
Compiler Optimization for Configurable Accelerators

Betul Buyukkurt
University of California Riverside

Computer Science Department

Riverside, CA 92521

abuyukku@cs.ucr.edu

Zhi Guo
University of California Riverside

Electrical Engineering Department

Riverside, CA 92521

zguo@cs.ucr.edu

Walid A. Najjar
University of California Riverside

Computer Science Department

Riverside, CA 92521

najjar@cs.ucr.edu

ABSTRACT
ROCCC (Riverside Optimizing Configurable Computing
Compiler) is an optimizing C to HDL compiler targeting
FPGA and CSOC (Configurable System On a Chip)
architectures. ROCCC system is built on the SUIF-
MACHSUIF compiler infrastructure. Our system first
identifies frequently executed kernel loops inside programs
and then compiles them to VHDL after optimizing the
kernels to make best use of FPGA resources. This paper
presents an overview of the ROCCC project as well as
optimizations performed inside the ROCCC compiler.

1. INTRODUCTION
FPGAs (Field Programmable Gate Array) can boost
software performance due to the large amount of
parallelism they offer. The area on the FPGAs can be
configured to form the data path or a register file as the
software necessitates. The only limiting factors to FPGA
performance are the available area and the I/O pins. On the
other hand, programming an FPGA is a very tedious task
since FPGAs do not specify any control or data path
mechanism or a fixed instruction set.

Researchers have studied mapping from high-level
languages to HDLs. However, there is still not yet a single
tool that is good enough to be adapted by the designers.
ROCCC (Riverside Optimizing Configurable Computing
Compiler) is an optimizing C to VHDL compiler targeting
FPGA and CSOC platforms. ROCCC identifies, optimizes
and parallelizes the most frequently executed kernel loops
in applications such as multimedia and scientific
computing.

ROCCC is built over SUIF2-MACHSUIF infrastructure.
SUIF2 front end is easily extendible to support multiple
source languages. SUIF2 also provides both high and low
level IR (Intermediate Representation) necessary to support
all high-level constructs found in most common languages
such as C, Fortran, JAVA etc. On the other hand,
MACHSUIF is a compiler infrastructure for building the
back end of a compiler.

ROCCC performs both loop level transformations and
circuit level optimizations. It first performs control and data
flow analysis over its IR followed by global optimizations

such as constant propagation, constant folding, dead code
eliminations that enables other optimizations. Then, loop
level optimizations such as loop unrolling, loop invariant
code motion, loop fusion and other such transforms are
applied.

This paper is organized as follows. Next section discusses
on the related work. Section 3 gives an in depth description
of the ROCCC system. SUIF2 level optimizations are
described in Section 4 followed by the compilation done at
the MACHSUIF level in Section 5. Section 6 mentions our
early results. Finally Section 7 concludes the paper.

2. RELATED WORK
There are several projects and publications on translating C
or other high level languages to different HDLs. Streams-
C[7], Handel-C[8] and SA-C[6] generate HDL from C-
variants, where the programmer is either in charge of
specifying explicitly where the parallelism is such as in
Streams-C or writing the application in this C-variant form
or both.

Nimble[15] and GARP[13] target only specific hardware
architectures. They generate specific configuration files
instead of standard VHDL file that can be synthesized to
readily available FPGA boards.

SPARK[14] generates VHDL from a subset of regular
ANSI-C. It applies extensive front and back end
optimizations such as loop unrolling/fusion, loop invariant
code motion, common sub expression elimination, dead
code elimination, etc. The two main objectives of SPARK
are to reduce the number of states in the controller FSM
and the cycles on the longest path. However, SPARK does
not support two-dimensional arrays, neither performs
optimizations on the data reuse which occurs regularly in
image processing, DSP and scientific computing
algorithms.

3. PROJECT OVERVIEW
ROCCC is a compiler tool that maps the most frequently
executed regions of software written in a high level
language such as C, onto configurable hardware. ROCCC
is built over the SUIF2-MACHSUIF infrastructure. The
main reason behind building our tool over an existing
framework is code reuse. We mostly benefited from the

front end, IR and the auxiliary data structures/passes
provided in these tools. ROCCC’s main contributions on
the other hand are its extensive optimizations and the data-
transfer/execution model on the FPGA.

