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ABSTRACT 
ROCCC (Riverside Optimizing Configurable Computing 
Compiler) is an optimizing C to HDL compiler targeting 
FPGA and CSOC (Configurable System On a Chip) 
architectures. ROCCC system is built on the SUIF-
MACHSUIF compiler infrastructure. Our system first 
identifies frequently executed kernel loops inside programs 
and then compiles them to VHDL after optimizing the 
kernels to make best use of FPGA resources. This paper 
presents an overview of the ROCCC project as well as 
optimizations performed inside the ROCCC compiler.  

1. INTRODUCTION 
FPGAs (Field Programmable Gate Array) can boost 
software performance due to the large amount of 
parallelism they offer. The area on the FPGAs can be 
configured to form the data path or a register file as the 
software necessitates. The only limiting factors to FPGA 
performance are the available area and the I/O pins. On the 
other hand, programming an FPGA is a very tedious task 
since FPGAs do not specify any control or data path 
mechanism or a fixed instruction set.  

Researchers have studied mapping from high-level 
languages to HDLs. However, there is still not yet a single 
tool that is good enough to be adapted by the designers. 
ROCCC (Riverside Optimizing Configurable Computing 
Compiler) is an optimizing C to VHDL compiler targeting 
FPGA and CSOC platforms. ROCCC identifies, optimizes 
and parallelizes the most frequently executed kernel loops 
in applications such as multimedia and scientific 
computing.  

ROCCC is built over SUIF2-MACHSUIF infrastructure. 
SUIF2 front end is easily extendible to support multiple 
source languages. SUIF2 also provides both high and low 
level IR (Intermediate Representation) necessary to support 
all high-level constructs found in most common languages 
such as C, Fortran, JAVA etc. On the other hand, 
MACHSUIF is a compiler infrastructure for building the 
back end of a compiler.  

ROCCC performs both loop level transformations and 
circuit level optimizations. It first performs control and data 
flow analysis over its IR followed by global optimizations 

such as constant propagation, constant folding, dead code 
eliminations that enables other optimizations. Then, loop 
level optimizations such as loop unrolling, loop invariant 
code motion, loop fusion and other such transforms are 
applied.  

This paper is organized as follows. Next section discusses 
on the related work. Section 3 gives an in depth description 
of the ROCCC system. SUIF2 level optimizations are 
described in Section 4 followed by the compilation done at 
the MACHSUIF level in Section 5. Section 6 mentions our 
early results. Finally Section 7 concludes the paper. 

2. RELATED WORK 
There are several projects and publications on translating C 
or other high level languages to different HDLs. Streams-
C[7], Handel-C[8] and SA-C[6] generate HDL from C-
variants, where the programmer is either in charge of 
specifying explicitly where the parallelism is such as in 
Streams-C or writing the application in this C-variant form 
or both.  

Nimble[15] and GARP[13] target only specific hardware 
architectures. They generate specific configuration files 
instead of standard VHDL file that can be synthesized to 
readily available FPGA boards.  

SPARK[14] generates VHDL from a subset of regular 
ANSI-C. It applies extensive front and back end 
optimizations such as loop unrolling/fusion, loop invariant 
code motion, common sub expression elimination, dead 
code elimination, etc. The two main objectives of SPARK 
are to reduce the number of states in the controller FSM 
and the cycles on the longest path. However, SPARK does 
not support two-dimensional arrays, neither performs 
optimizations on the data reuse which occurs regularly in 
image processing, DSP and scientific computing 
algorithms.  

3. PROJECT OVERVIEW 
ROCCC is a compiler tool that maps the most frequently 
executed regions of software written in a high level 
language such as C, onto configurable hardware. ROCCC 
is built over the SUIF2-MACHSUIF infrastructure. The 
main reason behind building our tool over an existing 
framework is code reuse. We mostly benefited from the 



front end, IR and the auxiliary data structures/passes 
provided in these tools. ROCCC’s main contributions on 
the other hand are its extensive optimizations and the data-
transfer/execution model on the FPGA. 

