
Programmability and Efficiency in Reconfigurable
Computer Systems*

* This work was supported in part by NSF Award ITR 0083080.

Zhi Guo
Electrical Engineering

Dinesh Chander Suresh
Computer Science & Engineering

University of California, Riverside

Riverside, California, 92521
{zguo, dinesh, najjar}@cs.ucr.edu

Walid A. Najjar
Computer Science & Engineering

ABSTRACT
It has become commonly accepted that higher
abstraction programming languages are necessary for
a wider acceptance of reconfigurable computing
technology by application developers. Anytime the
abstraction level is increased, a tradeoff must be made
between programmability and efficiency. This paper
reports on the quantitative evaluation of this tradeoff
using the SA-C language and VHDL. It relies on four
benchmark codes ranging from the trivially simple to
the complex. The results show a slowdown in
execution by a factor less than two an increase in
programmability by a factor as large as 10.

Keywords
Adaptive computing, configurable, reconfigurable
components, reconfigurable computing,
reconfigurable systems. FPGA, High level languages.

1. Introduction
Today, the high density and speed of field
programmable gate arrays (FPGAs) make it possible
to achieve high-speed, massively parallel,
reconfigurable computation, typically making use of
low level hardware description languages (HDLs)
such as VHDL or Verilog. However, application
programmers, such as computer vision or image
processing researchers, are usually not familiar with
HDLs and circuit design. It is imperative therefore
that higher programming abstractions be developed
that would allow application programmers to take
advantage of the increased densities and speed of
FPGAs. A number of new tools have been created to
generate synthesizable VHDL or Verilog code from
high level languages such as C: Streams-C compiler
[5] generates RTL VHDL for a target FPGA board
from parallel C programs. Other techniques [7] use

MATLAB code as input notation and map the
application to a distributed computing environment.
The Cameron Project [2] has created such a tool
named SA-C, a high level, single-assignment
language with C-like syntax. The SA-C compiler
targets FPGAs and allows programmers to write
algorithms for them in a high level language.
One issue that often comes to the forefront in
discussing these higher abstraction levels is that of
efficiency: How efficient is the code being generated
compared to hand-crafted VHDL or Verilog codes?
This topic was addressed in [6] in the context of
StreamsC. This paper describes a very similar
evaluation using SA-C. The main justification in
repeating this evaluation is that SA-C is based on
more abstract programming paradigm than StreamsC.
It is functional in nature and could therefore suffer
from more inefficiencies in its implementation. As it
turns out, the results are very similar to those
observed for StreamsC.

In this paper we briefly introduce SA-C language and
the corresponding hardware system (Section 2). Four
programs, of increasing complexity, are implemented
in SA-C and in VHDL and their performance and
mapping parameters compared (Section 3). Based on
these comparisons, we draw conclusions about the
relative benefits and penalties to be derived from
using SA-C.

2. SA-C: A Language for
Reconfigurable Computing
The high-level language SA-C is a variant of C, and
has been designed to express Image Processing (IP)
applications at a high level, while being amenable to
efficient compilation to fine grained parallel hardware
systems. One of the main advantages of SA-C is that

it hides the details and intricacies of low-level
hardware design from the application programmer.
At the same time, the SA-C compiler leverages
extensive optimizations and code transformations to
increase the speed and reduce the size of the resulting
circuit.

The overall SA-C design flow is shown in Figure 1.
SA-C programs are compiled to FPGA configurations
(via Data Flow Graphs), plus a C program that
manages the FPGA in terms of downloading the
configuration and data, triggering the FPGA, and
uploading the results. Thus, from the point of view of
an application developer, SA-C programs are like any
program running on a more traditional processor. The
compiler maps SA-C programs to executables, which
are invoked like any other program on the host. The
only indication that part of the program was actually
mapped to a circuit and executed on a reconfigurable
co-processor is its speed of execution.

SA-C was not designed to be a stand-alone language.
It does not support file I/O or any form of OS services
invocation. Instead, it is intended to be included
within a C/C++ program where only those functions
or loops that are potential candidates for being
mapped to hardware are expressed in SA-C.

As the name suggests, the most important restriction
of SA-C (single assignment C) in comparison to C is
that the value of any variable can be set only once,
when the variable is declared. This single assignment
restriction is found in many functional programming
languages, and has the property that it breaks the von
Neumann equivalence between variables and memory
locations. Since variables can be set only once, they
correspond to values (not addresses) and can be
assigned directly to wires. SA-C also does away with
the C de-referencing and address operators (* and &),
thus eliminating pointers, and also forbids recursion.
The SA-C language, compiler and compiler
optimizations are described in [3] and [4].