Not all of the C constructs are supported. The source
program should not include pointers, floating point
arithmetic nor any irregular control flow such as breaks and
exits inside the source code. The code may contain
function calls, however all the function calls are inlined
prior to analysis and transformation passes.

The type of source programs that would benefit from
ROCCC’s optimizations the most are the programs that
would apply the same operations to each and every element
of the input data. Image processing algorithms, DSP
computations, scientific computation programs would be
our best candidates since they are regular in their
computation and easily parallelizable.

Figure-1 shows an overview diagram of ROCCC system.
Firstly, the source program is fed into a profiling tool.
ROCCC uses profiler results to locate the most frequently
executed kernels. The extracted software kernels then are
fed into the SUIF2 environment, which would then analyze
the code and apply global and loop level transformations.
In SUIF2 we work on high-level IR as opposed to low-level
IR as traditional compilers do. We eliminated the need for
any additional coding due to working on high-level IR, by
utilizing the auxiliary data structures in SUIF2, such as
walkers, visitors, etc. which enabled us easily deal with
various collections of IR classes at once. After all SUIF2
level transformations are completed, ROCCC decouples
memory accesses from the computation through scalar
replacement. SUIF2 then extracts the code that is going to
form the data path on the FPGA in a file to MACHSUIF.

In our project we benefited from MACHSUIF’s Control
Flow Graph (CFG), Data Flow Analysis and the Static
Single Assignment libraries. In MACHSUIF, we hoist
independent instructions and assign them to pipeline stages.

Then we map from
MACHSUIF opcodes
to IEEE 1076.3
VHDL library
elements. All
MACHSUIF opcodes
except division have a

corresponding
functionality in the
IEEE 1076.3 VHDL
library. We extended
MACHSUIF with few
other opcodes to
support for feedback
variables and a
multiplexor.

The Controller
Generator module in Figure-1 would collect the array
read/write operations to generate the address generators and
smart buffers on the FPGA. Figure-2 depicts the execution
model built on the FPGA by our compiler.

4. SUIF2 LEVEL OPTIMIZATIONS
ROCCC transformations mainly focus on loops operating
on arrays. Prior to applying our transformation passes,
control flow analysis and data flow analysis passes are
executed over the SUIF IR. We developed our own control
and scalar data flow analysis passes in SUIF2. These passes
are built in an iterative fashion. Since ROCCC is not a
production compiler we are currently running these
analysis routines after every transformation that changes
the IR.

4.1 Procedure Level Optimizations
The following passes are completed and being used in our
compiler system.

• Constant Folding: This pass folds constants, simplifies
algebraic identities such as multiplication by zero or
division by one. The pass operates over the IR of the
entire procedure until no more simplification occurs.

• Constant Propagation: This pass replaces the uses of
variables whose values are constants by the constant
values themselves. This pass works hand in hand with
the constant folding pass, since one generates further
optimization opportunities for the other.

• Division by constant approximation: Division in
hardware is a costly operation and would consume large
areas on FPGA’s. This pass transforms the division into a
sum of dividend right shifted by various powers of 2 that
approximates to the constant divider. An example of this
transformation is shown in Figure 3, where the sum_of_9
/ 9 is replaced by a sequence of right shifts and additions.

• Copy Propagation: This pass eliminates the copy
operations inserted by other transformations.

controllers

Pipelined data path

Block RAM

Block RAM

Off-chip
MEM

Off-chip
MEM

smart buffer

smart buffer

Figure 2 - The Execution Model

Loop
Optimizatio

n

SUIF2

Machine
SUIF

Controller
Generation

Data Path
Generation

Graph Editor
+ Annotation

CAD
tools

VHDL Code
Generator

Bit
Stream

ROCCC System

C /C++
Fortran
Java…

…
Code Pr

of
ili

ng

Host
Executabl

e

General
Compiler

Estimation
��Area
��Delay
��Power

Figure 1 – ROCCC System Overview

• Dead and Unreachable Code Elimination: Dead code
elimination removes all code that has no contribution in
computing the result or the return value of the program.
Whereas unreachable code elimination eliminates blocks
where control would never reach due to other
transformations over the IR.

• Common Sub Expression Elimination: This pass
eliminates exactly matching expressions or expression
sub trees over the entire program.

• Propagation of Constant Arrays: It is common in image
processing or DSP applications that some constant mask
or array of constants is applied to the input data over and
over again. These masks are usually applied to input data
in loops with known at compile time constant bounds.
ROCCC fully unrolls innermost loops with constant
bounds. Then wherever the mask indices turn into a
constant, ROCCC replaces the reference to the constant
array with the constant itself.

