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Abstract. Configurable computing relies on the expression of a computation as a circuit. Its main
purpose is the hardware based acceleration of programs. Configurable computing has received renewed
interest with the recent rapid increase in both size and speed of FPGAs. One of the major obstacles
in the way of wider adoption of (re)configurable computing is the lack of high-level tools that support
the efficient mapping of programs expressed in high-level languages (HLL) to reconfigurable fabrics.
The major difficulty in such a mapping is the translation from a temporal execution model to a spatial
execution model. An intermediate representation (IR) is the central structure around which tools such
as compilers and synthesis tools are built. In this paper we propose an IR specifically designed for
reconfigurable fabrics: CIRRF (Compiler Intermediate Representation for Reconfigurable Fabrics). We
describe the design of CIRRF and its initial implementation as part of the ROCCC compiler for
translating C code to VHDL. CIRRF is designed to support the creation of a data path and the
scheduling of operations on it. It provides support for buffers, look-up tables, predication and pipelining
in the data path. One of the important features of CIRRF, and ROCCC, is its support for the import
of pre-designed IP cores into the original C source code allowing the user to leverage the huge wealth
of existing IP cores while programming the configurable platform using a HLL. Using experiments and
examples we show that CIRRF is a solid foundation to generate high-performance hardware.
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1 Introduction

The main problem standing in the way of wider acceptance of reconfigurable computing

platforms is their programmability. Currently, application developers must have extensive

hardware expertise, in addition to their application area expertise, if they are to develop

efficient designs that can fully exploit the potential of FPGA-based configurable platforms.

Designing and mapping large applications onto FPGAs is a long and tedious task that

involves a large amount of low-level design in a Hardware Description Language (HDL). This

poses two problems: Traditional application developers are typically not HDL designers, and

HDLs are not well suited to algorithm implementation. Several projects have looked at the

translation of traditional programming languages, such as C/C++ or Java, to HDLs for

mapping onto FPGAs or other similar fabrics. This is a challenging task. The FPGA is an

amorphous mass of logic onto which the compiler must create a data-path and schedule the

computation. Such a task requires the harnessing of technologies developed for parallelizing

compilers as well as those developed for high-level synthesis. The fundamental differences

between the spatial computing model and the temporal, or von Neumann, model are:

– Spatial computing is inherently parallel while temporal computing is sequential.

– Temporal computing relies on two centralized storage locations that are both explicitly

addressed by the code: the register file and the memory. In spatial computing, storage

is distributed throughout the circuit and is accessed implicitly rather than explicitly.

Furthermore, it is the task of the compiler to explicitly create the storage on the FPGA

and schedule its accesses.

– Scheduling in temporal computing is driven by control flow, while in spatial computing

it is driven by data flow.
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The main challenge in translating from a HLL to an HDL is in overcoming these fun-

damental differences. Optimizing compilers for traditional processors have benefited from

several decades of extensive research that has led to efficient tools. Similarly, electronic

design automation (EDA) tools have also benefited from several decades of research and

development leading to powerful tools that can translate VHDL and Verilog code, and re-

cently SystemC code, into efficient circuits. However, little work has been done to combine

these two approaches into one integrated compilation tool where HLL are translated into a

high-performance circuit.

At the heart of each compiler or synthesis tool is an intermediate representation (IR)

around which the tool is built. In this paper we propose CIRRF (Compiler Intermediate

Representation for Reconfigurable Fabrics), an IR designed for the compilation of traditional

imperative, high-level languages, targeting reconfigurable devices. CIRRF is intended to be

an open halfway-point representation between a high-level language and a specific reconfig-

urable platform. A front-end tool would translate C/C++, FORTRAN, Java or SystemC

to CIRRF. Back tools would map CIRRF to a specific target. Loop and array transforma-

tions are dealt with in the front-end tools; target-specific optimizations are implemented

in the back tools. CIRRF is designed to be both language and target independent. It is

the intermediate representation of the ROCCC compiler (Riverside Optimizing Compiler for

Configurable Computing). CIRRF differs from traditional compiler IRs in that it supports

concurrency, both explicitly and implicitly, as well as the instantiation of and accesses to

on-chip storage structures. It records information about loop types, memory interfacing, in-

struction predication and pipelining. Special instructions for efficient data-path generation

are introduced. ROCCC does not support pointers and memory allocation.