Not all of the C constructs are supported. The source 
program should not include pointers, floating point 
arithmetic nor any irregular control flow such as breaks and 
exits inside the source code.  The code may contain 
function calls, however all the function calls are inlined 
prior to analysis and transformation passes.   

The type of source programs that would benefit from 
ROCCC’s optimizations the most are the programs that 
would apply the same operations to each and every element 
of the input data. Image processing algorithms, DSP 
computations, scientific computation programs would be 
our best candidates since they are regular in their 
computation and easily parallelizable.  

 

Figure-1 shows an overview diagram of ROCCC system. 
Firstly, the source program is fed into a profiling tool. 
ROCCC uses profiler results to locate the most frequently 
executed kernels. The extracted software kernels then are 
fed into the SUIF2 environment, which would then analyze 
the code and apply global and loop level transformations. 
In SUIF2 we work on high-level IR as opposed to low-level 
IR as traditional compilers do. We eliminated the need for 
any additional coding due to working on high-level IR, by 
utilizing the auxiliary data structures in SUIF2, such as 
walkers, visitors, etc. which enabled us easily deal with 
various collections of IR classes at once. After all SUIF2 
level transformations are completed, ROCCC decouples 
memory accesses from the computation through scalar 
replacement. SUIF2 then extracts the code that is going to 
form the data path on the FPGA in a file to MACHSUIF.  

In our project we benefited from MACHSUIF’s Control 
Flow Graph (CFG), Data Flow Analysis and the Static 
Single Assignment libraries. In MACHSUIF, we hoist 
independent instructions and assign them to pipeline stages. 

Then we map from 
MACHSUIF opcodes 
to IEEE 1076.3 
VHDL library 
elements. All 
MACHSUIF opcodes 
except division have a 

corresponding 
functionality in the 
IEEE 1076.3 VHDL 
library. We extended 
MACHSUIF with few 
other opcodes to 
support for feedback 
variables and a 
multiplexor. 

The Controller 
Generator module in Figure-1 would collect the array 
read/write operations to generate the address generators and 
smart buffers on the FPGA. Figure-2 depicts the execution 
model built on the FPGA by our compiler.  

4. SUIF2 LEVEL OPTIMIZATIONS 
ROCCC transformations mainly focus on loops operating 
on arrays. Prior to applying our transformation passes, 
control flow analysis and data flow analysis passes are 
executed over the SUIF IR. We developed our own control 
and scalar data flow analysis passes in SUIF2. These passes 
are built in an iterative fashion. Since ROCCC is not a 
production compiler we are currently running these 
analysis routines after every transformation that changes 
the IR. 

4.1 Procedure Level Optimizations 
The following passes are completed and being used in our 
compiler system. 

• Constant Folding: This pass folds constants, simplifies 
algebraic identities such as multiplication by zero or 
division by one. The pass operates over the IR of the 
entire procedure until no more simplification occurs.  

• Constant Propagation: This pass replaces the uses of 
variables whose values are constants by the constant 
values themselves.  This pass works hand in hand with 
the constant folding pass, since one generates further 
optimization opportunities for the other.  

• Division by constant approximation: Division in 
hardware is a costly operation and would consume large 
areas on FPGA’s. This pass transforms the division into a 
sum of dividend right shifted by various powers of 2 that 
approximates to the constant divider. An example of this 
transformation is shown in Figure 3, where the sum_of_9 
/ 9 is replaced by a sequence of right shifts and additions. 

• Copy Propagation: This pass eliminates the copy 
operations inserted by other transformations. 
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Figure 2 - The Execution Model 
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Figure 1 – ROCCC System Overview 



• Dead and Unreachable Code Elimination: Dead code 
elimination removes all code that has no contribution in 
computing the result or the return value of the program.  
Whereas unreachable code elimination eliminates blocks 
where control would never reach due to other 
transformations over the IR. 