4.2 Loop Level Optimizations
Loop level optimizations are the transformations, which
help achieve most of the parallelism in ROCCC. Although
most of these transformations are same as traditional
compiler optimizations, the scale of the optimizations
would differ. Since, traditional compilers target processors
with a defined ISA and a rigid data path, unrolling by small
amounts would provide enough parallelism to keep the
processor busy. However on an FPGA as long as there is
enough area and I/O bandwidth to fit another iteration, the
loop can be unrolled for another time.

Moreover, in traditional processors any computation has to
follow the fetch, decode, execute, write back cycle which
additionally imposes memory access pattern restrictions on
an optimizing compiler. On an FPGA none of these
restrictions would hold, however due to the growing scale
of the optimizations new challenges arise such as the
transfer of data to the data path and synchronization of data
flow across pipeline iterations incase of any backward
dataflow as in feedback variables. ROCCC performs the
following loop level optimizations.

• Loop Normalization: This pass rearranges the loop
headers so that the indices of the loops start from one and
incremented by one after an iteration completes.

• Invariant Code Motion: This pass hoists any
statement/expression that computes the same value
across iterations of the loops outside of the loop.

• Loop peeling: Loop peeling helps remove first or last few
iterations of a loop by copying its body before or after
the loop as many times as the loop is peeled. This
operation helps bring the iteration count of a loop to a
desired value enabling other optimizations such as loop
fusion. In addition this pass can be used to remove
dependencies that only bound the first or last few
iterations of a loop.

• Loop Unrolling: Loop unrolling is the main compiler
technique that allows reconfigurable architectures to
achieve large degrees of parallelism. ROCCC has two
unrolling passes. One of the two passes is used to fully
unroll loops with known constant upper bounds. The
other unroll pass unrolls a given loop at a given unroll
factor. The unrolling factor can be a user-defined value
as well as a value computed, based on the memory and
the area limitations of the FPGA. At this time we are
assuming that ROCCC gets the unrolling factor from the
user, however once we incorporate our area estimation
tool, we predict that ROCCC will be able to determine
the unroll factor based on the available area on the FPGA
using the feedback from the estimation tool.

 Figure-3 shows moving filter code that is unrolled twice
by our compiler. As seen in the unrolled code there are
common sub expressions appearing between the different
iterations of the loop. These expressions appear in
different places in their respective expression trees. As
the scale of unrolling grows, such partial expressions
would appear in many other expressions whose trees are
different and similarity varies. There are many variations
to CSE in the literature such as CSE, partial CSE, value-
numbering etc. each targeting different, but overlapping
cases of CSE occurrences in programs and dealt at the
low level IR. We have not found CSE algorithms except
[16] addressing the CSE problem shown in Figure-3.
Such common sub expression problems are ROCCC’s
targeted optimizations.

• Loop Fusion: This pass combines the bodies of two
consecutive loops under the header of one of the loops.
In order to be able to fuse two loops, following
conditions must hold. The iteration counts of the loops
should be the same. The loops should not contain
statements that would form a dependency cycle between
the statements of the two loops after they are fused. For
instance, the first loop is reading array A and writing
array B while the second loop is reading B but writing
back on A, then when these two loops are fused the new
body would form a dependence cycle that perhaps did
not exist prior to the transformation. At this point though
our fusion algorithm is assuming both loops do not form
new dependencies, when they are fused. Loop peeling
transformation can be used to bring the iteration counts
of any two consecutive loops, if the iteration counts of
the loops are apart by a constant amount.

• Loop Unswitching: This optimization transforms for-
loops having only an if-statement in its body, whose
condition test is a loop invariant, into an if-statement
whose then and else statements are enclosed in a for
statement. This pass helps reduce unnecessary control
flow from loop bodies. ROCCC can apply this pass to a
nest of if-statements, if all if conditions are loop
invariants.

However, this pass should be used with care, since the
condition variables, which are loop invariants from the
software analysis view, could be hardware signals
modified by external sources as the loop executes. To
remedy this situation and still be able to benefit from this
pass, users are advised to use the C keyword volatile to
express that a variable should be read from the memory
each time it is accessed. Then our data flow analysis
library would not mark it as loop invariant.