The ROCCC compiler is designed to generate VHDL from C. However, not all application

algorithms can be efficiently described by C. Furthermore, industry has invested tremendous
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financial and technical efforts on pre-designed intellectual property (IP) cores for FPGA-

based platforms that are not only very efficient but have been thoroughly tested and verified.

These IP cores come in the form of synthesizable HDL code or even lower level descriptions.

They vary drastically with respect to their control and timing protocol specifications which

intended to be interfaced to HDL-based designs. Compilers for FPGA-based reconfigurable

systems must therefore leverage that huge wealth of IP designs by allowing the user to

import these into high-level language (HLL) source codes. To do so would require a wrapper

structure that would hide the timing and stateful nature of the IP cores and make each look,

to the HLL compiler, as an un-timed side-effect free function call.

We propose a mechanism for the automatic generation of such a wrapper using ROCCC.

Users provide the high-level description of a wrapper, which is based on C with timing

information. CIRRF records the timing information so that from the compiler’s point of

view, the wrapper described in C is essentially a timed control flow graph. The compiler’s

back-end converts this timed CFG into predicated DFG and eventually generates an IP

wrapper in VHDL. Notice that a normal C code input to ROCCC does not have any timing

implication, while a wrapper in C is a special case, which does have timing information.

The rest of this paper is organized as follows: Section 2 presents CIRRF’s architecture

and the method we build CIRRF; Section 4 extends CIRRF to support the compiler for IP

wrapper generation. Results are given in the subsections of Section 2 and Section 4. Section

5 reviews related work; and Section 6 concludes the paper.

2 CIRRF Intermediate Representation

The major objective of CIRRF is to separate the language specific compiler concerns from

those of the target platform. The architecture of FPGA-based platforms can vary widely in

the number and types of FPGAs, the number and size of on-board memory modules, the bus
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width connecting the FPGAs to the memories, etc. The compiler must therefore generate

code that can take advantage of the unique features of each platform. This approach allows

for an easy targeting or re-targeting of new or modified platforms.

In this section we describe the overall structure of CIRRF and the two levels currently

implemented as part of the ROCCC compiler tool. We present ROCCC’s workflow to build

the CIRRF IR. The front-end optimizes the user-input code and generates Hi-CIRRF by

adding macros into the source (subsection 2.3). Starting from a conventional CFG, the back-

end first constructs data flow for do-all loops (Section 2.4), then converts non-do-all nodes

into data flow nodes using predication (Section 2.4).

2.1 CIRRF Architecture and Execution Model

CIRRF

C/C++

FORTRAN

Java

SystemC

P1

P2

P3

Language & Platform
Independent Representation

Language specific tools
High-level transformations

Platform specific tools

Low-level optimizations

Hi-CIRRF Lo-CIRRF

= C + macros Low level

statements

Platform specific user directives

Fig. 1. Overview of CIRRF

ROCCC’s intermediate representation, CIRRF, is built using SUIF2 [1] and Machine-

SUIF [2]. SUIF2 consists of high-level statements, such as loop statements and if-else state-

ments, while Machine-SUIF consists of virtual machine instructions. CIRRF consists of two

distinct but equivalent representations, as shown in Figure 1. The Hi-CIRRF, built using
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SUIF2, is essentially C code augmented with macros. The Lo-CIRRF format, extended from

Machine-SUIF, is semantically similar to assembly code. The advantage of this approach,

which is commonly used in various compiler IRs, is that it allows the user to have multi-

ple levels of entry into the IR. Functional debugging, for example, would be a lot easier at

the Hi-CIRRF level. A functional simulation of the generated code would be feasible at the

Lo-CIRRF level.