A reconfigurable computing system usually combines
one or more FPGA chips with local memory chips
and a bus to the host. One such is the Annapolis
Microsystems WILDSTAR/PCI/VME board [8],
which we use as our platform. The board has three
Xilinx Virtex XCV2000E processing elements (PEs),
synchronous SRAM as local memory, and connects
with the host by PCI bus. Standard VHDL modules
can be used to design the interfaces to access and
control the on-board components: For instance, the

Clock Standard Interface provides the functionality to
configure a delay locked loop (DLL), while the on-
board memory is accessed through the Memory
Standard Interface.

SA-C
Compiler

SA-C
Codegen

DFG to
AHA

AHA to
VHDL

DFG
Simulator

AHA
simulator

VHDL Macro
Library

Host RCS Run –Time
Library

gcc
Synplify

Xilinx M1

DDCF SA-C DFG AHA
VHDL

EDF

Host C
code

executable

X86

Any SA
has the
executi
and the
the add
triggeri
host ret
on-boar

3. Pe
Four a
develop
their pe
utilized
Since o
its treat
on loop
and do
compar
Finally
aspects

3.1 A
First, w
addition
image a
SA-C
several
synthes
the dev
the d
implem
it is 4%
SA-C u
its AH
 Figure 1 SA-C compilation system
-C produced or handwritten VHDL process
same execution procedure: First of all, the host
ve stores input data into the on-board memory,
n writes values to FPGA registers indicating
resses and sizes of input and output data,

ng the calculation. After the computation, the
rieves the output data from another part of the
d memory.

rformance Comparisons
pplications of increasing complexity were
ed in both SA-C and handwritten VHDL, and
rformance compared in terms of device area
, clock frequency achieved and execution time.
ne of the most significant aspects of SA-C is
ment of FOR loops, our test applications focus
s: In every case, we use the same algorithm
the same loop optimizations to make sure the
ison is reasonable.
, we compare the productivity and some other
 of these two approaches.

Simple Algorithm
e take as test cases two very simple operators,
 and multiplication. We take every pixel in an
nd multiply it by, or add to it, a constant. Both
and the handwritten version produce only
lines of VHDL for these processes, which are
ized to an adder or multiplier. For SA-C code,
ice utilization percentage (i.e. the fraction of
evice area actually utilized in the
entation) is 15%, while for handwritten VHDL
. This difference is largely due to the fact that
ses a standard pattern of hardware modules in
A (Abstract Hardware Architecture) VHDL

module library, even though in this case the operator
itself is very simple. For example, the READ unit has
its own circular buffer, which is unnecessary for a one
clock-cycle operation. The main limitation on speed
comes from the standard interfaces, which are the
same for both SA-C and handwritten VHDL. The
maximum clock frequency is about 66MHz. In terms
of throughput, both designs deliver a result every
clock cycle.

Table 1 Comparison of max filter

 Area Clock
Cycles

Clock
Frequency

(MHz)

Execution
time (us)

VHDL 14% 16384 41 405
SA-C 16% 24471 35 709

The SA-C device utilization does not increase very
much with respect to the previous example, while that
of the handwritten code does: The handwritten code
has to employ more modules to control the window
sliding, while the SA-C code may use the same
modules as in the previous simple case. Another
reason for the improved relative utilization is that
array_max is one of SA-C’s built-in array operators.
The compiler extracts window size information and
generates the corresponding efficient VHDL.

We wrote SA-C code to do the following
computation:

)]__(*)__[(bConstbArrayaConstaArray ++ (1)

The compiler parallelizes the two addition operators
in two parentheses and pipelines the multiplication
and addition. Again, the standard interfaces account
for the performance bottleneck.

3.2 A Medium Complexity Algorithm However, the hand written version uses considerably
fewer clock cycles: The 3×3 window slides through
the image array, so a single pixel value is referenced
in 9 windows. Though the SA-C compiler does
parallelism and stripmine optimizations, the two
bottom rows of data in each resized window still have
to be fetched in the subsequent iteration. The
handwritten design stores these values into the on-
chip dual-port RAMS. In each iteration, the circuit
reads new data from off-chip memory, and reads
previous rows of data from on-chip dual-port memory
simultaneously, while new data are fed into
computing units and written into the dual-port
memory.

