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Abstract—Defect detection approaches based on template
differencing require precise alignment of the input and tem-
plate image; however, such alignment is easily affected by the
presence of defects. Often, non-trivial pre/post-processing steps
and/or manual parameter tuning are needed to remove false
alarms, complicating the system and hampering automation.
In this work, we explicitly address alignment and defect
extraction jointly, and provide a general iterative algorithm
to improve both their performance to pixel-wise accuracy.
We achieve this by utilizing and extending the robust rank
minimization and alignment method of [12]. We propose an
effective and efficient optimization algorithm to decompose a
template-guided image matrix into a low-rank part relating
to alignment-refined defect-free images and an explicit error
component containing the defects of interest. Our algorithm
is fully automatic, training-free, only needs trivial pre/post-
processing procedures, and has few parameters. The rank
minimization formulation only requires a linearly correlated
template image, and a template-guided approach relieves the
common assumption of small defects, making our system
very general. We demonstrate the performance of our novel
approach qualitatively and quantitatively on a real-world data-
set with defects of varying appearance.

Keywords-Defect Detection; Industrial Inspection; Template
Matching; Image Alignment; Matrix Factorization

I. INTRODUCTION

Defect detection on fabric, electronic panels, surface
mounted devices (SMD), printed circuit board (PCB), etc. is
a critical procedure in industry. Highly accurate, consistent
and scalable automatic defect detection systems are needed
to improve process yield and product quality. However,
designing such a system is very challenging, due to the
highly unpredictable characteristics of real-world defects. As
hinted in Fig. 1, real-world defects possess extraordinary
variability in terms of appearance, shape and size, and are
often specific to the object class inspected. It is desirable
to design a general defect detection method that works for
various known or even unknown defects and inspected object
types.

Motivated by the following reasons, we seek a defect de-
tection solution based on the template differencing approach:

This work was done during the first author’s internship at Sharp Labo-
ratories of America.

Figure 1: Examples of various real-world defects, indicated
by the green ellipses. Defects may have arbitrary shapes, be
specific to the object class examined, possess weak intensi-
ties, and have large sizes. The inspected objects themselves
also vary strongly.

• This approach is very general and makes no assumptions
about defect/object characteristics, by only seeking to
detect “differences” between the input image and a defect-
free template.

• Training data is generally not needed. In our case, we only
need a single defect-free template image, which is usually
not a problem. Acquiring large amounts of (labeled)
training data can be problematic and time-consuming.
Template differencing approaches to defect detection

highly rely on accurate alignment between the input and
template images. To the best of our knowledge, all exist-
ing defect detection approaches apply alignment as a pre-
processing step. However, alignment can easily be affected
by the existence of defects, especially if the defects are large
or have strong edges/texture. In order to tackle this problem,
we propose to conduct alignment refinement while handling
estimated defects in an explicit error measurement, jointly
optimizing for both. We utilize and extend a method termed
Robust Alignment by Sparse and Low-rank decomposition
(RASL) [12], which was proposed for batch alignment of
hundreds of images. Our formulation is aimed at optimal
decomposition of an image matrix that contains both the
input and template image into a low-rank part relating to
aligned defect-free images and an error component that
captures the defect signal. Extracting a defect mask from
the error component becomes trivial and requires no post-
processing.

Our optimization approach applies recent advances in
robust rank minimization that have caught much attention



in the computer vision community. The work of Robust
Principle Component Analysis (RPCA) [3] showed that it
is possible to efficiently recover low-rank matrices despite
significant corruptions. Further, it has been shown that the
claim holds when entry-wise noise exists [21]. In these
works, the initial formulation of optimizing a matrix rank
and l0 norm is relaxed to optimizing a nuclear norm and l1
norm. Very recent work [19] [20] shows that this relaxation
may not be neccessary and direct factorization is possible.

Our contributions include:
1. We propose an effective and efficient optimization frame-

work for defect detection termed Direct matrix Factoriza-
tion and Alignment Refinement (DFAR). We iteratively
improve both alignment and defect detection performance
using an efficient algorithm. To the best of our knowledge,
our application of robust rank minimization (jointly with
alignment) to industrial defect detection is a first in
literature.

