
Techniques for Synthesizing Binaries to an Advanced
Register/Memory Structure

Greg Stitt, Zhi Guo, Frank Vahid*, Walid Najjar
Department of Computer Science and Engineering

University of California, Riverside
{ gstitt, zguo, vahid, najjar }@cs.ucr.edu

http://www.cs.ucr.edu/~{ gstitt, zguo, vahid, najjar }
*Also with the Center for Embedded Computer Systems, UC Irvine

ABSTRACT
Recent works demonstrate several benefits of synthesizing
software binaries onto FPGA hardware, including incorporating
hardware design into established software tool flows with
minimal impact, porting existing binaries to FPGAs, and even
dynamically synthesizing software kernels to faster FPGA
coprocessors. Those works showed that standard binary
decompilation methods can recover enough high-level control
information to result in reasonably-efficient hardware. However,
recent synthesis methods for FPGAs utilize advanced memory
structures, such as a "smart buffer," that require recovery of
additional high-level information, specifically information about
loops and arrays. We incorporate decompilation techniques into
an existing binary synthesis tool flow to recover loops and arrays
in order to take advantage of advanced memory structures when
performing synthesis from a binary. We demonstrate through
experiments on six benchmarks that our methods improve binary
synthesis performance by 53%, by making effective use of smart
buffers. Furthermore, we compare the binary results using smart
buffers with results of synthesis directly from the original C code
for the benchmarks, and show that our methods achieved almost
identical performance results with only 10% area overhead.

Categories and Subdescriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems.

General Terms
Performance, Design.

Keywords
Decompilation, FPGA, synthesis, smart buffers, embedded
systems, binaries.

1. INTRODUCTION
Recent work has shown that synthesis of hardware from software
binaries can be advantageous in several situations. Stitt et al.
initially introduced the synthesis of software binaries in [16]. In
this work, Stitt shows that binary synthesis can be used to

transparently incorporate hardware design tools into established
software tool flows. In this approach, binary synthesis generates
hardware from a software description written in any language,
possibly even multiple languages, after being compiled into a
software binary by any compiler.

The FREEDOM compiler [13] illustrates another use of
synthesis from binaries, namely that of porting existing or legacy
DSP binaries into custom FPGA hardware, utilizing the
parallelism of hardware to achieve improved performance
compared to the software execution of the binary. Critical Blue
[6] uses a similar binary-level approach, creating a custom VLIW
coprocessor from a binary to speedup the software execution of
critical loops and other frequent regions of an application.

More recently, Warp processors [11][14] have synthesized
software binaries dynamically in order to partition a software
application onto a custom configurable logic fabric at runtime.
Such dynamic partitioning transparently improves the
performance of the application as the application executes, thus
requiring no designer effort. Warp processors can also potentially
take advantage of frequent data values and phase information to
perform optimizations that would normally not be possible in a
static partitioning approach without detailed profiling
information.

Previous approaches to synthesis from a software binary
have achieved reasonably well-performing hardware. However,
none of the previous efforts have synthesized advanced register or
memory structures that support data reuse, such as smart buffers
[7], which are used by high-level synthesis approaches. High-
level synthesis tools typically analyze loops, arrays, and alias
information to determine reused memory data, and then store
reused data in smart buffers, essentially reducing memory access
time while increasing bandwidth. Synthesis tools for software
binaries have no knowledge of loops, arrays, or memory access
patterns and therefore cannot synthesize smart buffers, resulting
in hardware that is much slower than would be synthesized by a
high-level synthesis tool. In this paper, we show that binary
synthesis approaches can utilize smart buffers by first using
decompilation techniques to recover necessary high-level
information. Previous binary synthesis approaches have used a
limited form of decompilation to remove overhead from the
binary, so that the binary is more appropriate for hardware
implementation. However, the decompilation techniques we use
recover additional high-level information and convert the
software binary into a higher-level language that can be used as
input to a high-level synthesis tool, or alternatively can annotate
the binary with high-level information so that a binary synthesis
tool can determine potential data reuse. We apply existing
decompilation techniques to recover control structures, to recover
arrays, and to remove instruction-set overhead. After