Figure 2 shows the SA-C code for finding the
maximum of a 3×3 window sliding through an image
array.

uint8 [:,:] main(uint8 indata[:,:])
{
 uint8 res[:,:] =
 //PRAGMA (stripmine(6,4))
 for window W[3,3] in indata {
 uint8 m =
 array_max(W);
 }
 return(array(m));
}return(res);

Figure 2 SA-C code for finding max

A second reason for the difference is the form of loop
control: Handwritten code employs state machines to
manipulate the cooperation between I/O units and
computing units. The circuit delivers a result every
clock cycle until the reading unit reaches the end of
the data in off-chip memory. Instead, the SA-C
generated VHDL modules communicate with one
another using a number of control signals. Every time
the reading unit reaches the last data of a column, the
circuit needs extra clock cycles to return to the head
of next column.

The Stripmine PRAGMA causes a stripmining
optimization, and encloses another loop that reads in
chunks of data. This optimization has the effect of
partial unrolling of the loop in multiple dimensions.
The parameters indicate the size of the window in the
new outer loop  in this example; the resized new
window has 6 rows. Therefore, four array_max array
operations are carried out simultaneously in the
vertical direction.

Handwritten VHDL also calculates the maxima of
four at the same time. The comparison results on a
256×256 8-bit image are shown in Table 1. We will analyze these two reasons in detail in the

following subsection.

3.3 Two Complex Algorithms We take wavelet transform as another complex
algorithm example. Figure 4 shows the SA-C code.
The performance comparison results are listed in
Table 3.

Figure 3 shows SA-C code for the Prewitt edge
detector [Prewitt, 1970]. It is one of the very common
edge detection operators used in image processing
operations, such as image sharpening.
uint8[:,:] main (uint8 image[:,:])
{
 // ***** defines the Prewitt masks *****
 int3 vertmask[3,3] = {{-1, 0, 1}, {-1, 0, 1}, {-1, 0, 1}};
 int3 horzmask[3,3] = {{-1,-1,-1}, { 0, 0, 0}, { 1, 1, 1}};

 // ***** computes the gradient for the modified image *****
 uint8 res[:,:] =
 //PRAGMA (stripmine (6,4))
 for window win[3,3] in image
 { int11 vert = for elem1 in win dot elem2 in vertmask
 return(sum((int11)elem1*elem2));

 int11 horz = for elem3 in win dot elem4 in horzmask
 return(sum((int11)elem3*elem4));

 int12 val = sq_root((int23)((int22)vert*vert)+(int22)horz*horz);
 uint8 val1 = (val > 255 ? 255 : (val < 0 ? 0: val));
 }
 return(array(val1));
} return (res);

export main;
int10, int10 Valsuint8(uint8 col[5])
{
 int10 mask[3] = {-1,2,-1};
 int11 d0 = for p in col[0:2] dot m in mask return(sum((int11)p*m));
 int11 d1 = for p in col[2:4] dot m in mask return(sum((int11)p*m));
 int11 d01 = d0 + d1;
 int11 ud01 = if (d01 < 0) return(-d01) else return(d01);
 bits11 b01 = ud01;
 bits11 bdiv8 = b01 >> 3;
 int11 udiv8 = bdiv8;
 int11 adj = if (d01 < 0) return(-udiv8) else return(udiv8);
} return(col[2]+adj, d0);

int11, int11 Valsint10(int10 col[5])
{
 int11 mask[3] = {-1,2,-1};
 int12 d0 = for p in col[0:2] dot m in mask return(sum((int12)p*m));
 int12 d1 = for p in col[2:4] dot m in mask return(sum((int12)p*m));
 int12 d01 = d0 + d1;
 int12 ud01 = if (d01 < 0) return(-d01) else return(d01);
 bits12 b01 = ud01;
 bits12 bdiv8 = b01 >> 3;
 int12 udiv8 = bdiv8;
 int12 adj = if (d01 < 0) return(-udiv8) else return(udiv8);
} return(col[2]+adj, d0);

int11[:,:], int11[:,:], int11[:,:], int11[:,:] main(uint8 src[:,:])
{
 int11 s[:,:], int11 dx2[:,:], int11 dy2[:,:], int11 dxy[:,:] =
 // PRAGMA (nextify_cse, scrunch, part_unroll(16,1), hardware(memout: 2 2 3 3))
 for window w[5,5] in src step(2,2)
 {
 int10 sy[5], int10 dy[5] =
 for uint3 colnum in [0~4]
 {
 int10 sval, int10 dval = Valsuint8(w[:,colnum]);
 } return(array(sval), array(dval));
 int11 s, int11 dx2 = Valsint10(sy);
 int11 dy2, int11 dxy = Valsint10(dy);
 } return(array(s), array(dx2), array(dy2), array(dxy));
} return(s, dx2, dy2, dxy);