2. Our derivation initially follows that of RASL ([12]);
however, our algorithm is different from RASL in several
aspects. Our algorithm does not rely on the relaxation of
matrix rank to nuclear norm and l0 norm to l1 norm;
instead we apply direct factorization as in [19] [20]. Our
formulation considers entry-wise noise, not considered
in RASL. We construct the image matrix from both
input images and template images; this template-guided
approach relaxes the sparsity assumption of the defects.
We found that directly applying batch alignment did not
work.

3. We demonstrate the precision-recall performance and
efficiency of our algorithm with several experiments on a
real-world industrial defect image dataset. We compare
our approach to RASL as well as to several existing
(template-based and template-free) defect detection meth-
ods.
The proposed algorithm (DFAR) is very general, training-

free, only assumes a template image that is linearly cor-
related with respect to the input, and provides accurate
alignment and defect localization, relieving the need for non-
trivial application-specific pre/post-processing procedures.
DFAR only has a few parameters that have clear meaning,
making the algorithm easy to use.

Before presenting the proposed defect detection approach
in detail in Sec. II and experimental results in Sec. III, we
discuss related work in the following subsection.

A. Related Work

Several defect detection methods based on template dif-
ferencing have been proposed. Often, the input image is
firstly registered with a defect-free template using various
registration algorithms, followed by localized direct differ-
encing [13], optical flow [17], normalized cross correlation
(NCC) [16], wavelet-based processing [6], or Hausdorff
distance measurement [5]. Unfortunately, existing defect

detection methods are still largely application-specific. For
example, [13] and [17] are aimed only at semiconductor
wafers; [6] and [5] focus on SMD and PCB assembly
respectively. Furthermore, most systems occasionally need
training and manual intervention [17], mostly work only for
small defects, and most are sensitive to parameter changes.

These undesirable features result from various assump-
tions made during algorithm design, for example: assump-
tions about the existence of some fixed landmark points
for alignment [5], or assumptions about the nature of the
inspected surface [16]. More importantly, almost all existing
template differencing methods assume a superior registra-
tion/alignment performance; but even state-of-art alignment
algorithms might cause misalignment and raise false alarms
to some extent. Therefore, in practice, manual adjustment
(then perfect alignment is assumed), the assumption of
small defects (which shall hurt alignment performance less),
and/or non-trivial pre/post-processing procedures are ap-
plied, introducing complexity and reducing generality.

Several methods other than template differencing are the
following.
• Detection based on supervised classification is one major

category of detection methods for targets such as human
and vehicles [18][7]. In real-world industrial scenarios, it
is difficult to gather a reasonable size of training samples
with labeled defect masks. Given the high intra- and inter-
class variance of possible defects, designing features is
also difficult.

• Defect detection based on saliency detection [2][14][9][4]
also poses challenges. State-of-art saliency detection
methods typically estimate a coarse and subjective
saliency support on natural images which is far from
the industrial accuracy requirement. Also, these methods
usually make a number of assumptions.

• Anomaly detection methods such as PHOT [1], which
analyze images in the Fourier domain, may only locate
small defects on uniformly textured or periodic patterned
images, such as fabric surface. We shall show in exper-
iments that our algorithm generalizes to such types of
images.

II. PROPOSED DEFECT DETECTION APPROACH

We first give an overview of the detection system and in-
troduce the problem formulation of decomposing vectorized
image matrix to achieve simultaneous alignment refinement
and defect estimation. Then we introduce our effective and
efficient optimization algorithm with steps that can be solved
by off-the-shelf algorithms.

A. System Overview

Our proposed framework is presented in Fig. 2. We first
use a hierarchical framework that locates the input candidate
on the whole template image. After evaluating a number of
existing registration techniques, we find [8] provides best



Figure 2: An overview of our system. After initial regis-
tration, alignment is refined while maintaining an explicit
measurement of the errors, where defect mask can be easily
generated from. Notice the misalignment and illumination
difference between the input and template images. For the
error images, color closer to red indicates higher intensity.

overall accuracy and scalability and we omit the details here.
However, even with this state-of-art registration method,
initial misalignments still generally exist. We next describe
our proposed method for simultaneous alignment refinement
and defect extraction, given the input image and the corre-
sponding (but not perfectly aligned) template image.