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’05, February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002...$5.00.

walid najjar
ACM/SIGDA Symp. on Field Programmable Gate Arrays (FPGA), Feb. 2005.

decompiling to recover high-level information that enables the
use of smart buffers, we show a 53% performance improvement
over binary synthesis approaches that perform a more limited
form of decompilation. We also compare the synthesis of binaries
after decompilation to the synthesis from the original C code,
showing almost no performance difference and an average area
overhead of 10% for binary synthesis. Our comparison to C is
meant to show that there is not much more optimization that can
be achieved at the binary level after using decompilation, because
the synthesis from C should always be better or equivalent to
synthesis from a binary. Although the results we achieved were
similar on several examples for both synthesis from a binary and
synthesis from C, in the general case, synthesis from C should
produce superior results.

2. ADVANCED REGISTER/MEMORY
STRUCTURES – SMART BUFFERS
Hardware performance is commonly limited by memory
bandwidth. Frequently, optimizations that could potentially
provide large amounts of parallelism, such as loop unrolling, have
limited benefits because the memory bandwidth of the system
cannot provide data at a fast enough rate. For example, consider
the FIR filter shown in Figure 1(a). In this example, each
iteration of the loop reads four values from memory. Assuming
that memory width is the same size as each array element, this
code would require four memory reads per iteration and would
limit the amount of parallelism to only one multiplication at a
time. Ideally, we would want to unroll the loop and perform
several iterations in parallel. However, to perform four iterations
in parallel, we would have to be able to fetch 16 memory
locations simultaneously, which would require 16 times more
memory bandwidth.

Data reuse helps eliminate memory bandwidth problems by
reducing the need to refetch data that the datapath will use again.
Many algorithms that designers consider for hardware
implementation are well suited for data reuse due to the frequent
use of window operations. A window is a region of memory
consisting of sequential locations, possibly in multiple
dimensions. Generally, the windows used in consecutive loop
iterations overlap with the windows used in previous iterations.
The overlapping window regions signify data that the hardware
will reuse and in the ideal situation the hardware would only fetch
data from these locations one time.

Typically, a designer determines the amount of possible data
reuse, possibly by transforming the code, and creates a custom
memory structure to store reused data. Ideally, a synthesis tool
would be able to automatically detect reused data and keep this
data stored in a smart buffer [7]. A smart buffer is a small
memory or register structure that stores the required memory
window for a region of code, which is usually a loop. When
loading data for a new window, the smart buffer only removes
regions that will not be reused in future windows. Using smart
buffers can greatly reduce the amount of data fetched from
memory, essentially increasing memory bandwidth and reducing
average access time.

To use smart buffers for a loop, a synthesis tool must be able
to determine the window of each iteration of the loop. A
synthesis tool typically determines the window for each loop
iteration by analyzing the use of loop induction variables in array
accesses. In addition to determining the window for each
iteration, the synthesis tool must also determine the stride of the
window after each iteration and the loop bounds, both of which
are also determined by analyzing the use of loop induction
variables in the code. After obtaining information on the size of
windows and how the windows change for each iteration, the

Figure 1: Data reuse using smart buffers for a FIR filter. a) Code for a FIR filter. (b) Windows for each loop iteration and the state of
the smart buffer after each iteration.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] ….

1st iteration window

2nd iteration window

3rd iteration window

…………………

A[0] A[1] A[2] A[3]

A[4] A[1] A[2] A[3]

A[4] A[5]A[2] A[3]

A[0]

A[1]A[0]

Smart buffer after 1st iteration

Smart buffer after 2nd iteration

Smart buffer after 3rd iteration

* new data is shown in bold

a)

b)

Void fir() {
 for (int i=0; i < 50; i ++) {
 B[i] = C0 * A[i] + C1 *A[i+1] +
 C2 * A[i+2] + C3 * A[i+3];
 }
}

synthesis tool can determine the amount of overlap between
windows. The synthesis tool can then create a smart buffer that
only fetches data for non-overlapping window regions.

