Tracklets Grouping Graph 

T1-T2 g1 

T1-T3 g2 

T2-T4 g3 

T3-T4 g4 

Fig. 7. An example of multiple inferences related to the same two tracklets.
According to the proposed elementary grouping model, a grouping graph
(shown on the right) is created based on the input tracklets (shown on the
left). Thus, inferences based on the edge between node g1 and g2 and the
edge between node g3 and g4 are all related to tracklets T2 and T3.

where TSimi(T{l,m}, G{k,l,m}) is the trajectory similarity
between trajectory T{l,m} (created by linking Tl and Tm) and
the group mean trajectory G{k,l,m} (created by computing the
mean position of Tk and T{l,m}). We define the trajectory
similarity as follows:

TSimi(T,G) = 1− 2

π
arctan(Dist), (16)

where Dist is the average Euclidean distance of trajectory T
and group mean trajectory G.

For edges connecting two normal nodes and edges connect-
ing to one virtual node, the same inference function can be
used. The only difference is that the latter uses one virtual
tracklet and two normal tracklets as input. Examples of making
inference for a grouping graph are shown in Fig. 6. Note that
there might be multiple inferences related to the same two
tracklets, as the same tracklet may be contained in multiple
elementary groups, as shown in Fig. 7. Therefore, Pij in Eq.
(3) is the sum of all inferences that relate to Ti and Tj :

Pij =
∑

pij . (17)

A summary of the proposed elementary grouping model is

shown in Algorithm 1.

Algorithm 1 Learning algorithm for elementary grouping model

Input: Tracklet set T = {T1, .., Tn}
Output: Inference matrix P , where Pij is the inference for

Ti and Tj
1: P← empty set, Nodes← ∅, Edges← ∅
2: for i = 1, ..., n do
3: for j = i+ 1, ..., n do
4: if Ti and Tj are confident tracklets then
5: Gij = Pt(Ti, Tj)Pd(Ti, Tj)Pv(Ti, Tj)
6: if Gij > 0 then
7: Create node g = {Ti, Tj}
8: Nodes = Nodes ∪ {g}
9: for i = 1, ..., size(Nodes) do

10: for j = i+ 1, ..., size(Nodes) do
11: if ∃T ∈ gi, T = T

gj
1 or T = T

gj
2 then

12: Create an edge e{gi,gj} for gi and gj
13: Edges = Edges ∪ {e{gi,gj}}
14: Update Nodes and Edges according to group tracking
15: for all e ∈ Edges do
16: Compute pxy for the corresponding tracklet pair using

Eq. (15)
17: Update P : Pxy = Pxy + pxy

IV. EXPERIMENTS

We evaluate our approach on four datasets: the CAVIAR
dataset [8], the TownCentre dataset [35], the PETS2009 dataset
[36], and the UNIV dataset [37]. The popular evaluation
metrics defined in [38] and the CLEAR MOT metrics defined
in [39] are used for performance comparison:

- GT the number of trajectories in the ground-truth.
- MT the ratio of mostly tracked trajectories, which are

successfully tracked for more than 80% of the time.
- ML the ratio of mostly lost trajectories, which are suc-

cessfully tracked for less than 20% of the time.
- Frag fragments, the number of times that a ground-truth

trajectory is interrupted.
- IDS ID switches, the number of times that a tracked

trajectory changes its matched id.
- FP false positive, the number of tracker hypotheses for

which no real object exists.
- FN false negative, the number of times that targets have

no matched hypothesis.
- MOTA multiple object tracking accuracy, a combined mea-

sure which takes into account false positives, false negatives
and identity switches.

- MOTP multiple object tracking precision, measures the
alignment of tracking results with respect to ground-truth.

The following tracking approaches are tested:
• Our Model (non-linear): the proposed elementary group-

ing model with non-linear motion context for group
tracking.

• Our Model (linear): the proposed elementary grouping
model with only linear motion model for group tracking.

• Baseline Model 1: the basic affinity model.
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TABLE I
COMPARISON OF TRACKING RESULTS ON CAVIAR DATASET. THE NUMBER OF TRAJECTORIES IN THE GROUND-TRUTH (GT) IS 75.

Method MT ML Frag IDS FP FN MOTA MOTP Time
Baseline Model 1 74.7% 6.7% 11 12 1459 10827 79.2% 78.8% 1.5s
Baseline Model 2 78.7% 6.7% 10 8 1535 9134 82.0% 81.7% 4.2s
SGB Model [29] 89.3% 2.7% 7 5 1597 8497 83.0% 82.1% 50s

Our Model (linear) 90.7% 2.7% 6 5 1668 8081 83.5% 82.0% 4.6s
Our Model (non-linear) 90.7% 2.7% 6 5 1668 8081 83.5% 82.0% 6.1s

TABLE II
COMPARISON OF TRACKING RESULTS ON TOWNCENTRE DATASET. THE NUMBER OF TRAJECTORIES IN THE GROUND-TRUTH (GT) IS 220.