B. Problem Formulation

Suppose we have the well-aligned, defect-free single-
channel input image I0

1 and template images I0
2 . . . I

0
n ∈

Rw×h, we define vec : Rw×h → Rm as the operator
that stack the corresponding pixels as a vector. The single-
channel images may be grayscale or luminance data, or
simply contain the green channel of an RGB image. We use
multiple template images as will be explained in Sec. II-D.
Then the matrix A .

= [vec(I0
1 )| . . . |vec(I0

n)] ∈ Rm×n should
be low-rank. Low-rank indicates that the input image should
be linearly correlated with the template image. Another
way to view it is that the columns of matrix A should be
nearly constant regardless of global intensity changes due to
illumination.

However, the images we observe are neither well-aligned
nor defect-free, which can be represented as Ii = (I0

i +
ei + εi) ◦ τ−1

i , where ei is an additive error component
wherein we intend the defects are contained and is assumed
to be sparse, τ−1

i ∈ G is a transformation that models
the practical misalignment, and εi models the noise. In
this work, G corresponds to the similarity, affine or pla-
nar homography group of parametric transforms. Now our
aim is to decompose the aligned observed image matrix
D ◦ τ .

= [vec(I1 ◦ τ1)| . . . |vec(In ◦ τn)] ∈ Rm×n as

D ◦ τ = A+ E + ε, (1)

where E
.
= [vec(e1)| . . . |vec(en)] ∈ Rm×nand ε models

real-world entry-wise noise. In other words, we want to

decompose the aligned observed images D ◦ τ into: a low-
rank component A that should relate to the defect-free
background, a sparse error component E that we expect to
contain the defects, and a noise term. A direct formulation
of the problem can be posed as a constrained optimization
problem:

min
A,E,τ

||D ◦ τ − E −A||F

s.t. rank(A) ≤ K
||E||0 ≤ γ

(2)

where || · ||F is the Frobenius norm, K is the rank constraint
on the low-rank approximation A, and γ is the maximal
number of non-zero entries in E. Intuitively, we can ap-
proximate the low-rank component reliably, since D ◦τ −E
can be viewed as the aligned image matrix excluding the
defects. We will directly solve this optimization problem in
the primal form.

C. Optimization

We solve this problem effectively and efficiently without
relaxing either the rank or the cardinality constraint, or
referring to the Lagrangian. We term our algorithm as direct
factorization and alignment refinement (DFAR).

First, since the dependence of D◦τ is complicated on the
transformations τ , when the change in τ is small, we can
approximate the dependency by linearizing about the current
estimate of τ , as commonly done in the alignment literature
[15] [12]. Then the optimization problem becomes

min
A,E,∆τ

||(D ◦ τ +
∑
i

Ji∆τiµ
T
i − E)−A||F

s.t. rank(A) ≤ K
||E||0 ≤ γ

(3)

where Ji
.
= ∂

∂δvec(Ii ◦ δ)|δ=τi is the Jacobian of the i-th
image with respect to the transformation τi, and µi is the i-
th standard basis for Rn (for a compact presentation). Since
the linearization only holds locally, we repeatedly linearize
about the current transformations and solve the problem of
the form of Eq. 3.

Given the current estimate of transformations τ and error
E (the very first transformation is identity transform and
all elements of E are zeros), we take advantage of the
nice decomposable structure of our formulation and apply
block coordinate descent with respect to A, E and, ∆τ . The
resulting algorithm is described in Alg. 1 and Alg. 2. Note
that Alg. 1, the outer loop, is very similar to that of RASL
[12], and is not discussed further.

The solution to step 1) in Alg. 2, a low-rank approxima-
tion problem, is directly and optimally given by standard
truncated Singular Value Decomposition (SVD) approxima-
tion to the matrix (D ◦ τ +

∑
i Ji∆τiµ

T
i − E), or we can

accelerate this process by referring to partial SVD algorithms
such as [10].