Figure 1(b) shows the windows for each iteration of the FIR
filter example in Figure 1(a) and the corresponding smart buffer
state at each iteration. In the first iteration, the smart buffer
fetches the first four array elements that make up the first
window. The window of the second iteration contains three
elements (A[1], A[2], and A[3]) from the window of the first
iteration. In this case, the smart buffer only fetches a single
element (A[4]). Each subsequent iteration follows a similar
pattern, sharing three elements with the previous iteration. For
this example, a smart buffer saves three memory accesses per
iteration, excluding the first iteration that requires four memory
accesses.

Figure 2 illustrates a typical architecture that utilizes smart
buffers. The controller controls the timing of operations in the
datapath and address generators. The input address generator
uses the window information determined by the synthesis tool to
read non-overlapping window regions from RAM, which the
smart buffer stores and combines with previous data to form a
complete window. When the smart buffer has received a
complete window, the smart buffer outputs the window to the
datapath. In addition to the smart buffer that provides input to the
datapath, the example architecture uses an additional smart buffer
to store output from the datapath.

3. DECOMPILATION
The synthesis techniques for smart buffers, discussed in Section 2,
are based on the analysis of memory access patterns, obtained
through loop structures, induction variables, and arrays.
Synthesis tools that use a software binary as input have no
knowledge of loops and arrays and therefore cannot determine
memory access patterns that are needed to synthesize smart
buffers. To recover loops and arrays, in additional to other useful
high-level information, we must first perform decompilation. If
decompilation is able to recover the original high-level code
written by a designer, then high-level synthesis and synthesis
from a software binary are able to create equivalent hardware. Of
course, recovering the exact high-level source is generally
impossible. However, we show in the following sections that

decompilation commonly recovers a very similar high-level
representation, especially for code that is appropriate for hardware
implementation. Decompilation also removes overhead that is
introduced by the instruction-set architecture used by the binary,
so that the binary is much more suitable for hardware synthesis.
Note that the combination of binary synthesis and decompilation
is not intended to replace high-level synthesis. Instead, we claim
that integrating decompilation techniques into existing binary
synthesis tools will introduce the capability for these binary tools
to synthesize advanced memory structures, such as smart buffers.

A decompiler used with binary synthesis can output a high-
level representation of a program in several formats. Many
synthesis tools [1][7] use a control/data flow graph as input. The
decompiler could therefore create a control/data flow graph for
the software binary and annotate the control/data flow graph with
high-level information denoting loops, arrays, etc. An alternative
would be to output the decompiled representation into a high-
level language such as C and then use a high-level synthesis tool
to synthesize the recovered code into hardware.

Our decompilation tool flow is shown in Figure 3. Most of
our decompilation techniques are based on work done by
Cifuentes [3][4][5]. We use our own techniques to recover arrays
and remove assembly overhead. Initially, Binary Parsing
converts the binary into an intermediate representation that is
independent of the instruction set used by the binary. CDFG
Creation analyzes the intermediate format representation of the
application and creates a control/data flow graph that is equivalent
to the behavior of the binary. Next, Control Structure Recovery
analyzes the control/data flow graph and recovers loops and if
statements. Data Structure Recovery is responsible for recovering
arrays. After recovering the high-level constructs, Instruction-Set
Overhead Removal performs optimizations to remove the
overhead introduced by the instruction set and assembly code.

We have implemented a decompiler that implements all of
the techniques shown in Figure 3. The input to our decompiler is
a software binary compiled for the SimpleScalar [2] processor.
The output of the decompiler is C code.

3.1 Binary Parsing
Binary parsing is responsible for converting the machine
dependent software binary into a machine independent
representation. Using a machine independent representation

Figure 2: Typical architecture for smart buffers. Figure 3: Decompilation of software binaries.