Method MT ML Frag IDS FP FN MOTA MOTP Time
Baseline Model 1 76.8% 7.7% 37 60 2746 28493 56.1% 68.8% 350s
Baseline Model 2 78.6% 6.8% 34 46 3155 22236 64.3% 71.3% 457s
SGB Model [29] 83.2% 5.9% 28 39 4387 15871 81.8% 69.7% 4861s

Our Model (linear) 85.5% 5.9% 26 36 4105 14804 73.4% 69.2% 465s
Our Model (non-linear) 86.4% 5.9% 25 36 4938 13910 73.5% 69.2% 505s

• Baseline Model 2: the proposed elementary grouping
model without group tracking.

• SGB: the Social Grouping Behavior model [29].
For a fair comparison, the same input tracklet set, ground-

truth, as well as basic affinity model are used for all the
methods. All the results for the SGB model are kindly provided
by the authors of [29]. Both quantitative comparisons with the
state-of-the-art methods and visual results of our approach are
presented.

A. Implementation Details

Tracklets generation: Two different ways of generating
tracklets are employed to demonstrate that the proposed group-
ing model can be easily integrated into any DAT based tracking
system, regardless of the method used to extract the initial
tracklets. In the first method, targets on each frame are detected
using the discriminatively trained deformable part-based mod-
els [40]. We apply a nearest neighbor detection association
method similar to [7] to generate the initial tracklets. For
each unassociated detection a Kalman filter based tracker is
initialized with position and velocity states. A detection A is
associated to a detection B in the next frame if B has the
minimum distance to the predicted location and overlaps at
least 50% (measured as size(A∩B)/size(A∪B)) in size with
detection A. Then the corresponding Kalman filter is updated
with the newly associated detection. The tracker terminates if
no association is found for more than two consecutive frames,
or a detection is associated by multiple trackers.

In the second method, the popular HOG based human
detector [41] is used. Tracklets are generated by connecting
detections in consecutive frames that have high similarity in
appearance and have large overlap in size. A simple two-
threshold strategy [13] is used to generate reliable tracklets.
In our experiments, two detections are connected if and only
if: 1) their affinity is higher than 90%; 2) their affinity is at
least 20% larger than the affinities of any other alternatives.

Basic affinity model: In order to produce reasonable basic
affinity for a pair of tracklets, three commonly used features

are adopted: time, appearance and motion. The basic affinity
Pbasic for two tracklets Ti and Tj is defined as

Pbasic(Ti, Tj) = ft(Ti, Tj) · fappr(Ti, Tj) · fmt(Ti, Tj). (18)

The time affinity model ft assigns zero affinity to tracklet pairs
whose time gap is greater than a pre-defined threshold GAP ,
it is defined as

ft(Ti, Tj) =

{
0, if Gapij > GAP ,
1, otherwise.

(19)

The appearance affinity model fappr is based on the Bhat-
tacharyya coefficient of two average HSV color histograms.
For the motion affinity model fmt, the same method as shown
in Eq. (14) with linear motion for fpredict is used to measure
the motion smoothness of two tracklets in both forward and
backward directions. Given Pbasic(Ti, Tj), the basic cost Sij

in Eq. (2) is computed as Sij = −ln(Pbasic(Ti, Tj)).
Cost matrix S: Due to the constraints in Eq. (1), the

traditional pairwise assignment algorithm is not able to find the
initial and the terminating tracklets. Therefore, instead of using
the cost matrix S (n×n) directly, we use the augmented matrix
(2n × 2n) proposed in [29] as the input for the Hungarian
algorithm. This enables us to set a threshold for association,
a pair of tracklets can only be associated when their cost is
lower than the threshold. In our experiments, the threshold is
set to −ln0.5 for all datasets.

B. Results on CAVIAR Dataset

The videos in the CAVIAR dataset are acquired in a
shopping center where frequent interactions and occlusions
occur and people are more likely to walk in groups. We
select the same set of test videos as in [29], which are the
relatively challenging ones in the dataset. We generate input
tracklets using the first method described in Section IV-A. The
comparative results are shown in Table I. Our proposed models
(both linear and non-linear) achieve the best overall tracking
accuracy (MOTA) with the high tracking precision (MOTP) as
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TABLE III
COMPARISON OF TRACKING RESULTS ON PETS2009 DATASET. THE NUMBER OF TRAJECTORIES IN THE GROUND-TRUTH (GT) IS 74.