Algorithm 1: DFAR - Outer Loop
Data: Images I1, . . . , In, initial transformations τ , the

initial outliers E, Maximal rank K, Maximal
number of errors γ

Result: Low-rank component A, Error E,
Transformation τ

while not converged do
1) compute the Jacobian w.r.t. transformations
Ji ← ∂

∂δ ( vec(Ii◦δ)
||vec(Ii◦δ)||2 )|δ=τi , for i = 1, . . . , n;

2) warp and normalize the images
D ◦ τ ← [ vec(Ii◦τi)

||vec(Ii◦τi)||2 | · · · |
vec(In◦τn)
||vec(Ii◦τi)||2 ];

3) Inner Loop: see Algorithm 2
(A,E,∆τ)←
arg min
A,E,∆τ

||(D ◦ τ +
∑
i Ji∆τiµ

T
i − E)−A||F

s.t. rank(A) ≤ K
||E||0 ≤ γ

4) Update transformations τ ← τ + ∆τ
end

Algorithm 2: DFAR - Inner Loop
Data: Warped Data Matrix D ◦ τ , the current E,

Maximal rank K, Maximal error γ
Result: Updated low-rank component A, Error E,

Transformation Refinement ∆τ

while not converged do
1)
A = arg min

A
||(D ◦ τ +

∑
i Ji∆τiµ

T
i − E)−A||

F

s.t. rank(A) ≤ K
2) ∆τ =
arg min

∆τ
||
∑
i Ji∆τiµ

T
i − (E +A−D ◦ τ)||

F

3)
E = arg min

E
||E − (D ◦ τ +

∑
i Ji∆τiµ

T
i −A)||

F

s.t. ||E||0 ≤ γ
end

To solve step 2) in Alg. 2, since the transformations
are applied to each image individually, the unconstrained
minimization problem is simply a least square problem with
closed-form solution for each image i. We use the Moore-
Penrose pseudoinverse here.

The solution to step 3) in Alg. 2, the error detection prob-
lem with l0-norm constraints, can also be solved effectively
and efficiently by using [11]: compute a histogram of the
entries of E, and then find a threshold value such that the
histogram quantile (cumulative sum) above that threshold
corresponds to γ out of mn pixels. Then we use that
threshold to set other (small) entries (pixels) of E to zero.

This basically only requires one γ
mn quantile computation.

The above three procedures are easy to implement. Each
procedure provides the global optima for each step within the
feasible region, and thus the algorithm is going to converge.
Notice that since we do not apply relaxations to the con-
straints, the formulation is non-convex and may get trapped
in a local minimum. As a remedy, we initialize DFAR by
running RASL (a convex relaxation) for few iterations and
are able to get better results than using DFAR or RASL
alone. The running time of DFAR (with initialization time
included) is also less than that of applying RASL alone
under the same stopping criterion, as discussed in Sec. III-E.

D. Template-Guided Matrix Decomposition

We use multiple template images (actually, identical
copies of a single template image) to construct the template-
guided data matrix D. This strategy improves defect detec-
tion performance for two reasons:

First, when decomposing the image matrix containing
only two images, the defects might be captured by either
error image, as the objective values will be the same. We
usually observe weaker errors in both error components.
However, by using (n − 1) template images, the low-
rank component will be guided towards the template, since
turning on one element of the template error image means
(n− 1) times the cost. This results in a more complete and
stronger defect response in the input error image.

Second, robust rank minimization methods assume sparse
errors in the entire data matrix (see Eq. 2) in general.
When the defect is large (say occupying m% of the input,
where m > 80), it is hardly sparse in terms of the
whole matrix with two images (still possessing m

2 % of
the elements). However, when we use (n − 1) template
images, the defects only possess m

n % of the entries. In other
words, even if the defects are not sparse in terms of the
input, the template-guided trick can always make the defects
sparse for the whole data matrix. We empirically find that
n = 4 works very well in practice. Fig. 3 illustrates the
difference between the two strategies. By applying this trick,
our algorithm generalizes to large defects. Although we
spend more running time as the data matrix becomes larger,
the huge performance gain obtained for defect detection is
worthwhile, as will be shown in the experiments.

E. Downsampling

Image down-sampling is a common technique to obtain
acceleration, often at the expense of accuracy. We found that
our algorithm achieves a slight accuracy improvement when
applied on down-sampled images, while greatly reducing
processing time. We identified two reasons for this fact.

First, linearization of the transformation works well when
the initial misalignment is not too large [15]. After down-
sampling, the initial misalignment is significantly reduced,
leading to improved results.



