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ABSTRACT 
Recent works demonstrate several benefits of synthesizing 
software binaries onto FPGA hardware, including incorporating 
hardware design into established software tool flows with 
minimal impact, porting existing binaries to FPGAs, and even 
dynamically synthesizing software kernels to faster FPGA 
coprocessors. Those works showed that standard binary 
decompilation methods can recover enough high-level control 
information to result in reasonably-efficient hardware. However, 
recent synthesis methods for FPGAs utilize advanced memory 
structures, such as a "smart buffer," that require recovery of 
additional high-level information, specifically information about 
loops and arrays. We incorporate decompilation techniques into 
an existing binary synthesis tool flow to recover loops and arrays 
in order to take advantage of advanced memory structures when 
performing synthesis from a binary.  We demonstrate through 
experiments on six benchmarks that our methods improve binary 
synthesis performance by 53%, by making effective use of smart 
buffers. Furthermore, we compare the binary results using smart 
buffers with results of synthesis directly from the original C code 
for the benchmarks, and show that our methods achieved almost 
identical performance results with only 10% area overhead.   

Categories and Subdescriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems. 

General Terms 
Performance, Design. 

Keywords 
Decompilation, FPGA, synthesis, smart buffers, embedded 
systems, binaries. 

1. INTRODUCTION 
Recent work has shown that synthesis of hardware from software 
binaries can be advantageous in several situations.  Stitt et al. 
initially introduced the synthesis of software binaries in [16].  In 
this work, Stitt shows that binary synthesis can be used to 

transparently incorporate hardware design tools into established 
software tool flows.  In this approach, binary synthesis generates 
hardware from a software description written in any language, 
possibly even multiple languages, after being compiled into a 
software binary by any compiler. 

The FREEDOM compiler [13] illustrates another use of 
synthesis from binaries, namely that of porting existing or legacy 
DSP binaries into custom FPGA hardware, utilizing the 
parallelism of hardware to achieve improved performance 
compared to the software execution of the binary.  Critical Blue 
[6] uses a similar binary-level approach, creating a custom VLIW 
coprocessor from a binary to speedup the software execution of 
critical loops and other frequent regions of an application. 

More recently, Warp processors [11][14] have synthesized 
software binaries dynamically in order to partition a software 
application onto a custom configurable logic fabric at runtime.  
Such dynamic partitioning transparently improves the 
performance of the application as the application executes, thus 
requiring no designer effort.  Warp processors can also potentially 
take advantage of frequent data values and phase information to 
perform optimizations that would normally not be possible in a 
static partitioning approach without detailed profiling 
information. 

Previous approaches to synthesis from a software binary 
have achieved reasonably well-performing hardware.  However, 
none of the previous efforts have synthesized advanced register or 
memory structures that support data reuse, such as smart buffers 
[7], which are used by high-level synthesis approaches.  High-
level synthesis tools typically analyze loops, arrays, and alias 
information to determine reused memory data, and then store 
reused data in smart buffers, essentially reducing memory access 
time while increasing bandwidth.  Synthesis tools for software 
binaries have no knowledge of loops, arrays, or memory access 
patterns and therefore cannot synthesize smart buffers, resulting 
in hardware that is much slower than would be synthesized by a 
high-level synthesis tool. In this paper, we show that binary 
synthesis approaches can utilize smart buffers by first using 
decompilation techniques to recover necessary high-level 
information.  Previous binary synthesis approaches have used a 
limited form of decompilation to remove overhead from the 
binary, so that the binary is more appropriate for hardware 
implementation. However, the decompilation techniques we use 
recover additional high-level information and convert the 
software binary into a higher-level language that can be used as 
input to a high-level synthesis tool, or alternatively can annotate 
the binary with high-level information so that a binary synthesis 
tool can determine potential data reuse.  We apply existing 
decompilation techniques to recover control structures, to recover 
arrays, and to remove instruction-set overhead.  After 
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decompiling to recover high-level information that enables the 
use of smart buffers, we show a 53% performance improvement 
over binary synthesis approaches that perform a more limited 
form of decompilation. We also compare the synthesis of binaries 
after decompilation to the synthesis from the original C code, 
showing almost no performance difference and an average area 
overhead of 10% for binary synthesis.   Our comparison to C is 
meant to show that there is not much more optimization that can 
be achieved at the binary level after using decompilation, because 
the synthesis from C should always be better or equivalent to 
synthesis from a binary.  Although the results we achieved were 
similar on several examples for both synthesis from a binary and 
synthesis from C, in the general case, synthesis from C should 
produce superior results. 