Hi- and Lo-CIRRF The Hi-CIRRF representation is generated after the high-level com-

piler transformations have been applied. It has a C syntax that has been augmented with

macros. The Lo-CIRRF serves as a platform for pipelining, interfacing to memory and gener-

ating VHDL. It semantic and syntax are similar to assembly language and rely on statically

single-assigned virtual registers.

The macros in Hi-CIRRF are used to:

– Instantiate and access on-chip buffers.

– Implement special operations that eliminate recurrence or enforce a pipeline delay for

IP wrapper generation.

– Invoke bitwise and arithmetic operations, such as bit-insert, bit-extract, and minimum

of two values.

– Invoke look-up tables and IP cores.

In Lo-CIRRF the code is similar to an assembly code. It is implemented as a control and

data flow graph (CDFG) with the following characteristics:

– Virtual statically single-assigned registers.

– Register name indicates type (signed, unsigned) and bit size.

– Predicated instructions.

– Pipelining information for each instruction.

To appear in International Journal of Parall Programing, Springer.
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Fig. 2. Execution model of CIRRF

– Loop nodes that specify complete loop information such as loop type (parallel or sequen-

tial), nesting level, index and stride.

Execution Model CIRRF is essentially intended to represent loop nests that would be

mapped to hardware. Its execution model, shown in Figure 2, is very simple: it consists of

an input data memory which can be on or off-chip, a data fetch engine that collects the data

into an input buffer. The data is then pushed, every cycle, into the pipelined data path.

The same structure is replicated at the output side. Note that, unlike in a von Neumann

architecture, the data path does not fetch the data, rather at each iteration, the correct set

of data is selected by a controller from the input buffer and pushed into the data path. The

CIRRF execution model can therefore be considered a decoupled model of execution.

2.2 On-Chip Buffers

One of the distinguishing features of spatial computing representation is that storage needs to

be explicitly architectured by the code while in temporal computing it is implicitly available
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in the form of registers and memory (cache, main memory etc). Furthermore, the accesses

to memory for both data reads and writes have to generated as part of the computation.

Buffers are therefore first class citizens in CIRRF. They play several roles including:

– Interface to memory for both reads and writes.

– Interface between two segments of the data path that operate in a producer consumer

relationship.

– Cache data fetched from memory for future reuse to reduce the number of memory

accesses.

– Hold run-time constants.

The following is a partial list of buffers that are part of the CIRRF design to date:

– Memory Interface. The mem read fifo buffer and mem write fifo buffer serve as inter-

faces between the memory, off or on chip, and the data path. They are parameterized in

both width and size and are accessed in one cycle.

– Data Reuse. The smartbuffer [3] is designed to facilitate the reuse of data fetched

from off-chip memory. It is particularly well suited for window-based operation as is very

common in signal and image processing algorithm where every data sample, or pixels,

participates in the computations of several windows. The deallocation and replacement

of a data value in the smartbuffer is scheduled by the compiler.

– Run-time Constants. The ROCCC compiler folds compile-time constants into the

computation. However, run-time constants need to be made available to the computation.

Two such structures are built into CIRRF.

• The constant buffer consists of a small set of scalar values that are directly written to

registers in the data path.
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for(i=0;i<N;i=i+1){

sum = 0;

for(j=0;j<N;j=j+1)

sum=sum+A[i][j]*B[j];

C[i] = sum;

}

(a) The original C code of a matrix
multiplication.

for(i=0;i<N;i=i+4){

constant_read_buffer(i);

sum1=0; sum2=0; sum3=0; sum4=0;

for(j=0;j<N;j=j+2){

mem_read_fifo_buffer(A, i, j,

a1,0,0,a2,0,1,a3,1,0,a4,1,1,

a5,2,0,a6,2,1,a7,3,0,a8,3,1);

mem_read_fifo_buffer(B,j,b1,0,b2,1);

sum1=sum1+a1*b1; sum1=sum1+a2*b2;

sum2=sum2+a3*b1; sum2=sum2+a4*b2;

sum3=sum3+a5*b1; sum3=sum3+a6*b2;

sum4=sum4+a7*b1; sum4=sum4+a8*b2;

}

one_time_write_buffer(C, i,

sum1, 0, sum2, 1, sum3, 2, sum4, 3);

}

(b) The C code with the buffer macros. The i loop is unrolled four
times and the j loop is unrolled twice.