4.3 SUIF2 to MACHSUIF Data Path
Generation
In SUIF2 we apply all the passes in high-level IR as
opposed to low-level IR as traditional compilers do. One of
the justifications for traditional compilers’ working on low-
level IR is that once the high level IR is lowered close to
the level of ISA some of the optimizations can get lost. For
example, new common sub expression elimination
opportunities may arise due to array address calculation
arithmetic, strength reduction or operator substitutions due
to underlying ISA not supporting the operator existing in
the high-level language. However, in our case we’re
bounded by neither an ISA nor memory. Rather we’re
faced with configuring bare hardware where a variable is a
value not a memory reference.

After we apply all our passes, we ran other passes to
prepare our output to be processed by our MACHSUIF
backend.

• Scalar Replacement: This pass helps isolate memory
references from computation by moving all memory
read/write operations to the beginning/end of the loop
body. The values of the memory reads are saved into
automatically generated scalar temporaries prior to the
first statement in the original loop body. Then the array
references in the original loop body are replaced with the
generated scalar temporaries holding array values.
Finally, any values that are to be saved into an array cell
locations are saved from scalar temporaries back into
array locations after the last statement inside the original
loop body.

Scalar replacement decouples array references from the
computation in loop bodies and control generator uses its
results to form the read and write buffers. These two
buffers are placed before and after the pipelined
execution unit on the FPGA.

• Scalar I/O Detection: The loop outputs are not always
arrays. They could be scalars computing a sum or a max
or min of an array that has to be communicated to the
software running on the host processor. This pass marks
those variables whose values are initialized outside the
loop body, modified within the loop and referenced by
the host executable after the loop finished its execution.
Such variables are marked and communicated to the

void main(){
 int sum_of_9, i;
 int A[256], X[256];
 for(i = 0; i < 247; i=i+1) {
 sum_of_9 = A[i] + A[i+1] + A[i+2] + A[i+3]
+ A[i+4] + A[i+5] + A[i+6] + A[i+7] + A[i+8];
 X[i] = sum_of_9 / 9;
 }
}

(a) Moving filter 9

void main(){
 int i;
 __ar_2 A;
 __ar_2 X;
 int sum_of_9;

 for(i = 0;i<247- 1; i = i+1+1) {
 sum_of_9 = A[i]+A[i+1]+A[i+2]+A[i+3]+
A[i+4]+A[i+5]+A[i+6]+A[i+7]+A[i+8];
 X[i] =sum_of_9/ 9;
 sum_of_9 = A[i+1]+A[(i+1)+1]+A[(i+1)+2]))+
A[(i+1)+3]+A[(i+1)+4]+A[(i+1)+5]+A[(i+1)+6]+A[(i+1
)+7]+A[(i+1)+8];
 X[(i+1)] =sum_of_9/ 9;
 }
}

(b) Moving filter after being unrolled twice

void main(){
 int i;
 __ar_2 A;
 __ar_2 X;
 int sum_of_9;

 for(i = 0; i < 246; i = 2+i) {
 sum_of_9 = A[i]+A[1+i]+A[2+i]+A[3+i]+
A[4+i]+A[5+i]+A[6+i]+A[7+i]+A[8+i];
 X[i] = (sum_of_9>> 12)+(sum_of_9>> 11)
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5)
+(sum_of_9>>4);
 sum_of_9 = A[1+i]+A[2+i]+A[3+i]+A[4+i]
+A[5+i]+A[6+i]+A[7+i]+A[8+i]+A[9+i];
 X[1+i] =(sum_of_9>> 12)+(sum_of_9>> 11)
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5)
+(sum_of_9>> 4);
 }
}
(c) Moving filter code after constant folding and

division by constant elimination passes

 for(i = 0; i < 246; i = 2+i) {
 A0 = A[i]; A1 = A[1+i]; A2 = A[2+i];

 A3= A[3+i]; A4 = A[4+i]; A5 = A[5+i];
 A6 = A[6+i]; A7 = A[7+i]; A8 = A[8+i];
 A9 = A[9+i];

 sum_of_9 = A0+A1+A2+A3+A4+A5+A6+A7+A8;
 TO = (sum_of_9>> 12)+(sum_of_9>> 11)
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5)
+(sum_of_9>>4);
 sum_of_9 = A1+A2+A3+A4+A5+A6+A7+A8+A9;
 T1 = (sum_of_9>> 12)+(sum_of_9>> 11)
+(sum_of_9>> 10)+(sum_of_9>> 6)+(sum_of_9>> 5)
+(sum_of_9>> 4);
 X[i] = T0;

 X[1+i] = T1;
 }
(d) Moving filter loop after scalar replacement

Figure 3 - Moving filter code after ROCCC transformations

MACHSUIF environment so that they may be saved for
use later by the host executable.