RAM

Datapath

Input
Address

Generator

Controller

Smart Buffer

RAM

Output
Address

Generator

Smart Buffer

Binary Parsing

Register Transfer Lists

Software Binary

CDFG Creation

Control Structure Recovery

Decompiled C Code

Instruction-Set Overhead Removal

Data Structure Recovery

allows the same decompilation process to be used regardless of
the instruction set architecture. The representation we use is
register transfer lists [5]. A register transfer is an expression that
defines a particular register or memory location. When
converting assembly instructions to register transfers, we specify
each register transfer by a semantic string corresponding to the
semantics of the instruction. During binary parsing, we make
instruction side effects explicit by creating a register transfer for
each implicit operation. For example, a pop instruction would use
two register transfers: one register transfer for the load and one
register transfer for the stack pointer update.

3.2 CDFG Creation
To create a control flow graph for the application, we first analyze
jumps in the register transfer lists to determine basic blocks.
After determining basic blocks, we construct a complete control
flow graph by using the targets of the jumps to connect the basic
blocks.

A limitation of decompilation is the inability to eliminate
indirect jumps. An indirect jump is a jump whose target is
specified by the value of a register. Because the target isn’t
known until runtime, we cannot statically create a control flow
graph. In some cases, we can eliminate indirect jumps through
definition-use analysis by determining all possible targets of the
jump. Although the inability to deal with indirect jumps may
seem like a major limitation, in reality only a small number of
applications in reconfigurable systems utilize indirect jumps. We
have analyzed examples from several benchmark suites and found
that less than 5% of all examples use indirect jumps.

We construct a data flow graph by analyzing the semantic
strings for each register transfer. Each register transfer expression
represents a subtree of the data flow graph for the block that the
register transfer appears in. By parsing the semantic strings of
each register transfer, we can create the subtree for each register
transfer. We then use definition-use and use-definition analysis to
connect the subtrees rooted at each register transfer into a
complete data flow graph.

3.3 Control Structure Recovery
Control structure recovery analyzes the CDFG to determine high-
level control structures such as loops and if statements.

We recover loop structures using interval analysis [3]. An
interval contains a maximum of one loop, which must start at the
head of the interval. After checking all the intervals of a control
flow graph for loops, each interval is collapsed into a single node,
forming a new control flow graph, which we then check for
additional loops. We repeat this process until the control flow
graph can no longer be reduced. By processing loops in this
order, we can determine the proper nesting order of loops.

After finding a loop, we determine the type of the loop as
pre-tested, post-tested, and endless based on the location of the
exit from the loop. We also determine multi-exit loops that
contain exits from the loop body.

We determine loop induction variables through data and
control flow analysis. Once we determine loop induction
variables, we can determine the loop bounds by analyzing the exit
condition of the loop and the update operation of the loop
induction variable. Determining loop bounds is important for
unrolling the loops during synthesis.

For brevity, we omit a description of determining if
statements. Cifuentes gives a complete description of the
determination of if statements in [3].

3.4 Data Structure Recovery
We perform data flow analysis to recover array data structures.
We discover arrays by searching the control/data flow graph for
memory accesses that have a linear access pattern. If such
memory accesses are found, we assume they correspond to array
accesses. Although we could try and detect other access patterns,
generally only linear memory accesses can be implemented
efficiently in hardware. We initially search the portions of the
control/data flow graph that correspond to loops, because array
accesses typically occur within loops, unless a loop has been
unrolled by the software compiler. We determine the size of each
array by using the bounds for each loop. Note that the size of the
decompiled array might not correspond exactly to the size of the
array in the original source code. An incorrect array size is
generally determined only when a subset of an array is accessed
in a loop. When an incorrect array size is recovered, the
decompiled program is still equivalent to the original program,
but the original array may be divided into multiple smaller arrays
in the decompiled code. Once we have detected arrays within all
loops, we try to map memory accesses not contained within loops
onto existing arrays. If we cannot find an appropriate array for a
memory access outside of an array, we either create a new array
or a single memory location to handle the memory access.