• Common Sub Expression Elimination: This pass 
eliminates exactly matching expressions or expression 
sub trees over the entire program.   

• Propagation of Constant Arrays: It is common in image 
processing or DSP applications that some constant mask 
or array of constants is applied to the input data over and 
over again. These masks are usually applied to input data 
in loops with known at compile time constant bounds. 
ROCCC fully unrolls innermost loops with constant 
bounds. Then wherever the mask indices turn into a 
constant, ROCCC replaces the reference to the constant 
array with the constant itself. 

4.2 Loop Level Optimizations 
Loop level optimizations are the transformations, which 
help achieve most of the parallelism in ROCCC. Although 
most of these transformations are same as traditional 
compiler optimizations, the scale of the optimizations 
would differ. Since, traditional compilers target processors 
with a defined ISA and a rigid data path, unrolling by small 
amounts would provide enough parallelism to keep the 
processor busy. However on an FPGA as long as there is 
enough area and I/O bandwidth to fit another iteration, the 
loop can be unrolled for another time. 

Moreover, in traditional processors any computation has to 
follow the fetch, decode, execute, write back cycle which 
additionally imposes memory access pattern restrictions on 
an optimizing compiler. On an FPGA none of these 
restrictions would hold, however due to the growing scale 
of the optimizations new challenges arise such as the 
transfer of data to the data path and synchronization of data 
flow across pipeline iterations incase of any backward 
dataflow as in feedback variables. ROCCC performs the 
following loop level optimizations. 

• Loop Normalization: This pass rearranges the loop 
headers so that the indices of the loops start from one and 
incremented by one after an iteration completes.  

• Invariant Code Motion: This pass hoists any 
statement/expression that computes the same value 
across iterations of the loops outside of the loop. 

• Loop peeling: Loop peeling helps remove first or last few 
iterations of a loop by copying its body before or after 
the loop as many times as the loop is peeled. This 
operation helps bring the iteration count of a loop to a 
desired value enabling other optimizations such as loop 
fusion. In addition this pass can be used to remove 
dependencies that only bound the first or last few 
iterations of a loop. 

• Loop Unrolling: Loop unrolling is the main compiler 
technique that allows reconfigurable architectures to 
achieve large degrees of parallelism. ROCCC has two 
unrolling passes. One of the two passes is used to fully 
unroll loops with known constant upper bounds. The 
other unroll pass unrolls a given loop at a given unroll 
factor. The unrolling factor can be a user-defined value 
as well as a value computed, based on the memory and 
the area limitations of the FPGA. At this time we are 
assuming that ROCCC gets the unrolling factor from the 
user, however once we incorporate our area estimation 
tool, we predict that ROCCC will be able to determine 
the unroll factor based on the available area on the FPGA 
using the feedback from the estimation tool. 

 Figure-3 shows moving filter code that is unrolled twice 
by our compiler. As seen in the unrolled code there are 
common sub expressions appearing between the different 
iterations of the loop. These expressions appear in 
different places in their respective expression trees. As 
the scale of unrolling grows, such partial expressions 
would appear in many other expressions whose trees are 
different and similarity varies.  There are many variations 
to CSE in the literature such as CSE, partial CSE, value-
numbering etc. each targeting different, but overlapping 
cases of CSE occurrences in programs and dealt at the 
low level IR. We have not found CSE algorithms except 
[16] addressing the CSE problem shown in Figure-3. 
Such common sub expression problems are ROCCC’s 
targeted optimizations. 

• Loop Fusion: This pass combines the bodies of two 
consecutive loops under the header of one of the loops. 
In order to be able to fuse two loops, following 
conditions must hold. The iteration counts of the loops 
should be the same. The loops should not contain 
statements that would form a dependency cycle between 
the statements of the two loops after they are fused. For 
instance, the first loop is reading array A and writing 
array B while the second loop is reading B but writing 
back on A, then when these two loops are fused the new 
body would form a dependence cycle that perhaps did 
not exist prior to the transformation. At this point though 
our fusion algorithm is assuming both loops do not form 
new dependencies, when they are fused. Loop peeling 
transformation can be used to bring the iteration counts 
of any two consecutive loops, if the iteration counts of 
the loops are apart by a constant amount.  