Figure 3 Prewitt Edge Detection code in SA-C

The outer loop slides a 3×3 window through the
image array in unit steps, while the loop body applies
vertical and horizontal masks to the window; the
square root function calculates the magnitude val; an
array of magnitude val is returned as the final result.
Because the bus width between FPGA and memory is
32 bits (one word), only four pixels per clock cycle
can be fed into the FPGA.

We write VHDL for Prewitt edge detection in Figure
3 making use of the same square root algorithm [9].
The performance comparison results on a 256×256 8-
bit image (Lena) are listed in Table 2.

Table 2 Performance Comparison of Prewitt Edge
Detection

 Area Clock
Cycles

Clock
Frequency

(MHz)

Execution
time (us)

VHDL 13% 16128 66 250
SA-C 24% 24481 50 490

 Figure 4 Wavelet Transform code in SA-C

Table 3 Performance Comparison of Wavelet

Transform

 Area Clock
Cycles

Clock
Frequency

(MHz)

Execution
time (us)

VHDL 25% 43092 41 1051
SA-C 54% 73710 35 2100

From these comparisons it can be seen that the ratio
between SA-C performance and handwritten VHDL
performance is about 1:2. The main reasons for this
difference are as follows.

First, it is relatively easy to store and reuse input data
in handwritten code, while SA-C does not have this
facility. This is significant because computer vision
and image processing algorithms usually involve
window sliding, meaning that the same input data are
referenced in two or more continuous iterations, and
I/O bandwidth is always a main bottleneck of FPGAs.
Triggered by compiler options, SA-C compiler can
eliminate redundant nodes if they compute the same
value, and can replace the redundant computation by a
chain of registers if the values were computed in
earlier iterations. However, the bottom rows of the
input data in the new window still have to be read in
twice. At the same time, the new window cannot be
made too big, because stripmining utilizes MIMD
parallelism, which is very resource-intensive. On the
other hand, the capacity of dual port block RAM in
present FPGAs ranges from dozens of Kbit up to
hundreds of Kbit, which is big enough to store the
bottom rows of data in any resized window.
Handwritten VHDL can apply this strategy
elaborately, while the current version of SA-C does
not use on-chip RAM at all. In fact it is doable to add
VHDL RAM modules into AHA library and have the
SA-C compiler treat these modules as other common
components.

Secondly, SA-C generates VHDL code from the AHA
library. In order to make the modules in AHA
interconnect easily, instead of using state machines
(apart from the FOREMAN unit) they employ a
number of input and output control signals to
communicate one another. So between outer loop
iterations, which are pipelined, there is a seam
(usually 4 idle clock cycles). In comparison,

handwritten VHDL tends to use state machines to
control the circuit actions, which naturally fulfill the
control task using the current and previous circuit
states. These kinds of ‘protocols’ avoid the seam and
save clock cycles.

The difference in clock cycle number between
handwritten and SA-C generated code is mostly due
to these two reasons. Take the array_max and Prewitt
edge detection examples, which make use of the
same loop unrolling mechanism:

For an image file which is already in the on-board
memory, the SA-C generated VHDL will require

2
4

4 −
•





 +=− m

MNmN CSA (2)

clock cycles, where m is the row number of the
resized sliding window, and the image size is M×N (N
is divided by 4 because the memory bus is 32-bit
wide, while each pixel is 8-bit). As indicated above,
when the sliding window reaches the end of current
row the circuit takes 4 extra clock cycles to restart
reading the next row. The resized window has m
rows, and the last 2 rows need to be fetched again as
we’re carrying out a 3×3 array operation. So we have
M/(m-2) lines of resized window sliding in the whole
image array, instead of M/m. In fact, the output array
is 2 columns smaller than the input one, though this
effect can be ignored for a 256×256 or larger image.

For handwritten VHDL, the number of clock cycle is

44
MN

m
MNmNVHDL =•






 ×= (3)

(Of course, both SA-C and VHDL would take more
clock cycles to wait for the memory I/O, which is
time consuming).