Detecting multidimensional array accesses is slightly more
difficult, due to the requirement of detecting row-major ordering
calculations in nested loops. The size of each dimension for a
multidimensional array is determined using the bounds of each
nested loop. If a loop is unbounded, or the bounds cannot be
determined, then we cannot recover the size of the array. Once
we have determined all row-major ordering calculations, we
replace the calculations with simple indices into the
multidimensional array.

Due to the fact that compilers can implement arrays in
assembly in a variety of ways, we cannot guarantee that all arrays
will be recovered. However, from our experiments so far we have
recovered 100% of all array structures for examples with bounded
loops.

3.5 Instruction Set/Assembly Overhead
Removal
Compilers perform instruction selection based on the semantics of
the program being compiled. Generally, a compiler is not
concerned with the architectural resources being used. For
example, compilers commonly implement a move operation with
an arithmetic instruction using an immediate value of zero. This
type of instruction selection can greatly increase the size of the
data flow graph and can lead to inefficient hardware. Our
decompilation process removes this overhead so that synthesis
will be more successful.

An additional type of instruction-set overhead that commonly
occurs is compare-with-zero instructions. To compare two values
using a compare-with-zero instruction, a compiler will typically
subtract the two values and place the result in a temporary
register. This temporary register is then used by the compare-
with-zero instruction to determine the result of the comparison. If
this compare-with-zero is not optimized away, then unnecessary
subtractors will be synthesized. These subtractors can waste a
huge amount of area, especially if the operations are 32-bit.

One of the largest assembly overheads is caused by the fact that
most instruction set architectures use operations that are implicitly
32-bit. The actual required size of the operation can be much

less. Determining the actual size of operations is extremely
important, especially in the case of multiplication, which requires
large amounts of hardware area. We recover the actual operation
sizes by propagating size information given from load
instructions. Instruction sets generally have load word, load half,
and load byte instructions that load 4 bytes, 2 bytes, and 1 byte
respectively. By propagating this size information over an entire
data flow graph, we can reduce the size of each operation to the
maximum size of all the inputs to the operation.

Stack operations also cause overhead that the decompilation
process must remove. Compilers use these stack operations to
handle parameter passing and register spills. When synthesized to
hardware, stack operations create excess accesses to main
memory, which can greatly limit parallelism. A compiler will
generally use stack operations due to a small limit on the number
of registers in the microprocessor architecture. When we
synthesize hardware for the application, the limit on the number
of registers no longer applies. Therefore, stack operations can be
removed by replacing each stack operation with an access to an
additional register. Of course, we cannot remove stack operations
from recursive functions. The inability to deal with recursive
functions is not a drawback because recursion cannot be
implemented efficiently in hardware.

3.6 Limitations
In some cases, the decompilation of arbitrary binaries has been
shown to be impossible [4]. As previously mentioned,
decompilation usually fails for regions of a binary that contain
indirect jumps. Also, most decompilation techniques assume that
the assembly code is written in a way such that control flow does
not jump between functions, except by using call and return
primitives. Although most compilers will never compile code that
jumps between functions, a designer could perform this type of
operation when hand optimizing the assembly code. Fortunately,
these limitations do not usually affect the decompilation of
application binaries for embedded and reconfigurable systems.
Code for embedded systems and reconfigurable systems generally
does not contain constructs that can be problematic for
decompilers, such as pointers, switch statements, virtual
functions, etc. In previous work [15], we have decompiled
several dozen benchmarks from the EEMBC, MediaBench, and
NetBench benchmarks suites, successfully recovering a similar
high-level representation of the examples over 90% of the time.
This high success rate suggests that although decompilation may
not always be beneficial for binary synthesis, the success rate is
high enough to justify integrating decompilation techniques into a
binary synthesis approach.