Fig. 3. An example of the mem read fifo buffer and the one time write buffer.

• The one time buffer holds an array of constant values. It operates just like the mem write fifo buffer

but is read only once. It is used in the cases where the number of constants is too

large to be enumerated by the compiler.

Figure 3 shows a matrix multiplication example with the mem read fifo buffer and the

one time write buffer.

– Producer/Consumer. Buffers are also generated in CIRRF to implement on-chip pro-

ducer consumer relationships between segments of the data path: pc fifo buffer.

2.3 Building Hi-CIRRF

The ROCCC system performs the following loop transformations: invariant code motion;

partial and full loop unrolling; loop peeling; loop un-switching; loop tiling; strip-mining;

loop fusion; constant propagation of scalars and constant array masks; constant folding;

elimination of algebraic identities; copy propagation; dead and unreachable code elimina-

tion; code hoisting; code sinking; scalar renaming; and division by constant approximation

using shifts and additions. ROCCC generates reduction on scalars that accumulate values

To appear in International Journal of Parall Programing, Springer.



10

for (i=0; i<62; ++i) { 

   for(j=0; j<62; ++j) { 

       sum = (a[i][j] + a[i][j+1]) + (a[i+1][j] + a[i+1][j+1]); 

       if(sum > 170)  

               b[i][j] = 255;    

       else { 

               if(sum < 85) 

                    b[i][j]  = 0; 

               else 

                    b[i][j]  = 127; 

               } 

    }    

 } 

                                        (a) 
 

for (i=0; i<62; ++i) { 

   for(j=0; j<62; ++j) { 

      smartbuffer2(a, i, j, x1, 0, 0, x2, 0, 1, x3, 1, 0, x4, 1, 1); 

      sum = (x1 + x2) + (x3 + x4); 

      if(sum > 170)  

           tmp = 255;    

      else { 

           if(sum < 85) 

                  tmp = 0; 

          else 

                  tmp = 127; 

             } 

      memory_write_fifo_buffer2(b, i, j, tmp, 0, 0); 

   }   

 } 

                                     (b) 

 

 

(a) The original C.

for (i=0; i<62; ++i) { 

   for(j=0; j<62; ++j) { 

       sum = (a[i][j] + a[i][j+1]) + (a[i+1][j] + a[i+1][j+1]); 

       if(sum > 170)  

               b[i][j] = 255;    

       else { 

               if(sum < 85) 

                    b[i][j]  = 0; 

               else 

                    b[i][j]  = 127; 

               } 

    }    

 } 

                                        (a) 
 

for (i=0; i<62; ++i) { 

   for(j=0; j<62; ++j) { 

      smartbuffer2(a, i, j, x1, 0, 0, x2, 0, 1, x3, 1, 0, x4, 1, 1); 

      sum = (x1 + x2) + (x3 + x4); 

      if(sum > 170)  

           tmp = 255;    

      else { 

           if(sum < 85) 

                  tmp = 0; 

          else 

                  tmp = 127; 

             } 

      memory_write_fifo_buffer2(b, i, j, tmp, 0, 0); 

   }   

 } 

                                     (b) 

 

 

(b) The intermediate C code.

Fig. 4. A gray scale transformation example in C. (a) The C code sums the gray scale values in a 2x2 window in the
input image (array a) and assigns one of three possible values to the pixel in the output image (array b) depending
on the value of sum. (b) The intermediate C code emitted by front-end. The highlighted segments are created by
scalar replacement.

through associative and commutative operations on themselves. It also carries out the fol-

lowing hardware-specific analysis and transformations:

– Scalar replacement. The front-end decouples a do-all loops’ array accesses from compu-

tation. Figure 4 (a) shows the original C code of a gray scale transformation example.