From the above two equations we can obtain

N
m

m
N
N

CSA

VHDL

16
2

+

−
=

−

 (4)

In the array_max and Prewitt edge detection
examples, N=256 and m=6, giving a clock cycle ratio
of 66%, which is in agreement with the experimental
results in Tables 1 and 2.

A third reason that hand-written VHDL performs
better is that SA-C has a lot of extra ‘glue logic’

between its AHA modules, while handwritten code
has relative fewer control signals between modules.
Glitches due to this ‘glue logic’, which show up
clearly in simulation waveforms, damage SA-C clock
rate performance.

Finally, handwritten VHDL has an innate advantage
in doing bit-precision manipulation compared with
SA-C. In the wavelet transform example, SA-C uses
extra shifter, multiplexer and pipeline stages just for a
‘×8’ operation on a signed integer, while VHDL only
spends one shifter and does not require a multiplexer.

4. Comparison in other aspects
The most attractive aspect of using a HLL is
productivity. Take the wavelet transform as an
example: a programmer familiar with SA-C can write
and debug the code in Figure 3 in under 3 hours,
while it would take about 150 hours to write and
debug VHDL code for the same algorithm. Typically,
the ratio of development time for the examples in this
report ranged from 10 to 100 in favor of SA-C. This
is, of course, the very reason that the language was
created.

Another important issue is ease of acquisition of the
necessary skills. A computer vision or image
processing researcher who only knows C can learn
SA-C within 1 week, while someone with appropriate
digital circuit background might spend more than 3
months to learn VHDL. (Clearly, a SA-C programmer
still needs some hardware background: For instance,
the designer should be aware of the nature of loop
unrolling even though it does not have to carried out
manually).

The ratio between the number of lines of SA-C
generated VHDL and that of handwritten VHDL
ranges from 2 to 10 for the examples in this report.
However, this apparent advantage of hand-written
code is more than offset by the ease of code
maintenance in the case of SA-C: SA-C generated
VHDL code is only one step removed from the
corresponding SA-C code, which being a HLL is
vastly easier to maintain than HDL code.

Ultimately, SA-C changes how the system is
programmed from a circuit design paradigm to a
software design paradigm. Users benefit principally
from its high productivity and easy code maintenance,
at the expense of some device utilization and speed
performance.

5. Related Work
Several projects have implemented various
mechanisms to translate high-level program
descriptions into hardware: PRISM [15]’s target
system consisted of a Motorola 68010 processor and
four Xilinx FPGAs. Napa C [10] with its pragmas can
map the computations to either RISC processor or
FPGA. Streams-C [5] allows programmers to write
parallel C programs and generate RTL VHDL codes
for a target Annapolis Microsystems Firebird FPGA
board. Ptolemy [11] focuses on assembly of
concurrent systems. MATCH [12] maps MATLAB
descriptions to heterogeneous computing system
consisting of FPGA, embedded processor and DSP
component. PICO-NPA [13] is one aspect of HP
PICO. Loop nests are expressed in C and synthesized
to non-programmable accelerators. Handel-C [14] is a
C-like language that can generate EDIF netlist
directly and VHDL code as well. Nimble [16]’s target
architecture is a general-purpose processor with a
dynamically reconfigurable datapath. DEFACTO [17]
maps the applications to a microprocessor and FPGAs
as coprocessors based on SUIF. Proceler’s system
[18] compiles C to a microprocessor and an FPGA.

6. Conclusion
The comparisons show that in terms of design time,
SA-C’s productivity is 10 to 100 times of that of
handwritten VHDL. But device area and execution
time are the penalties: Use of SA-C can double device
utilization; handwritten designs have 10%~20%
higher maximum clock frequencies; handwritten
designs typically save about 40% in clock cycles with
respect to SA-C generated circuits. Overall, the
execution time of a handwritten design is
approximately 50% of that of SA-C version.
From the comparison and analysis, we know that
there is plenty of room for improvement in SA-C. For
example, using on-chip dual-port RAM to store data
for subsequent iterations can save I/O bandwidth,
which is usually a major bottleneck in reconfigurable
computing systems. In the current hardware system, it
is possible to infer dual-port RAM for the Xilinx
Virtex Architecture to AHA library. Also, the number
of idle clock cycles might be reduced by using state
machines to replace complex control signals between
AHAs.
During the last ten years, increases in FPGA density
and speed followed or exceeded Moore’s law.