Method MT ML Frag IDS FP FN MOTA MOTP Time
Baseline Model 1 14.9% 64.9% 120 88 271 5414 32.4% 60.5% 297s
Baseline Model 2 21.6% 50% 104 102 436 4773 37.8% 59.7% 381s
SGB Model [29] 23% 41.9% 95 91 691 3828 46.0% 59.9% 4962s

Our Model (linear) 28.4% 44.6% 93 97 683 3987 44.1% 58.8% 477s
Our Model (non-linear) 33.8% 35.1% 79 89 729 3081 54.3% 60.1% 612s

TABLE IV
COMPARISON OF TRACKING RESULTS ON UNIV DATASET. THE NUMBER OF TRAJECTORIES IN THE GROUND-TRUTH (GT) IS 40.

Method MT ML Frag IDS FP FN MOTA MOTP Time
SGB Model [29] 75% 5% 38 7 213 443 96.7% 82.9% 47s

Our Model (linear) 87.5% 5% 26 5 224 287 97.4% 83.1% 3.9s
Our Model (non-linear) 87.5% 5% 26 5 224 287 97.4% 83.1% 4.2s

compared to the other alternatives. It is observed that the basic
affinity model (Baseline Model 1) can produce reasonable
tracking results, and the performance is further improved by
integrating high-level grouping information (Baseline Model
2, Our Model (linear), and Our Model (non-linear)). Both
linear and non-linear versions of our model have comparable
or better performances in most metrics as compared to the
SGB model (e.g., better results in MT and Frag, the same
results in ML and IDS), but with much less computational
time. The comparisons between Baseline Model 2 and Our
Model (both linear and non-linear) demonstrate the importance
of group tracking, as they reveal more grouping information.
Since most pedestrians in the videos are walking linearly along
a corridor in this dataset, there is barely any non-linear context
in the scene. Therefore, the linear and non-linear versions of
our model have the same performance (except computational
time) on this dataset. Sample tracking results are shown in
Fig. 8.

C. Results on TownCentre Dataset

The TownCentre dataset has one high-resolution video
which captures the scene of a busy street. There are 220
people in total, with an average of 16 people visible per
frame. We test all models using the first 3 minutes of the
video, and generate input tracklets using the second method
described in Section IV-A. The comparative results are shown
in Table II. Similar to the observations from Table I, Table II
suggests that the performance of our method is consistent on
both datasets. As there are some non-linear motion in this
dataset, the tracking performance is slightly improved by the
incorporation of non-linear context. Sample tracking results
are shown in Fig. 9.

D. Results on PETS2009 Dataset

We select sequence S2L2 in the PETS2009 dataset to eval-
uate the performance of the proposed method. This sequence
captures the outdoor scene of a campus from an elevated
viewpoint. Unlike the widely used sequence S2L1, sequence
S2L2 is more challenging as it has higher crowd density (up

to 33 targets per frame) and includes many non-linear motion
patterns. A rectangular area is defined in the world coordinates
and used as the boundary of the tracking area (as shown in
Fig. 10), trajectories outside the area are excluded from our
solution. The first method described in Section IV-A is used
to generate input tracklets. The comparative results are shown
in Table III. We can see that when many non-linear walking
patterns present in the dataset, significant improvements are
achieved by integrating non-linear motion context into the
tracking system. Our model with non-linear context gives the
best MOTA and has a higher MT (33.8%) and a lower ML
(35.1%) compared to the SGB method (MT: 23%, ML: 41.9%)
and Our Model (linear) (MT: 28.4%, ML: 44.6%) that only
consider linear motion during grouping. Also the number of
fragments and ID switches are greatly reduced when social
grouping and non-linear context are employed in the tracking
system. Sample tracking results of the proposed method with
non-linear motion context are shown in Fig. 10. In the first
row of Fig. 12 we present tracking examples of our method
with linear motion model on the same sample sequence as
shown in Fig. 10.

E. Results on UNIV Dataset

To further evaluate the effectiveness of the proposed method
in handling dynamics of social groups (e.g., group merge and
split), four video sequences are collected from an elevated
viewpoint that allows the capture of rich group evolving
scenarios. Each video is about 30 seconds long with an average
of 9 pedestrians visible in each frame, some sample frames
are shown in Fig. 11. The input tracklets for this dataset are
produced using the second method described in Section IV-A.
Multi-target tracking is carried out using only the grouping
information, namely, the linking costs for tracklet pairs are
based only on Pij in Eq. (3). The comparative results are
shown in Table IV. Our model with both linear and non-
linear motion have the same performance, as this dataset
contains little non-linear motion pattern. Compared to the
SGB model which assumes a fixed number of groups in the
scene, our grouping model improves MT by 12.5%, reduces
the fragments by 31.5%, and also achieves higher MOTA and
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Fig. 8. Examples of tracking results of our approach on CAVIAR dataset. The same color indicates the same target. Best viewed in color.