• Feedback Variable Detection: There could also be other
scalar variables whose values are incremented or updated
per iteration of the loop body such as a scalar variable
holding a sum over an array. This pass identifies those
variables whose values are dependent upon their past
values. Although the execution model of ROCCC
necessitates that every so many cycles new values are
read and written, ROCCC supports the case of feedback
variables by saving them in registers generated on the
data path to be referenced by following pipeline cycles.

4.4 Smart Buffer
Smart buffer [10] is a custom generated buffer aiming at
maximizing data reuse. It acts as a buffer between the
Block RAM on the FPGA board and the data path.
Therefore, there are two of them placed at the entry and the
exit of the data path circuitry. The data that is going to be
stored in the smart buffer is determined by the scalar
replacement phase of our compiler. The scalar replacement
phase shifts the memory read/write operations to the two
ends of the loop body. The addresses for these decoupled
memory references are generated by the Address Generator
to be brought into the Block RAM.

Block RAM is a piece of SRAM, which can be configured
to provide the data using various numbers of ports at will.
Since the number of ports to both the Smart Buffer and the
Datapath are application-specific, for ROCCC only the
bandwidth with the external memory can be the main
limitation to parallelism.

Smart buffer organizes the data that is received from the
memory in windows. Most applications in multimedia and
high performance scientific computing process input data
by sliding a window over it. In window operations, a
portion of the window data, as it is sliding over the input
array, is always shared across successive iterations of the
loop body.

Each window has its own control logic enabling when and
which sets of windows are to be exported to the data path.
To illustrate, if the not unrolled 5-tap-FIR in Figure-4 has a
smart buffer whose size is seven words, then, if the loop
stride is one, every five words constitutes a window. Thus,
this seven-word smart buffer contains seven windows. In
Figure 5 (a), (b) and (c) shows the No. zero, No. one and
No. six windows. However, at any clock cycle at most one
window’s data is valid. The inactive words in the smart
buffer could be receiving new data while the active window
is sending its data to the data path. To illustrate better,
Figure 6 shows smart buffer for the twice unrolled 5-tap-
FIR. If we say the smart buffer size is two-word larger than
the not-unrolled one, then, since and the loop stride is two,
the size of each window is now six-word. Therefore inside
the buffer in Figure 6, there are only five windows in total.
Although the buffer size increased a bit, the number of

windows decreases and so does the control logic.

5. MACHSUIF LEVEL OPTIMIZATIONS
Once ROCCC passes are executed over the SUIF2 IR, the
output is then sent to MACHSUIF environment. We
extended the MACHSUIF IR with three new opcodes to
describe MUX (multiplexor), LPR (load previous) and
SNX (store to next) operations.

We execute the then and else branches of if-statements in
parallel. MUX opcode is introduced to copy the output
signals of the alternative branches of if-statements to the
next common successor node. Our approach of executing
the then and the else branches of if-statements in parallel is
completely safe; since no memory is written until the
pipeline is over. The LPR and SNX are used in
MACHSUIF to indicate that the load operation is loading
from and storing to a feedback variable respectively. When
translated to VHDL these opcodes ensure that the read and
write operations occur from/to a hardware register on the
FPGA to hold the value of the feedback variable across
iterations.

5.1 Pipelined Datapath Generation
ROCCC, due to its pipelined execution, is able to
instantiate a new iteration every cycle if there are no
preventing loop carried dependencies across iterations. The
Datapath Generation Module part of our VHDL code
generator first builds the control flow graph over the
MACHSUIF IR and analyzes for data dependencies. Then
the module hoists instructions that are not data or control
dependent on the earlier instructions as high as possible
within the local control block and every instruction is
assigned a location in the hardware data path. Instructions
that are grouped together are executed in parallel. ROCCC
automatically places latches in a data path to pipeline it.