2. ADVANCED REGISTER/MEMORY 
STRUCTURES – SMART BUFFERS 
Hardware performance is commonly limited by memory 
bandwidth.  Frequently, optimizations that could potentially 
provide large amounts of parallelism, such as loop unrolling, have 
limited benefits because the memory bandwidth of the system 
cannot provide data at a fast enough rate.  For example, consider 
the FIR filter shown in Figure 1(a).  In this example, each 
iteration of the loop reads four values from memory. Assuming 
that memory width is the same size as each array element, this 
code would require four memory reads per iteration and would 
limit the amount of parallelism to only one multiplication at a 
time.  Ideally, we would want to unroll the loop and perform 
several iterations in parallel.  However, to perform four iterations 
in parallel, we would have to be able to fetch 16 memory 
locations simultaneously, which would require 16 times more 
memory bandwidth. 

Data reuse helps eliminate memory bandwidth problems by 
reducing the need to refetch data that the datapath will use again.  
Many algorithms that designers consider for hardware 
implementation are well suited for data reuse due to the frequent 
use of window operations.  A window is a region of memory 
consisting of sequential locations, possibly in multiple 
dimensions.  Generally, the windows used in consecutive loop 
iterations overlap with the windows used in previous iterations.  
The overlapping window regions signify data that the hardware 
will reuse and in the ideal situation the hardware would only fetch 
data from these locations one time.   

Typically, a designer determines the amount of possible data 
reuse, possibly by transforming the code, and creates a custom 
memory structure to store reused data.  Ideally, a synthesis tool 
would be able to automatically detect reused data and keep this 
data stored in a smart buffer [7].  A smart buffer is a small 
memory or register structure that stores the required memory 
window for a region of code, which is usually a loop.  When 
loading data for a new window, the smart buffer only removes 
regions that will not be reused in future windows.  Using smart 
buffers can greatly reduce the amount of data fetched from 
memory, essentially increasing memory bandwidth and reducing 
average access time. 

To use smart buffers for a loop, a synthesis tool must be able 
to determine the window of each iteration of the loop.  A 
synthesis tool typically determines the window for each loop 
iteration by analyzing the use of loop induction variables in array 
accesses.  In addition to determining the window for each 
iteration, the synthesis tool must also determine the stride of the 
window after each iteration and the loop bounds, both of which 
are also determined by analyzing the use of loop induction 
variables in the code.  After obtaining information on the size of 
windows and how the windows change for each iteration, the 

Figure 1: Data reuse using smart buffers for a FIR filter.  a) Code for a FIR filter.  (b) Windows for each loop iteration and the state of 
the smart buffer after each iteration. 
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Void fir() { 
   for (int i=0; i < 50; i ++) { 
      B[i] = C0 * A[i] + C1 *A[i+1] +  
                C2 * A[i+2] + C3 * A[i+3]; 
   } 
} 



synthesis tool can determine the amount of overlap between 
windows.  The synthesis tool can then create a smart buffer that 
only fetches data for non-overlapping window regions. 

Figure 1(b) shows the windows for each iteration of the FIR  
filter example in Figure 1(a) and the corresponding smart buffer 
state at each iteration.  In the first iteration, the smart buffer 
fetches the first four array elements that make up the first 
window.  The window of the second iteration contains three 
elements (A[1], A[2], and A[3]) from the window of the first 
iteration.  In this case, the smart buffer only fetches a single 
element (A[4]).  Each subsequent iteration follows a similar 
pattern, sharing three elements with the previous iteration.  For 
this example, a smart buffer saves three memory accesses per 
iteration, excluding the first iteration that requires four memory 
accesses. 