4. EXPERIMENTS

4.1 Experimental Setup
We are currently using six benchmarks in our experiments.
Bit_Correlator counts the number of bits in an 8-bit integer that
match a constant mask. Fir is a 5-tap finite-impulse-response
filter. Udiv8 is an 8-bit divider. Prewitt implements the Prewitt
edge-detection algorithm. Mf9 is a moving average filter that
approximates the average of nine samples. The Moravec example
implements a specific kernel of the Moravec algorithm. The input
vectors consist of 256 element arrays, except for Prewitt and
Moravec, which use a 2-dimensional 256x256 array. We are
currently working on synthesizing examples from the EEMBC

and MediaBench suites, but the results were not available at the
time of this publication.

We used the high-level synthesis tool, ROCCC [7], to
synthesize hardware with smart buffers. ROCCC takes high-
level language code, such as C, as input and generates RTL
(register transfer level) VHDL for reconfigurable devices.
ROCCC is built on the SUIF2 [17] and Machine-SUIF [12]
platforms. SUIF provides high-level information about loops and
memory accesses, which ROCCC uses to perform loop level
analysis and optimizations. Most of the information needed to
design high-level components, such as controllers and address
generators is extracted by ROCCC from SUIF code. Machine-
SUIF is an infrastructure for constructing the back-end of a
compiler, which provides libraries such as the Control Flow
Graph library [8], Data Flow Analysis library [9], and Static
Single Assignment library [10] that can be used for optimization
and analysis. The ROCCC synthesis tool modifies SUIF2 and
Machine-SUIF, adding new analysis and optimization techniques.
ROCCC relies on the commercial tool Xilinx ISE to synthesize
the RTL VHDL code into a netlist. The target architecture of all
synthesis is the Xilinx XC2V2000 FPGA.

4.2 Comparison of Synthesis From a Binary
With and Without Smart Buffers
In this section, we present results illustrating the performance of
hardware synthesized from a software binary, both with and
without the smart buffers that are made possible using the
decompilation techniques described in Section 3.

For all examples, we generated a binary by compiling the C
code for the examples using a version of gcc ported to the
SimpleScalar PISA instruction set. We compiled all examples
using a low level of optimization effort (-O1). For the
experiments with smart buffers, we generated hardware by
decompiling the binaries using our own decompilation tools into a
C code representation that could be compiled using ROCCC. We
could have instead implemented the synthesis of smart buffers
into an existing binary synthesis tool without having to decompile
to C, but we found that using ROCCC was a simpler solution.
For the results without smart buffers, we estimate performance
using the same datapath given from ROCCC but without smart
buffers and without any form of data reuse.

Table 1 shows results comparing these two approaches.
Cycles are the number of cycles required for the synthesized
hardware to execute. Clock is the clock frequency obtained for
the synthesized hardware after placement and routing for the
Xilinx XC2V2000. Time is the execution time of the example
when synthesized to hardware. %TimeImprovement is the percentage
improvement in execution time when performing decompilation
and using smart buffers.

The results show that on average, the use of smart buffers
results in a 53% performance increase. For two of the examples,
there was no improvement in execution time. The reason for the
identical performances is that ROCCC did not use smart buffers
because of the lack of potential data reuse for these examples.
The smart buffer in the fir example required 8 16-bit registers.
The smart buffer in the Prewitt example required 36 16-bit
registers. The mf9 smart buffer required 11 16-bit registers. The
Moravec smart buffer used 15 16-bit registers.

4.3 Comparison of Synthesis From a Binary
With Smart Buffers and High-Level Synthesis
With Smart Buffers
In this section, we compare the performance of hardware using
smart buffers when synthesized from both a software binary and
from the original high-level C code, in order to determine how
much more optimization is possible during binary synthesis after
decompiling. Hardware generated during synthesis from C code
should always be superior, or at least equivalent to, the hardware
synthesized a binary. Therefore, if synthesis from a binary can
achieve similar results to synthesis from C code, then there is
likely little more optimization that can be achieved from a binary
synthesis when performing decompilation. We used the same
experimental setup as in Section 4.2 to obtain smart buffer
hardware from a software binary.