• Loop Unswitching: This optimization transforms for- 
loops having only an if-statement in its body, whose 
condition test is a loop invariant, into an if-statement 
whose then and else statements are enclosed in a for 
statement. This pass helps reduce unnecessary control 
flow from loop bodies. ROCCC can apply this pass to a 
nest of if-statements, if all if conditions are loop 
invariants.  



However, this pass should be used with care, since the 
condition variables, which are loop invariants from the 
software analysis view, could be hardware signals 
modified by external sources as the loop executes. To 
remedy this situation and still be able to benefit from this 
pass, users are advised to use the C keyword volatile to 
express that a variable should be read from the memory 
each time it is accessed. Then our data flow analysis 
library would not mark it as loop invariant. 

4.3 SUIF2 to MACHSUIF Data Path 
Generation 
In SUIF2 we apply all the passes in high-level IR as 
opposed to low-level IR as traditional compilers do. One of 
the justifications for traditional compilers’ working on low-
level IR is that once the high level IR is lowered close to 
the level of ISA some of the optimizations can get lost. For 
example, new common sub expression elimination 
opportunities may arise due to array address calculation 
arithmetic, strength reduction or operator substitutions due 
to underlying ISA not supporting the operator existing in 
the high-level language. However, in our case we’re 
bounded by neither an ISA nor memory. Rather we’re 
faced with configuring bare hardware where a variable is a 
value not a memory reference.  

After we apply all our passes, we ran other passes to 
prepare our output to be processed by our MACHSUIF 
backend. 

• Scalar Replacement: This pass helps isolate memory 
references from computation by moving all memory 
read/write operations to the beginning/end of the loop 
body.  The values of the memory reads are saved into 
automatically generated scalar temporaries prior to the 
first statement in the original loop body. Then the array 
references in the original loop body are replaced with the 
generated scalar temporaries holding array values. 
Finally, any values that are to be saved into an array cell 
locations are saved from scalar temporaries back into 
array locations after the last statement inside the original 
loop body. 

Scalar replacement decouples array references from the 
computation in loop bodies and control generator uses its 
results to form the read and write buffers. These two 
buffers are placed before and after the pipelined 
execution unit on the FPGA.  

• Scalar I/O Detection: The loop outputs are not always 
arrays. They could be scalars computing a sum or a max 
or min of an array that has to be communicated to the 
software running on the host processor. This pass marks 
those variables whose values are initialized outside the 
loop body, modified within the loop and referenced by 
the host executable after the loop finished its execution. 
Such variables are marked and communicated to the 

void main(){ 
    int sum_of_9, i; 
    int A[256], X[256]; 
    for(i = 0; i < 247; i=i+1) { 
        sum_of_9 = A[i] + A[i+1] + A[i+2] + A[i+3] 
+ A[i+4] + A[i+5] + A[i+6] + A[i+7] + A[i+8]; 
        X[i] = sum_of_9 / 9; 
    } 
} 

(a) Moving filter 9 

void main(){ 
    int  i;  
    __ar_2 A; 
    __ar_2 X; 
    int  sum_of_9; 
 
    for(i = 0;i<247- 1; i = i+1+1) { 
        sum_of_9 = A[i]+A[i+1]+A[i+2]+A[i+3]+ 
A[i+4]+A[i+5]+A[i+6]+A[i+7]+A[i+8]; 
        X[i] =sum_of_9/ 9; 
        sum_of_9 = A[i+1]+A[(i+1)+1]+A[(i+1)+2]))+ 
A[(i+1)+3]+A[(i+1)+4]+A[(i+1)+5]+A[(i+1)+6]+A[(i+1
)+7]+A[(i+1)+8]; 
        X[(i+1)] =sum_of_9/ 9; 
    } 
} 