Figure 3: Different decomposition results from the two
strategies. Images on each row on the right are the error
images of the input and the template. Decomposing two
images results in weaker and incomplete error components,
especially for large defects.

Second, in practice there exist small local geometric
deviations between the input and the template, which may
cause false alarms. Such small distortions are less evident
in the down-sampled images.

F. Parameter Setting

Our algorithm has two explicit parameters (K and γ in
Eq. 2). Both parameters have clear meaning and thus are
easy to set (K the rank constraint of the low-rank matrix, and
γ the maximum percentage of pixels that contain defects).
K is simply set to be 1, as we expect the defect-free input
image to be linearly correlated with the low-rank component
of the template. As for γ, the cardinality constraint on errors,
is set to be 1

n× (# of elements of D), as we only expect
entries in the input image to be labeled as defects.

III. EXPERIMENTS

We demonstrate the superior accuracy and generality of
our framework over existing template-based and template-
free defect detection methods on real-world industrial
datasets.

A. Qualitative Results

Our framework is general as we make few specific
assumptions about the data. Here we first select several
examples showing the strong generality of our method
on different application scenarios in Fig. 4. Our method
generalizes to textured images, metal objects, circuit boards,
and other objects and materials.

B. Comparative Results on Real-world LCD TV Panel
Dataset

We conducted extensive comparative experiments on a
challenging real-world LCD TV panel dataset, which con-
sists of 152 images (1024 × 768 pixels) almost evenly

Figure 4: Sample images on different application scenar-
ios using our method without any parameter tuning from
Sec. III-B. For each row are the input, the template and the
input error image (shown as a pseudo-color map overlaid on
the input image). Notice the initial misalignment for several
cases.

distributed into four types of defects and includes defect-
free images. The complete template image used for regis-
tration is of the size 2160 × 1785. Each image consists of
circuit patterns, slowly varying background, and possibly
defects. The circuit patterns are generally linear structures
(intersecting lines, and rectangular structures), with strong
edges, illustrated in Fig. 5. Such structures are sensitive to



misalignment during defect detection. We are unable to show
complete input images (with defects) in this paper due to
confidentiality reasons. We describe the four defect types
and their characteristics in Tbl. I.

Figure 5: Small crop of input image illustrating a defect-free
region with a circuit pattern.

Table I: Characteristics of defects in our LCD TV panel
image dataset.

Defect Description
Type 1 Very dark blobs, often small, often somewhat circular
Type 2 Superfluous material with same color as circuit lines
Type 3 Large transparent rainbow patterns with saturated colors
Type 4 Small dots patterns, with dark intensity

The abbreviations of the examined algorithms and their
respective assumptions made are summarized in Tbl. II. DF
is the proposed method without alignment refinement. RASL
is the state-of-art on rank minimization and alignment refine-
ment method but was never explored in defect detection.
We used the same template-guided data matrix for DFAR,
DF and RASL. PHOT is the state-of-art for template-free
defect detection on textured images. We adapted PHOT to
the template-based scenario, using PHOT-Refined. Since we
are not using textured images, PHOT raises severe false
alarms on edge structures. Thus after registration, we ran an
edge detector on the resulting template and suppressed the
corresponding edge pixels on the input, largely removing
false alarms on the edges. NCC and Golden Matching
are standard defect detection algorithms used in industry.
Whenever global registration is needed, we use the state-of-
art work of [8].

We show sample result images in Fig. 6, illustrating detec-
tion performance of DFAR, NCC, and PHOT qualitatively.
The figure only shows cropped output images, again for
confidentiality reasons. In the output images for the DFAR
algorithm, we generally observe a very strong response in
the defect region pixels, and a much weaker response in
non-defect region pixels. This qualitatively indicates a very
high precision and good recall.

For quantitative performance, we report precision-recall
curves in Fig. 7 for each method. Precision and recall were
determined for each image by varying thresholds on the

Table II: Methods tested and associated assumptions under-
lying each method: (1) Linearly correlated template image,
(2) Superior initial alignment, (3) Uniformly textured input
image, (4) small defects, (5) complex background without
low-contrast regions, (6) identical template and (7) edge
structure.