After undergoing scalar replacement, the computation is isolated from memory accesses

[Figure 4 (b)] by a smart buffer. The smart buffer will be synthesized on configurable

fabrics as the interface with memory. One important characteristic of smart buffers is

that they reuse input data between iterations and push one iteration’s input data initia-

tively to the data-path, rather than being accessed by the data-path [3]. The syntax of a

two-dimensional smart buffer macro is:

smartbuffer2 (input array name, address index 1, address index 2,

scalar 1, off set 1 1, offset 1 2, scalar 2, offset 2 1, offset 2 2, );

For example, in the smart buffer macro in Figure 4 (b), the last three parameters (x4, 1,

1) stands for: x4 = a[i+1][j+1]; Similarly, the syntax of a two-dimensional memory write

FIFO buffer macro is:

To appear in International Journal of Parall Programing, Springer.
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mem write fifo buffer2(output array name, address index 1, address index 2,

scalar 1, offset 1 1, offset 1 2, scalar 2, offset 2 1, offset 2 2, );

The memory write FIFO buffer macro in Figure 4 (b) stands for b[i+0][j+0] = tmp;

Currently we have the following constraints on buffer macros. An array can only appear

in at most one buffer macro. The address indexes of buffers are also the loop counters.

The operator between an address index variable and the offset can only be either addition

or subtraction.

– Feedback variable detection. The compiler detects scalar recurrence between adjacent

iterations. For example, for a loop having a statement sum = sum + a[i], to eliminate

the loop-carried dependency, the compiler replaces the sum on the left and the sum on

the right with store2next() macro and load previous() macro, respectively. These macros

guide the backend to instantiate a feedback register to store the current sum for the next

iteration.

The output from the front-end is in the forms of both an IR file and an intermediate C

with macros. Users could do further optimizations and add pragmas onto the intermediate

C.

2.4 Building Lo-CIRRF

The backend first constructs a conventional CFG [Figure 5 (a)]. The compiler finds loops

and loop-depth. Loop types are recovered from pragmas provided by the user: Currently,

these include one-dimensional do-all loop, two-dimensional perfect nested do-all loop, and

non-do-all loop. The pre-process phase of the back-end converts macros in Hi-CIRRF into

corresponding instructions. Particularly, buffer macros are converted into buffer instructions

and put into separated nodes, as shown in Figure 5 (b) for example. The smart buffer

instruction is shown below.

To appear in International Journal of Parall Programing, Springer.
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Fig. 5. CFG of the gray scale transformation example. (a) The original CFG. (b) The CFG after pre-processing:
highlighted nodes are added. Node 14 is the smart buffer node and node 15 is the memory write FIFO buffer node.
(c) The CFG right before performing if-conversion. Node 16 is added to make each joint node have only two predecessor
nodes.

smb2 main.x1,main.x2,main.x3,main.x4 ←

main.a,$vr35.s32,$vr75.s32,0,0,0,1,1,0,1,1;

where main.x1 through main.x4 are the buffer’s output ports, main.a is the input memory

name, vr35 and vr75 are the address index variable (also loop counters). The integers are four

pairs of offsets. We categorize basic nodes into two types: parallel do-all nodes and sequential

non-do-all nodes. The compiler’s back-end generates data-path using different pipelining and

scheduling mechanisms accordingly.

Building Lo-CIRRF for parallel loops For a parallel loop, or do-all node, ROCCC

exploits both instruction-level and loop-level parallelisms. The compiler first performs if-

conversion to eliminate control flow within the loop body. It then walks through the loop

body in a depth-first order and adds extra nodes for joint nodes that have more than two

predecessors. Figure 5 (c) shows that a new node, node 16, is added as node 10’s predecessor.
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Fig. 6. DFG of the gray scale transformation example. The numbers on the left side are the execution levels. The
dashed lines carry speculators, while the solid lines carry data values. The nested if-else statements are converted
into a data-flow free of control. Speculators are duplicated along the execution levels. Each execution level is an
instantiation of one iteration. Notice that latches can be added between any execution levels.