Figure 2 illustrates a typical architecture that utilizes smart 
buffers.  The controller controls the timing of operations in the 
datapath and address generators.  The input address generator 
uses the window information determined by the synthesis tool to 
read non-overlapping window regions from RAM, which the 
smart buffer stores and combines with previous data to form a 
complete window.  When the smart buffer has received a 
complete window, the smart buffer outputs the window to the 
datapath.  In addition to the smart buffer that provides input to the 
datapath, the example architecture uses an additional smart buffer 
to store output from the datapath.  

3. DECOMPILATION 
The synthesis techniques for smart buffers, discussed in Section 2, 
are based on the analysis of memory access patterns, obtained 
through loop structures, induction variables, and arrays.   
Synthesis tools that use a software binary as input have no 
knowledge of loops and arrays and therefore cannot determine 
memory access patterns that are needed to synthesize smart 
buffers.  To recover loops and arrays, in additional to other useful 
high-level information, we must first perform decompilation.  If 
decompilation is able to recover the original high-level code 
written by a designer, then high-level synthesis and synthesis 
from a software binary are able to create equivalent hardware.  Of 
course, recovering the exact high-level source is generally 
impossible.  However, we show in the following sections that 

decompilation commonly recovers a very similar high-level 
representation, especially for code that is appropriate for hardware 
implementation.  Decompilation also removes overhead that is 
introduced by the instruction-set architecture used by the binary, 
so that the binary is much more suitable for hardware synthesis.  
Note that the combination of binary synthesis and decompilation 
is not intended to replace high-level synthesis.  Instead, we claim 
that integrating decompilation techniques into existing binary 
synthesis tools will introduce the capability for these binary tools 
to synthesize advanced memory structures, such as smart buffers. 

A decompiler used with binary synthesis can output a high-
level representation of a program in several formats.  Many 
synthesis tools [1][7] use a control/data flow graph as input.  The 
decompiler could therefore create a control/data flow graph for 
the software binary and annotate the control/data flow graph with 
high-level information denoting loops, arrays, etc.  An alternative 
would be to output the decompiled representation into a high-
level language such as C and then use a high-level synthesis tool 
to synthesize the recovered code into hardware. 

Our decompilation tool flow is shown in Figure 3.  Most of 
our decompilation techniques are based on work done by 
Cifuentes [3][4][5].  We use our own techniques to recover arrays 
and remove assembly overhead.  Initially, Binary Parsing 
converts the binary into an intermediate representation that is 
independent of the instruction set used by the binary.  CDFG 
Creation analyzes the intermediate format representation of the 
application and creates a control/data flow graph that is equivalent 
to the behavior of the binary.  Next, Control Structure Recovery 
analyzes the control/data flow graph and recovers loops and if 
statements.  Data Structure Recovery is responsible for recovering 
arrays. After recovering the high-level constructs, Instruction-Set 
Overhead Removal performs optimizations to remove the 
overhead introduced by the instruction set and assembly code. 

We have implemented a decompiler that implements all of 
the techniques shown in Figure 3.  The input to our decompiler is 
a software binary compiled for the SimpleScalar [2] processor.  
The output of the decompiler is C code. 

3.1 Binary Parsing 
Binary parsing is responsible for converting the machine 
dependent software binary into a machine independent 
representation.  Using a machine independent representation 

Figure 2: Typical architecture for smart buffers. Figure 3: Decompilation of software binaries. 
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allows the same decompilation process to be used regardless of 
the instruction set architecture.  The representation we use is 
register transfer lists [5].  A register transfer is an expression that 
defines a particular register or memory location.  When 
converting assembly instructions to register transfers, we specify 
each register transfer by a semantic string corresponding to the 
semantics of the instruction.  During binary parsing, we make 
instruction side effects explicit by creating a register transfer for 
each implicit operation.  For example, a pop instruction would use 
two register transfers: one register transfer for the load and one 
register transfer for the stack pointer update. 

3.2 CDFG Creation 
To create a control flow graph for the application, we first analyze 
jumps in the register transfer lists to determine basic blocks.  
After determining basic blocks, we construct a complete control 
flow graph by using the targets of the jumps to connect the basic 
blocks.   