Method Assumptions
DFAR (proposed) (1)
DF (DFAR without alignment refinement) (1)(2)
RASL [12] (1)
PHOT [1] (3)(4)
PHOT-Refined (1)(2)(4)(7)
NCC [16] (1)(2)(4)(5)
Golden Matching [13] (2)(6)

Figure 6: Sample (cropped) result images with defect
strength shown with pseudo-color (before thresholding). Left
column shows DFAR results, middle column shows NCC
results, right column shows PHOT results. Rows correspond
to type 1, 2, 3 and 4 defects, from top to bottom.

output error/difference/defect strength image, and comparing
the resulting defect pixel masks with manually labeled
ground truth images, and subsequent averaging over all
images in a category.

We have the following observations and analysis:
• Robust rank minimization algorithm (DFAR, DF and

RASL) consistently outperform other methods signifi-
cantly due to the mild assumptions made, validating
our idea of applying robust rank minimization to defect
detection.

• DFAR generally performs much better than DF, showing
the effectiveness of alignment refinement.

• Our complete algorithm (DFAR) always has comparative
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Figure 7: Precision-Recall curves for different defect types in the LCD TV panel dataset.

or slightly better performance than RASL and possesses
faster convergence, thus achieving the best overall per-
formance. The performance gain comes from our more
faithful (non-relaxed) formulation and entry-wise noise
handling.

• NCC performs worst, even though we carefully selected
its parameters (such as window size). This is not sur-
prising as NCC is even undefined for uniform regions.
For real-world low-contrast regions, noise dominates the
response and produces severe false alarms. NCC does not
generalize to our inspected objects.

• PHOT does not perform well as it is designed for textured
images. We observe a lot of false alarms along strong
edges. Our modified PHOT-Refined gets good results
especially for defect Type 1 where defects are mostly
small. However, there still exists a large gap between its
performance and that of our method, because when there
is a large defect (e.g. for most Type 3 defects), PHOT
would treat the large defect as texture itself resulting in
severe miss detections.

• Standard approaches such as Golden Matching provide
reasonable results. But is it still far from satisfactory

because of the misalignment, lack of an identical template
image and the challenge of our dataset.
As our algorithm provides superior alignment result and

avoids false alarms, we can easily set a single threshold
to differentiate between images with or without defect. We
emperically set a threshold and have not found any outliers
in our dataset. For other methods, we find this task to be
nontrivial, so we omit the comparison in this paper.

C. Direct Decomposition VS. Robust PCA

One major difference between our work and RASL is,
RASL relaxes rank to nuclear norm and l0 norm to l1
norm. Here we compare their performance with the same
fixed alignments so as to more faithfully evaluate the effect
of relaxation. In other words, we remove the alignment
refinement of our method and that of RASL to reduce it
to Robust PCA [3]. We report the results in Fig. 8.

We can see that the original rank minimization can indeed
achieve better performance than the relaxed version with
reasons analogous to that analyzed in Sec. III-B.
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Figure 8: Precision-Recall curve for Direct Factorization and
RPCA over all images.

D. Effect of Template-guided Decomposition

Here we evaluate the effectiveness of our idea of de-
composing a template-guided data matrix introduced in
Sec. II-D. We compare its performance with that of using
only two images and report the results in Fig. 9. We can
see that the template-guided method results in improved
performance.
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Figure 9: Precision-Recall curve over all images for decom-
posing template-guided data matrix and that consisting of
only two images.

E. Running Time

On a regular PC, our unoptimized Matlab implementation
of the proposed DFAR algorithm (including initialization
time) takes ∼ 40 seconds to process a 1024 × 768 image,
while RASL takes ∼ 50 seconds. As discussed in Sec. II-E,
we found down-sampling to result in large efficiency gains
with essentially no loss in precision-recall performance.
When down-sampling by 2, the processing time of DFAR
decreased to ∼ 8 seconds per image, and when when down-
sampling by 4, the processing time of DFAR was only ∼ 2
seconds.

IV. CONCLUSION

We introduced a fully automatic defect detection system
which couples defect extraction and alignment refinement.
We proposed an effective and efficient optimization algo-
rithm, as well as several techniques to achieve high accuracy
and efficiency. We compared with several classical and state-
of-art defect detection methods on challenging real-world
datasets and have shown convincing results. The generality,
robustness and scalability make our system desirable for
real-world industrial inspection tasks.
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