(b) Moving filter after being unrolled twice 

void main(){ 
    int  i; 
    __ar_2 A; 
    __ar_2 X; 
    int  sum_of_9; 
 
    for(i = 0; i < 246; i = 2+i) { 
        sum_of_9 = A[i]+A[1+i]+A[2+i]+A[3+i]+ 
A[4+i]+A[5+i]+A[6+i]+A[7+i]+A[8+i]; 
        X[i] = (sum_of_9>> 12)+(sum_of_9>> 11) 
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5) 
+(sum_of_9>>4); 
        sum_of_9 = A[1+i]+A[2+i]+A[3+i]+A[4+i] 
+A[5+i]+A[6+i]+A[7+i]+A[8+i]+A[9+i]; 
        X[1+i] =(sum_of_9>> 12)+(sum_of_9>> 11) 
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5) 
+(sum_of_9>> 4); 
    } 
} 
(c) Moving filter code after constant folding and 

division by constant elimination passes 
  

     for(i = 0; i < 246; i = 2+i) { 
  A0 = A[i]; A1 = A[1+i]; A2 = A[2+i]; 

 A3= A[3+i]; A4 = A[4+i]; A5 = A[5+i];  
 A6 = A[6+i]; A7 = A[7+i]; A8 = A[8+i]; 
 A9 = A[9+i]; 

        sum_of_9 = A0+A1+A2+A3+A4+A5+A6+A7+A8; 
        TO = (sum_of_9>> 12)+(sum_of_9>> 11) 
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5) 
+(sum_of_9>>4); 
        sum_of_9 = A1+A2+A3+A4+A5+A6+A7+A8+A9; 
        T1 = (sum_of_9>> 12)+(sum_of_9>> 11) 
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5) 
+(sum_of_9>> 4); 
  X[i] = T0; 

 X[1+i] = T1; 
     } 
(d) Moving filter loop after scalar replacement 

Figure 3 - Moving filter code after ROCCC transformations 



MACHSUIF environment so that they may be saved for 
use later by the host executable.  

• Feedback Variable Detection: There could also be other 
scalar variables whose values are incremented or updated 
per iteration of the loop body such as a scalar variable 
holding a sum over an array. This pass identifies those 
variables whose values are dependent upon their past 
values. Although the execution model of ROCCC 
necessitates that every so many cycles new values are 
read and written, ROCCC supports the case of feedback 
variables by saving them in registers generated on the 
data path to be referenced by following pipeline cycles.   

4.4 Smart Buffer 
Smart buffer [10] is a custom generated buffer aiming at 
maximizing data reuse. It acts as a buffer between the 
Block RAM on the FPGA board and the data path. 
Therefore, there are two of them placed at the entry and the 
exit of the data path circuitry. The data that is going to be 
stored in the smart buffer is determined by the scalar 
replacement phase of our compiler. The scalar replacement 
phase shifts the memory read/write operations to the two 
ends of the loop body. The addresses for these decoupled 
memory references are generated by the Address Generator 
to be brought into the Block RAM.  

Block RAM is a piece of SRAM, which can be configured 
to provide the data using various numbers of ports at will. 
Since the number of ports to both the Smart Buffer and the 
Datapath are application-specific, for ROCCC only the 
bandwidth with the external memory can be the main 
limitation to parallelism. 

Smart buffer organizes the data that is received from the 
memory in windows. Most applications in multimedia and 
high performance scientific computing process input data 
by sliding a window over it. In window operations, a 
portion of the window data, as it is sliding over the input 
array, is always shared across successive iterations of the 
loop body.  