Unfortunately, design ability has not kept up the same
pace. This application study shows that high-level
language synthesis for reconfigurable computing is
beginning to catch up and has the potential to bridge
this gap to some extent.

7. References
[1] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C.

Ross, R. Rinker, W. Najjar. Mapping a Single
Assignment Programming Language to
Reconfigurable Systems. The Journal of
Supercomputing, Volume 21, pages 117-130, 2002.

[2] R. Rinker, M. Carter, A. Patel, M. Chawathe, C. Ross,
J. Hammes, W. Najjar and A.P.W. Böhm. An
Automated Process for Compiling Dataflow Graphs
into Reconfigurable Hardware. IEEE Trans. on VLSI,
Vol. 9(1), February 2001.

[3] J.P. Hammes and A.P.W. Böhm. The SA-C Language
- Version 1.0. http://www.cs.colostate.edu/cameron/

[4] J.P. Hammes, Monica Chawathe and A.P.W. Böhm.
The SA-C Compiler -Version June 2001.
http://www.cs.colostate.edu/cameron/

[5] M.B. Gokhale and J.M. Stone, J. Arnold, and M.
Kalinowski. Stream-oriented FPGA computing in the
Streams-C high-level language. In IEEE international
Symposium on FPGAs for Custom Computing
Machines, 2000.

[6] Jan Frigo, Maya Gokhale and Dominique Lavenier.
Evaluation of the Streams-C C-to-FPGA Compiler: An
Applications Perspective. 9th ACM International
Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 2001.

[7] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C.
Bachmann, M. Haldar, P. Joisha, A. Jones, A.
Kanhare, A. Nayak, S. Periyacheri, M. Walkden, D.
Zaretsky. A MATLAB compiler for distributed,
heterogeneous, reconfigurable computing systems. In
FCCM 00, Napa, CA, April 2000.

[8] Annapolis Microsystems Inc. WILDSTAR hardware
Reference Manual.

[9] Yamin Li and Wanming Chu. A New Non-Restoring
Square Root Algorithm and Its VLSI Implementations.
ICCD’96, International Conference on Computer
Design, October 7 - 9, 1996, Austin, Texas, USA

[10] Maya B. Gokhale, Janice M. Stone. NAPA C:
Compiling for a Hybrid RISC/FPGA Architecture. In
IEEE Symposium on FPGAs for Custom Computing
Machines April 1998.

[11] Edward A. Lee, Overview of the Ptolemy Project.
Technical Memorandum UCB/ERL M01/11,
University of California, Berkeley, March 6, 2001.

[12] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, M.
Haldar, P. Joisha, A. Jones, A. Kanhare, A. Nayak, S.
Periyacheri, M. Walkden, and D. Zaretsky, A
MATLAB Compiler for Distributed Heterogeneous
Reconfigurable Computing Systems. In Int. Symp. On
FPGA Custom Computing Machines (FCCM-2000),
Napa Valley, CA, 2000.

[13] R. Schreiber, S Aditya, S. Mahlke, V. Kathail, B. R.
Rau, D. Cronquist, and M. Sivaraman. PICO-NPA:
High-Level Synthesis of Nonprogrammable Hardware
Accelerators. Journal of VLSI Signal Processing,
2001.

[14] Handel-C Language Overview. Celoxica, Inc.
http://www.celoxica.com

[15] Wazlowski M, Agarwal L, Lee T, Smith A, Lam E,
Athanas P, Silverman H, Ghosh S. PRISM-II Compiler
and Architecture. Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines.
FCCM’93, Napa, CA, USA, April 1993.

[16] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure,
and J. Stockwood. Hardware-software co-design of
embedded reconfigurable architectures. In Design
Automation Conf. (DAC), 1999.

[17] M. Hall, P. Diniz, K. Bondalapati, H. Ziegler, P.
Duncan, R. Jain, and Granacki J, "DEFACTO: A
Design Environment for Adaptive Computing
Technology," in 6th Reconfigurable Architectures
Workshop (RAW'99), 1999.

[18] Proceler Corp. http://www.proceler.com

	Introduction
	SA-C: A Language for Reconfigurable Computing
	Performance Comparisons
	A Simple Algorithm
	A Medium Complexity Algorithm
	Two Complex Algorithms

	Comparison in other aspects
	Related Work
	Conclusion
	References