Table 2 compares the performances of the hardware when
synthesizing from both a binary and C code. Cycles are the
number of cycles required for the synthesized hardware to execute
to completion. Clock is the clock frequency obtained for the
synthesized hardware after placement and routing for the Xilinx
XC2V2000. Time is the execution time of the example when
synthesized to hardware. Area is the number of slices required by
the datapath in the synthesized hardware. %TimeImprovement is the
percentage improvement in execution time of hardware when
performing synthesis from C, compared to hardware synthesized
from a binary. %AreaOverhead is the area overhead of synthesis
from a binary.

The results show identical performances for both approaches
on 5 of the examples. For the Moravec example, the hardware
synthesized from the binary was actually faster than the hardware
synthesized from C. The reason for this performance difference is
that during software compilation, the software compiler applied
several optimizations that transformed the code into a
representation more suitable for synthesis, resulting in a slighter

higher clock frequency in the synthesized hardware. If ROCCC
had performed these same optimizations, or if the binary would
have been generated without optimizations, the performances
would be identical. The negative area overhead for the Moravec
example occurred for the same reason. Although synthesis from a
binary outperforms synthesis from C code for this example, in the
general case synthesis from C will achieve superior results. For
the bit_correlator and udiv8 examples, the hardware that was
synthesized was identical for both binary and high-level
synthesis, due to the ability of decompilation to recover an almost
exact replica of the original source code. The fir example had the
same performance for both approaches but differed slightly in
terms of area. The difference in area for fir was caused by the
software compiler performing strength-reduction, which
converted some of the multiplications into shift and add
operations. These shift and add operations required additional
pipeline stages and therefore increased the area. Prewitt achieved
identical performance for both binary and high-level synthesis,
but the hardware created from the binary required 58% more area.
The reason for the area overhead was that the decompiler was
unable to remove temporary registers from long expressions,
which increased the size of the datapath. On average, there was a
10% increase in area for binary synthesis.

4.4 Future Work
We are currently running these same experiments for software
binaries generated with different compiler optimizations.
Aggressive compiler optimizations could potentially obscure the
software binary, making decompilation less successful at
recovering high-level information. Also, optimizations such as
loop unrolling could eliminate control instructions that
decompilation techniques use to recover high-level loop
structures. We plan on using loop rerolling, in addition to other
techniques to overcome problems with compiler optimizations
when synthesizing a software binary. For the results we have

Table 1: A comparison of hardware synthesized from a binary, both with and without smart buffers.

Table 2: A comparison of hardware synthesized from a binary and from original C code, both with smart buffers.

Example Cycles Clock Time Area Cycles Clock Time Area %TimeImprovement %AreaOverhead

bit_correlator 258 118 2.19 15 258 118 2.19 15 0% 0%
fir 129 125 1.03 359 129 125 1.03 371 0% 3%
udiv8 281 190 1.48 398 281 190 1.48 398 0% 0%
prewitt 64516 123 525 2690 64516 123 525 4250 0% 58%
mf9 258 57 4.5 1048 258 57 4.5 1048 0% 0%
moravec 195072 66 2951 680 195072 70 2791 676 -6% -1%

Avg: -1% 10%

Synthesis from C Code Synthesis from Binary

Example Cycles Clock Time Cycles Clock Time %TimeImprovement

bit_correlator 258 118 2.2 258 118 2.2 0%
fir 577 125 4.6 129 125 1.0 78%
udiv8 281 190 1.5 281 190 1.5 0%
prewitt 172086 123 1399.1 64516 123 524.5 63%
mf9 8194 57 143.0 258 57 4.5 97%
moravec 969264 66 14663.6 195072 66 2951.2 80%

Avg: 53%

W/O Smart Buffers With Smart Buffers

obtained, decompilation has commonly recovered enough high-
level information to make binary synthesis competitive with
synthesis from C code.

We are also currently running the experiments in this paper
on different instructions sets to determine if synthesis from a
binary is possible on a variety of instruction set architectures.
Although we do not yet have results, we estimate that there will
be little difference between instruction sets because decompilation
has successfully recovered high-level representations of these
programs on several different instruction sets.