Each window has its own control logic enabling when and 
which sets of windows are to be exported to the data path. 
To illustrate, if the not unrolled 5-tap-FIR in Figure-4 has a 
smart buffer whose size is seven words, then, if the loop 
stride is one, every five words constitutes a window. Thus, 
this seven-word smart buffer contains seven windows. In 
Figure 5 (a), (b) and (c) shows the No. zero, No. one and 
No. six windows. However, at any clock cycle at most one 
window’s data is valid. The inactive words in the smart 
buffer could be receiving new data while the active window 
is sending its data to the data path. To illustrate better, 
Figure 6 shows smart buffer for the twice unrolled 5-tap-
FIR. If we say the smart buffer size is two-word larger than 
the not-unrolled one, then, since and the loop stride is two, 
the size of each window is now six-word. Therefore inside 
the buffer in Figure 6, there are only five windows in total. 
Although the buffer size increased a bit, the number of 

windows decreases and so does the control logic.  

5. MACHSUIF LEVEL OPTIMIZATIONS 
Once ROCCC passes are executed over the SUIF2 IR, the 
output is then sent to MACHSUIF environment. We 
extended the MACHSUIF IR with three new opcodes to 
describe MUX (multiplexor), LPR (load previous) and 
SNX (store to next) operations.  

We execute the then and else branches of if-statements in 
parallel. MUX opcode is introduced to copy the output 
signals of the alternative branches of if-statements to the 
next common successor node. Our approach of executing 
the then and the else branches of if-statements in parallel is 
completely safe; since no memory is written until the 
pipeline is over. The LPR and SNX are used in 
MACHSUIF to indicate that the load operation is loading 
from and storing to a feedback variable respectively. When 
translated to VHDL these opcodes ensure that the read and 
write operations occur from/to a hardware register on the 
FPGA to hold the value of the feedback variable across 
iterations. 

5.1 Pipelined Datapath Generation 
ROCCC, due to its pipelined execution, is able to 
instantiate a new iteration every cycle if there are no 
preventing loop carried dependencies across iterations. The 
Datapath Generation Module part of our VHDL code 
generator first builds the control flow graph over the 
MACHSUIF IR and analyzes for data dependencies. Then 
the module hoists instructions that are not data or control 
dependent on the earlier instructions as high as possible 
within the local control block and every instruction is 
assigned a location in the hardware data path. Instructions 
that are grouped together are executed in parallel. ROCCC 
automatically places latches in a data path to pipeline it. 

(a) 

* * * * * * * 

(b) 

* * * * * * * 

(c) 
* * * * * * * 

* * * 

* * * 

* * * 

 
Figure 6 – Windows No.0, No.1 and 

No.4 in the smart buffer for the 
twice-unrolled 5 –tap-FIR 

(a) 

* * * * * * * 

(b) 

* * * * * * * 

(c) 
* * * * * * * 

 
Figure 5 – Windows No.0, 
No.1 and No.6 in the smart 
buffer for the not unrolled 

5-tap-FIR 

for (i=0; i<N; i=i+1) { 
C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] + 
9*A[i+3] – A[i+4]; 

} 
  

Figure 4 - A 5-tap FIR in C 



The alternate branches of if-statements are also executed in 
parallel. [9] describes the data path generation in ROCCC 
in detail. 

6. CONCLUSION & FUTURE WORK 
This paper gives an overview and update on the current 
status of the ROCCC project. However, the project is 
currently functional but yet far from completion. 

We are currently developing our data dependence analysis 
and common sub expression elimination passes. Array data 
dependence analysis, in its generalized form, is an NP 
complete problem. Thus, we started building our analysis 
for a restricted version of the problem. Our data 
dependence analysis code at this time aimed at extracting 
dependence information in perfectly nested loops and for 
array subscripts that are linear functions of the loop indices. 
The transformations we seek benefit from our dependence 
analysis tool are currently loop fusion and loop 
interchange. We are also in the process of developing a 
common sub expression elimination pass that would 
eliminate the occurrences of sub expression cases 
elaborated on in Section 4.2. 

Another future work is to integrating our profiler [12] and 
adding an accurate resource estimation module into the 
current ROCCC system and update necessary ends to bring 
all modules shown in Figure-1 to full functionality.  
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