(a)

* * * * * * *

(b)

* * * * * * *

(c)
* * * * * * *

* * *

* * *

* * *

Figure 6 – Windows No.0, No.1 and

No.4 in the smart buffer for the
twice-unrolled 5 –tap-FIR

(a)

* * * * * * *

(b)

* * * * * * *

(c)
* * * * * * *

Figure 5 – Windows No.0,
No.1 and No.6 in the smart
buffer for the not unrolled

5-tap-FIR

for (i=0; i<N; i=i+1) {
C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] +
9*A[i+3] – A[i+4];

}

Figure 4 - A 5-tap FIR in C

The alternate branches of if-statements are also executed in
parallel. [9] describes the data path generation in ROCCC
in detail.

6. CONCLUSION & FUTURE WORK
This paper gives an overview and update on the current
status of the ROCCC project. However, the project is
currently functional but yet far from completion.

We are currently developing our data dependence analysis
and common sub expression elimination passes. Array data
dependence analysis, in its generalized form, is an NP
complete problem. Thus, we started building our analysis
for a restricted version of the problem. Our data
dependence analysis code at this time aimed at extracting
dependence information in perfectly nested loops and for
array subscripts that are linear functions of the loop indices.
The transformations we seek benefit from our dependence
analysis tool are currently loop fusion and loop
interchange. We are also in the process of developing a
common sub expression elimination pass that would
eliminate the occurrences of sub expression cases
elaborated on in Section 4.2.

Another future work is to integrating our profiler [12] and
adding an accurate resource estimation module into the
current ROCCC system and update necessary ends to bring
all modules shown in Figure-1 to full functionality.

7. REFERENCES
[1] SUIF Compiler System. http://suif.stanford.edu, 2004

[2] Machine SUIF.
http://www.eecs.harvard.edu/hube/research/machsuif.h
tml, 2004

[3] G. Holloway and M. D. Smith. Machine SUIF Control
Flow Graph Library. Division of Engineering and
Applied Sciences, Harvard University 2002.

[4] G. Holloway and A. Dimock. The Machine SUIF Bit-
Vector Data-Flow-Analysis Library. Division of
Engineering and Applied Sciences, Harvard University
2002.

[5] G. Holloway. The Machine-SUIF Static Single
Assignment Library. Division of Engineering and
Applied Sciences, Harvard University 2002.

[6] W. Najjar, W. Böhm, B. Draper, J. Hammes, R.
Rinker, R. Beveridge, M. Chawathe and C. Ross. From
Algorithms to Hardware - A High-Level Language

Abstraction for Reconfigurable Computing. IEEE
Computer, August 2003.

[7] M. B. Gokhale, J. M. Stone, J. Arnold, and M.
Lalinowski. Stream-oriented FPGA computing in the
Streams-C high level language. In IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM),
2000.

[8] Handel-C Language Overview. Celoxica, Inc.
http://www.celoxica.com, 2004.

[9] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers.
Optimized Generation of Data-Path from C Codes. In
ACM/IEEE Design Automation and Test Europe
(DATE), Munich, Germany, March 2005.

[10] Z. Guo, B. Buyukkurt and W. Najjar. Input Data Reuse
In Compiling Window Operations Onto
Reconfigurable Hardware, Proc. ACM Symp. On
Languages, Compilers and Tools for Embedded
Systems (LCTES 2004), Washington DC, June 2004.

[11] Z. Guo, W. Najjar, F. Vahid and K. Vissers. A
Quantitative Analysis of the Speedup Factors of
FPGAs over Processors, In. Symp. on Field-
Programmable gate Arrays (FPGA), Monterrey, CA,
February 2004.

[12] D. C. Suresh, W. A. Najjar J. Villareal, G. Stitt and F.
Vahid. Profiling Tools for Hardware/Software
Partitioning of Embedded Applications, Proc. ACM
Symp. On Languages, Compilers and Tools for
Embedded Systems (LCTES 2003), San Diego, CA,
June 2003.

[13] T. J. Callahan, J. R. Hauser, J. Wawrzynek. The Garp
Architecture and C Compiler. IEEE Computer, April
2000.

[14] SPARK. http://www.cecs.uci.edu/~spark/ 2004

[15] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure,
and J. Stockwood. Hardware-software co-design of
embedded reconfigurable architectures. In Design
Automation Conf.(DAC), 1999.

[16] P. Briggs and K. D. Cooper, Effective Partial
Redundancy Elimination, Proceedings of the
SIGPLAN 94 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 29(6),
June 1994, pages 159-170.