A limitation of decompilation is the inability to eliminate 
indirect jumps.  An indirect jump is a jump whose target is 
specified by the value of a register.  Because the target isn’t 
known until runtime, we cannot statically create a control flow 
graph.  In some cases, we can eliminate indirect jumps through 
definition-use analysis by determining all possible targets of the 
jump.  Although the inability to deal with indirect jumps may 
seem like a major limitation, in reality only a small number of 
applications in reconfigurable systems utilize indirect jumps.  We 
have analyzed examples from several benchmark suites and found 
that less than 5% of all examples use indirect jumps. 

We construct a data flow graph by analyzing the semantic 
strings for each register transfer.  Each register transfer expression 
represents a subtree of the data flow graph for the block that the 
register transfer appears in.  By parsing the semantic strings of 
each register transfer, we can create the subtree for each register 
transfer.  We then use definition-use and use-definition analysis to 
connect the subtrees rooted at each register transfer into a 
complete data flow graph. 

3.3 Control Structure Recovery 
Control structure recovery analyzes the CDFG to determine high-
level control structures such as loops and if statements. 

We recover loop structures using interval analysis [3].  An 
interval contains a maximum of one loop, which must start at the 
head of the interval.  After checking all the intervals of a control 
flow graph for loops, each interval is collapsed into a single node, 
forming a new control flow graph, which we then check for 
additional loops.  We repeat this process until the control flow 
graph can no longer be reduced.  By processing loops in this 
order, we can determine the proper nesting order of loops. 

After finding a loop, we determine the type of the loop as 
pre-tested, post-tested, and endless based on the location of the 
exit from the loop.  We also determine multi-exit loops that 
contain exits from the loop body. 

We determine loop induction variables through data and 
control flow analysis.  Once we determine loop induction 
variables, we can determine the loop bounds by analyzing the exit 
condition of the loop and the update operation of the loop 
induction variable.  Determining loop bounds is important for 
unrolling the loops during synthesis. 

For brevity, we omit a description of determining if 
statements.  Cifuentes gives a complete description of the 
determination of if statements in [3]. 

3.4 Data Structure Recovery 
We perform data flow analysis to recover array data structures.  
We discover arrays by searching the control/data flow graph for 
memory accesses that have a linear access pattern.  If such 
memory accesses are found, we assume they correspond to array 
accesses.  Although we could try and detect other access patterns, 
generally only linear memory accesses can be implemented 
efficiently in hardware.  We initially search the portions of the 
control/data flow graph that correspond to loops, because array 
accesses typically occur within loops, unless a loop has been 
unrolled by the software compiler.  We determine the size of each 
array by using the bounds for each loop.  Note that the size of the 
decompiled array might not correspond exactly to the size of the 
array in the original source code.  An incorrect array size is 
generally determined only when a subset of an array is accessed 
in a loop.  When an incorrect array size is recovered, the 
decompiled program is still equivalent to the original program, 
but the original array may be divided into multiple smaller arrays 
in the decompiled code.  Once we have detected arrays within all 
loops, we try to map memory accesses not contained within loops 
onto existing arrays.  If we cannot find an appropriate array for a 
memory access outside of an array, we either create a new array 
or a single memory location to handle the memory access. 

Detecting multidimensional array accesses is slightly more 
difficult, due to the requirement of detecting row-major ordering 
calculations in nested loops.  The size of each dimension for a 
multidimensional array is determined using the bounds of each 
nested loop.  If a loop is unbounded, or the bounds cannot be 
determined, then we cannot recover the size of the array.  Once 
we have determined all row-major ordering calculations, we 
replace the calculations with simple indices into the 
multidimensional array. 

Due to the fact that compilers can implement arrays in 
assembly in a variety of ways, we cannot guarantee that all arrays 
will be recovered.  However, from our experiments so far we have 
recovered 100% of all array structures for examples with bounded 
loops. 

3.5 Instruction Set/Assembly Overhead 
Removal 
Compilers perform instruction selection based on the semantics of 
the program being compiled.  Generally, a compiler is not 
concerned with the architectural resources being used.  For 
example, compilers commonly implement a move operation with 
an arithmetic instruction using an immediate value of zero.  This 
type of instruction selection can greatly increase the size of the 
data flow graph and can lead to inefficient hardware.  Our 
decompilation process removes this overhead so that synthesis 
will be more successful. 