Frame 3380 Frame 3400 Frame 3420 Frame 3460 

199 201 
172 175 

183 

170 
176 

177 179 

185 
187 

182 

166 

171 
181 

203 

209 167 

194 
165 160 

199 
201 

172 175 

183 

170 176 

177 179 

185 
187 

182 

166 

171 
181 

209 

194 

165 
160 

199 201 

172 175 

183 

170 176 
177 179 

185 

187 
182 

166 

171 
181 

209 

194 

165 
160 

199 201 

183 

170 176 

179 

185 

187 
182 166 

209 

194 

212 
213 

Fig. 9. Examples of tracking results of our approach on TownCentre dataset. With grouping information, targets (199 and 201) pointed by arrows are correctly
tracked under frequent occlusions. The same color indicates the same target. Best viewed in color.
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Fig. 10. Examples of tracking results of our approach on PETS2009 dataset. Track targets (47, 51, 69) with non-linear motion successfully. Best viewed in
color.
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Fig. 11. Examples of tracking results of our approach on UNIV dataset. Using only the grouping model, we correctly tracked targets (1, 2, 3, 4) in situations
where the group split and merge occur. The same color indicates the same target, best viewed in color.

MOTP. The results imply that our grouping model is better
at handling group dynamics in the scene, as it focuses on
analyzing elementary groups instead of the complete groups.
Sample tracking results of the proposed method are shown
in Fig. 11. In the second row of Fig. 12 we show tracking
examples of SGB model on the same sample sequence as
shown in Fig. 11.

F. Computational Time

The computational time is greatly affected by the number
of targets in a video and the length of the video. All methods
are implemented in Matlab without code optimization or
parallelization and tested on a PC with 3.0 GHz CPU and
8 GB memory. The average computational times for all the
datasets are shown in the last columns in Table I-IV. Note

that the computational times for object detection, tracklet
generation, and appearance and motion feature extraction are
not included in the above estimates of computational time.
It is clear that Our Models (both linear and non-linear)
improve the computational efficiency by an order of magnitude
compared with the SGB model which also uses social grouping
information in tracking. For the relatively short videos (30 to
66 seconds) in CAVIAR and UNIV dataset, our approach takes
292 fps for the linear version and 235 fps for the non-linear
version on average. For the video in TownCentre (3 minutes)
the computational time is 10 fps for the linear version and 9 fps
for the non-linear version. When our approach is applied on
the high crowd density video in PETS2009, the computational
time is 0.9 fps for the linear version and 0.7 fps for the non-
linear version. It is observed that integrating non-linear context
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Fig. 12. Examples of tracking results from referenced models. First row, Our Model (linear) on PETS2009 dataset. Targets (48, 72) cannot be correctly
tracked, as tracklet associations generating non-linear motion pattern are penalized when only linear motion model is used. Second row, SGB model on UNIV
dataset. Trajectories of targets (1, 2) cannot be fully recovered, because SGB model is not able to link tracklets that are not assigned to the same group. Best
viewed in color.

into the motion model increases the computational cost, but
still our model is significantly more efficient than the SGB
model and produces better tracking results.

From a theoretical perspective, the optimization of SGB is
a gradient-based iterative method. To compute the gradient, an
alternative approach involving the Hungarian algorithm and K-
means clustering is applied. K-means clustering needs multiple
initial starts to reach a reasonable local optimum, which leads
to high computational cost. Our solver, on the other hand,
has a closed form solution based only on the deterministic
Hungarian algorithm and thus can be computed much more
efficiently.

V. CONCLUSIONS

In this work we have presented an online approach that
integrates high level grouping information into the basic
affinity model for multi-target tracking. The grouping behavior
is modeled by a novel elementary grouping graph, which
not only encodes the grouping structure of tracklets but is
also flexible to cope with the evolution of group (i.e., group
split and merge). We have used non-linear motion context
explicitly for discovering relationships between elementary
groups. Experimental results on four challenging datasets
demonstrated the superior tracking performance by integrating
elementary grouping information. As compared to the state-
of-the-art social grouping model, our approach provides better
performance in a more computationally efficient manner. How-
ever, if there is not much grouping or all the targets follow
a linear motion pattern in the input video, the integration of
the elementary grouping model will have limited improvement
on the tracking performance. Possible future work would

be extending the elementary grouping model to multi-person
tracking in multiple cameras.
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