5. CONCLUSIONS
Previous work has shown that the synthesis of software binaries
can be beneficial in several situations. A disadvantage to
previous binary synthesis approaches is that high-level
information is lost during software compilation. Without this
high-level information, efficient memory structures cannot be
synthesized, resulting in reduced hardware performance compared
to high-level synthesis.

In this paper, we showed that by utilizing decompilation,
binary synthesis can recover loops and arrays therefore enabling
synthesis of the same memory structures that are commonly
created in high-level synthesis approaches. When using
decompilation, we show a 53% improvement in performance
compared to a binary synthesis approach that does not use
decompilation. We also presented results for six examples
showing that when utilizing decompilation, the synthesis of
software binaries can sometimes achieve identical performance
compared to high-level synthesis. Binary synthesis had an area
overhead of 10%.

6. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CCR-0203829) and by the Semiconductor Research
Corporation (2003-HJ-1046G).

7. REFERENCES
[1] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain,

and H. Ziegler. DEFACTO: A Design Environment for Adaptive
Computing Technology. In Reconfigurable Architectures Workshop,
RAW’99, April 1999.

[2] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0.
University of Wisconsin-Madison Computer Sciences Department
Technical Report #1342. June, 1997.

[3] C. Cifuentes. Structuring Decompiled Graphs. In Proceedings of the
International Conference on Compiler Construction, volume 1060 of
Lecture Notes in Computer Science, pg. 91-105. April 1996.

[4] C. Cifuentes, D. Simon, A. Fraboulet. Assembly to High-Level
Language Translation. Department of Compter Science and
Electrical Engineering, University of Queensland. Technical Report
439, August 1998.

[5] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T. Waddington.
Preliminary Experiences with the Use of the UQBT Binary
Translation Framework. Proceedings of the Workshop on Binary
Translation, Newport Beach, USA, October 1999.

[6] CriticalBlue. http://www.criticalblue.com.
[7] Z. Guo, A. B. Buyukkurt and W. Najjar. Input Data Reuse In

Compiling Window Operations Onto Reconfigurable Hardware,
Proc. ACM Symp. On Languages, Compilers and Tools for
Embedded Systems (LCTES 2004), Washington DC, June 2004.

[8] G. Holloway and M. D. Smith. Machine SUIF Control Flow Graph
Library. Division of Engineering and Applied Sciences, Harvard
University 2002.

[9] G. Holloway and A. Dimock. The Machine SUIF Bit-Vector Data-
Flow-Analysis Library. Division of Engineering and Applied
Sciences, Harvard University 2002.

[10] G. Holloway. The Machine-SUIF Static Single Assignment Library.
Division of Engineering and Applied Sciences, Harvard University
2002.

[11] R. Lysecky, F. Vahid, S. Tan. Dynamic FPGA Routing for Just-in-
Time Compilation. IEEE/ACM Design Automation Conference
(DAC), June 2004.

[12] Machine-SUIF.
http://www.eecs.harvard.edu/hube/research/machsuif.html, 2004.

[13] G. Mittal, D. Zaretsky, X. Tang, and P. Banerjee, "Overview of the
FREEDOM Compiler for Mapping DSP software to FPGAs," Proc.
IEEE Conference on FPGA based Custom Computing Machines
(FCCM), Napa Valley, Apr. 2004.

[14] G. Stitt, R. Lysecky, F. Vahid. Dynamic Hardware/Software
Partitioning: A First Approach. Proc. Of the 40th Design Automation
Conference (DAC), 2003.

[15] G. Stitt and F. Vahid. Binary-Level Hardware/Software Partitioning
of MediaBench, NetBench, and EEMBC Benchmarks. University of
Cailfornia, Riverside Technical Report UCR-CSE-03-01. January
2003.

[16] G. Stitt and F. Vahid. Hardware/Software Partitioning of Software
Binaries. IEEE/ACM International Conference on Computer Aided
Design, November 2002.

[17] SUIF Compiler System. http://suif.stanford.edu, 2004.