An additional type of instruction-set overhead that commonly 
occurs is compare-with-zero instructions.  To compare two values 
using a compare-with-zero instruction, a compiler will typically 
subtract the two values and place the result in a temporary 
register.  This temporary register is then used by the compare-
with-zero instruction to determine the result of the comparison.  If 
this compare-with-zero is not optimized away, then unnecessary 
subtractors will be synthesized.  These subtractors can waste a 
huge amount of area, especially if the operations are 32-bit.  

One of the largest assembly overheads is caused by the fact that 
most instruction set architectures use operations that are implicitly 
32-bit.  The actual required size of the operation can be much 



less.  Determining the actual size of operations is extremely 
important, especially in the case of multiplication, which requires 
large amounts of hardware area.  We recover the actual operation 
sizes by propagating size information given from load 
instructions.  Instruction sets generally have load word, load half, 
and load byte instructions that load 4 bytes, 2 bytes, and 1 byte 
respectively.  By propagating this size information over an entire 
data flow graph, we can reduce the size of each operation to the 
maximum size of all the inputs to the operation. 

Stack operations also cause overhead that the decompilation 
process must remove.  Compilers use these stack operations to 
handle parameter passing and register spills.  When synthesized to 
hardware, stack operations create excess accesses to main 
memory, which can greatly limit parallelism.  A compiler will 
generally use stack operations due to a small limit on the number 
of registers in the microprocessor architecture.  When we 
synthesize hardware for the application, the limit on the number 
of registers no longer applies.  Therefore, stack operations can be 
removed by replacing each stack operation with an access to an 
additional register.  Of course, we cannot remove stack operations 
from recursive functions.  The inability to deal with recursive 
functions is not a drawback because recursion cannot be 
implemented efficiently in hardware. 

3.6 Limitations 
In some cases, the decompilation of arbitrary binaries has been 
shown to be impossible [4]. As previously mentioned, 
decompilation usually fails for regions of a binary that contain 
indirect jumps.  Also, most decompilation techniques assume that 
the assembly code is written in a way such that control flow does 
not jump between functions, except by using call and return 
primitives.  Although most compilers will never compile code that 
jumps between functions, a designer could perform this type of 
operation when hand optimizing the assembly code.  Fortunately, 
these limitations do not usually affect the decompilation of 
application binaries for embedded and reconfigurable systems.  
Code for embedded systems and reconfigurable systems generally 
does not contain constructs that can be problematic for 
decompilers, such as pointers, switch statements, virtual 
functions, etc.  In previous work [15], we have decompiled 
several dozen benchmarks from the EEMBC, MediaBench, and 
NetBench benchmarks suites, successfully recovering a similar 
high-level representation of the examples over 90% of the time.  
This high success rate suggests that although decompilation may 
not always be beneficial for binary synthesis, the success rate is 
high enough to justify integrating decompilation techniques into a 
binary synthesis approach. 

4. EXPERIMENTS 

4.1 Experimental Setup 
We are currently using six benchmarks in our experiments.  
Bit_Correlator counts the number of bits in an 8-bit integer that 
match a constant mask.  Fir is a 5-tap finite-impulse-response 
filter.  Udiv8 is an 8-bit divider.  Prewitt implements the Prewitt 
edge-detection algorithm. Mf9 is a moving average filter that 
approximates the average of nine samples.  The Moravec example 
implements a specific kernel of the Moravec algorithm. The input 
vectors consist of 256 element arrays, except for Prewitt and 
Moravec, which use a 2-dimensional 256x256 array. We are 
currently working on synthesizing examples from the EEMBC 

and MediaBench suites, but the results were not available at the 
time of this publication. 

We used the high-level synthesis tool, ROCCC [7], to 
synthesize hardware with smart buffers.   ROCCC takes high-
level language code, such as C, as input and generates RTL 
(register transfer level) VHDL for reconfigurable devices. 
ROCCC is built on the SUIF2 [17] and Machine-SUIF [12] 
platforms. SUIF provides high-level information about loops and 
memory accesses, which ROCCC uses to perform loop level 
analysis and optimizations.  Most of the information needed to 
design high-level components, such as controllers and address 
generators is extracted by ROCCC from SUIF code.  Machine-
SUIF is an infrastructure for constructing the back-end of a 
compiler, which provides libraries such as the Control Flow 
Graph library [8], Data Flow Analysis library [9], and Static 
Single Assignment library [10] that can be used for optimization 
and analysis.  The ROCCC synthesis tool modifies SUIF2 and 
Machine-SUIF, adding new analysis and optimization techniques. 
ROCCC relies on the commercial tool Xilinx ISE to synthesize 
the RTL VHDL code into a netlist.  The target architecture of all 
synthesis is the Xilinx XC2V2000 FPGA. 

4.2 Comparison of Synthesis From a Binary 
With and Without Smart Buffers 
In this section, we present results illustrating the performance of 
hardware synthesized from a software binary, both with and 
without the smart buffers that are made possible using the 
decompilation techniques described in Section 3. 

For all examples, we generated a binary by compiling the C 
code for the examples using a version of gcc ported to the 
SimpleScalar PISA instruction set.  We compiled all examples 
using a low level of optimization effort (-O1).  For the 
experiments with smart buffers, we generated hardware by 
decompiling the binaries using our own decompilation tools into a 
C code representation that could be compiled using ROCCC.  We 
could have instead implemented the synthesis of smart buffers 
into an existing binary synthesis tool without having to decompile 
to C, but we found that using ROCCC was a simpler solution.  
For the results without smart buffers, we estimate performance 
using the same datapath given from ROCCC but without smart 
buffers and without any form of data reuse.   

Table 1 shows results comparing these two approaches.  
Cycles are the number of cycles required for the synthesized 
hardware to execute.  Clock is the clock frequency obtained for 
the synthesized hardware after placement and routing for the 
Xilinx XC2V2000.  Time is the execution time of the example 
when synthesized to hardware. %TimeImprovement is the percentage 
improvement in execution time when performing decompilation 
and using smart buffers.  

The results show that on average, the use of smart buffers 
results in a 53% performance increase.  For two of the examples, 
there was no improvement in execution time.  The reason for the 
identical performances is that ROCCC did not use smart buffers 
because of the lack of potential data reuse for these examples.  
The smart buffer in the fir example required 8 16-bit registers.  
The smart buffer in the Prewitt example required 36 16-bit 
registers.  The mf9 smart buffer required 11 16-bit registers.  The 
Moravec smart buffer used 15 16-bit registers. 



4.3 Comparison of Synthesis From a Binary 
With Smart Buffers and High-Level Synthesis 
With Smart Buffers 
In this section, we compare the performance of hardware using 
smart buffers when synthesized from both a software binary and 
from the original high-level C code, in order to determine how 
much more optimization is possible during binary synthesis after 
decompiling.  Hardware generated during synthesis from C code 
should always be superior, or at least equivalent to, the hardware 
synthesized a binary.  Therefore, if synthesis from a binary can 
achieve similar results to synthesis from C code, then there is 
likely little more optimization that can be achieved from a binary 
synthesis when performing decompilation. We used the same 
experimental setup as in Section 4.2 to obtain smart buffer 
hardware from a software binary. 

Table 2 compares the performances of the hardware when 
synthesizing from both a binary and C code.  Cycles are the 
number of cycles required for the synthesized hardware to execute 
to completion.  Clock is the clock frequency obtained for the 
synthesized hardware after placement and routing for the Xilinx 
XC2V2000.  Time is the execution time of the example when 
synthesized to hardware. Area is the number of slices required by 
the datapath in the synthesized hardware.  %TimeImprovement is the 
percentage improvement in execution time of hardware when 
performing synthesis from C, compared to hardware synthesized 
from a binary.  %AreaOverhead is the area overhead of synthesis 
from a binary. 

The results show identical performances for both approaches 
on 5 of the examples.  For the Moravec example, the hardware 
synthesized from the binary was actually faster than the hardware 
synthesized from C.  The reason for this performance difference is 
that during software compilation, the software compiler applied 
several optimizations that transformed the code into a 
representation more suitable for synthesis, resulting in a slighter 

higher clock frequency in the synthesized hardware.  If ROCCC 
had performed these same optimizations, or if the binary would 
have been generated without optimizations, the performances 
would be identical.  The negative area overhead for the Moravec 
example occurred for the same reason.  Although synthesis from a 
binary outperforms synthesis from C code for this example, in the 
general case synthesis from C will achieve superior results.  For 
the bit_correlator and udiv8 examples, the hardware that was 
synthesized was identical for both binary and high-level 
synthesis, due to the ability of decompilation to recover an almost 
exact replica of the original source code.  The fir example had the 
same performance for both approaches but differed slightly in 
terms of area.  The difference in area for fir was caused by the 
software compiler performing strength-reduction, which 
converted some of the multiplications into shift and add 
operations.  These shift and add operations required additional 
pipeline stages and therefore increased the area.  Prewitt achieved 
identical performance for both binary and high-level synthesis, 
but the hardware created from the binary required 58% more area.  
The reason for the area overhead was that the decompiler was 
unable to remove temporary registers from long expressions, 
which increased the size of the datapath.  On average, there was a 
10% increase in area for binary synthesis. 

4.4 Future Work 
We are currently running these same experiments for software 
binaries generated with different compiler optimizations.  
Aggressive compiler optimizations could potentially obscure the 
software binary, making decompilation less successful at 
recovering high-level information.  Also, optimizations such as 
loop unrolling could eliminate control instructions that 
decompilation techniques use to recover high-level loop 
structures.  We plan on using loop rerolling, in addition to other 
techniques to overcome problems with compiler optimizations 
when synthesizing a software binary.  For the results we have 

Table 1: A comparison of hardware synthesized from a binary, both with and without smart buffers. 

Table 2: A comparison of hardware synthesized from a binary and from original C code, both with smart buffers. 

Example Cycles Clock Time Area Cycles Clock Time Area %TimeImprovement %AreaOverhead

bit_correlator 258 118 2.19 15 258 118 2.19 15 0% 0%
fir 129 125 1.03 359 129 125 1.03 371 0% 3%
udiv8 281 190 1.48 398 281 190 1.48 398 0% 0%
prewitt 64516 123 525 2690 64516 123 525 4250 0% 58%
mf9 258 57 4.5 1048 258 57 4.5 1048 0% 0%
moravec 195072 66 2951 680 195072 70 2791 676 -6% -1%

Avg: -1% 10%

Synthesis from C Code Synthesis from Binary

Example Cycles Clock Time Cycles Clock Time %TimeImprovement

bit_correlator 258 118 2.2 258 118 2.2 0%
fir 577 125 4.6 129 125 1.0 78%
udiv8 281 190 1.5 281 190 1.5 0%
prewitt 172086 123 1399.1 64516 123 524.5 63%
mf9 8194 57 143.0 258 57 4.5 97%
moravec 969264 66 14663.6 195072 66 2951.2 80%

Avg: 53%

W/O Smart Buffers With Smart Buffers



obtained, decompilation has commonly recovered enough high-
level information to make binary synthesis competitive with 
synthesis from C code. 

We are also currently running the experiments in this paper 
on different instructions sets to determine if synthesis from a 
binary is possible on a variety of instruction set architectures.  
Although we do not yet have results, we estimate that there will 
be little difference between instruction sets because decompilation 
has successfully recovered high-level representations of these 
programs on several different instruction sets. 

5. CONCLUSIONS 
Previous work has shown that the synthesis of software binaries 
can be beneficial in several situations.  A disadvantage to 
previous binary synthesis approaches is that high-level 
information is lost during software compilation.  Without this 
high-level information, efficient memory structures cannot be 
synthesized, resulting in reduced hardware performance compared 
to high-level synthesis. 

In this paper, we showed that by utilizing decompilation, 
binary synthesis can recover loops and arrays therefore enabling 
synthesis of the same memory structures that are commonly 
created in high-level synthesis approaches.  When using 
decompilation, we show a 53% improvement in performance 
compared to a binary synthesis approach that does not use 
decompilation.  We also presented results for six examples 
showing that when utilizing decompilation, the synthesis of 
software binaries can sometimes achieve identical performance 
compared to high-level synthesis.  Binary synthesis had an area 
overhead of 10%. 
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