In order to allow the data-path to implement multiple concurrent loop iterations, the

compiler groups the instructions inside a node into execution levels so that each level is an

instantiation of one iteration. Statically single-assigned variables are added to duplicate a

variable if that variable’s definition reaches more than one level of execution lower. Therefore,

the definition of each value is at a level strictly higher than that of its use. Multiplexers

are added, and predicators are duplicated and propagated along with execution levels, as

shown in Figure 6. Notice that each execution level, in the data flow in Figure 6, represents

a single iteration at a given execution phase. Then the compiler pipelines the loop body

by automatically inserting latches in some execution levels of the data-flow. Instructions

belonging to the same execution level are either all latched or all non-latched. Multiple

consecutive execution levels may be assigned to the same pipeline stage.
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The performance of the generated do-all loop data-paths is described in [4]. The parame-

ters of the data-path, such as the number of pipeline stages, are known at compile time and

determined by the user. A parameterized do-all loop controller schedules the fully pipelined

data-path’s operation.

Building Lo-CIRRF for multi-cycle operation support The ROCCC compiler sup-

ports multi-cycle pipelined instructions. This requires synchronization of the dataflow at all

levels and prior knowledge of latency. To accomplish this, we introduce an extra step in the

compilation process after pipelining all the one-cycle operations. In this extra step, we process

the DFG for the bottom up all stages that contain generic functions. If the generic function

requires more than one cycle the compiler pushes all lower stages by equivalent amount of

remaining stages. If data will not pass through the generic function then pipelined copies

(mov instructions) are placed to propagate data from before the pipeline stage of the generic

function until the end.

With the generic multi-cycle function added to ROCCC, we have added support for IP

core math functions, most notably,the support for floating point functions (ADD, SUB, MUL,

DIV). Floating point instructions are preprocessed and converted to generic multi-cycle IP

cores.

Building Lo-CIRRF for sequential loops In a sequential loop, or non-do-all node,

only one iteration is executed at a time. The compiler schedules instructions into different

execution levels in a manner similar to a do-all node. But the definition of a variable does not

have to be constrained to one level above. Multiple instructions might belong to the same

execution level and can be executed simultaneously to exploit instruction level parallelism.

The compiler utilizes predication to schedule the execution of non-do-all nodes’ instruc-

tions. Each pipeline stage is guarded by a predicator. Lo-CIRRF records predicated instruc-

To appear in International Journal of Parall Programing, Springer.
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tions in the following format:

ADD $vr4.s16, $vr3.s16, $vr2.s16, $vr1.u1

vr4 is the destination operand and vr3 and vr2 are the source operands. vr1 is the predica-

tor, which is also a source operand. Predicators are passed inside basic nodes for scheduling

purpose. A special instruction, PFW (predicator forward), is created to pass a predicator

from the current stage to the next stage, which may be or may not be in the same node:

PFW $vr2.u1, $vr1.u1

vr1 and vr2 are two predicators. The instructions guarded by vr2 are one pipeline stage

later than the ones guarded by vr1. Their types are u1, which stands for unsigned one-bit.

To convert CFG to DFG, the branch instructions of basic nodes are replaced by Boolean

instructions, whose destination operands are evaluated by this basic nodes’ successor nodes.

The back-end IR construction phases described so far translate both do-all nodes and

non-do-all loop nodes into a DFG. Essentially, the original CFG now is a DFG, in which

do-all loop nodes, if any, are connected together by non-do-all nodes. Then the compiler’s

VHDL generator emits VHDL code for the entire DFG, including buffers.

2.5 Case Study

In this case study, besides reporting the synthesis results of the gray scale transformation

example discussed in previous sections, we examine CIRRF on another application, an al-

ternative finite impulse response filter (FIR).

Figure 7 shows the original C code. In even outer iterations flag is one, while in odd outer

iterations flag is zero. Therefore the two do-all inner loops (the two highlighted regions) are

executed alternately. Each of these two inner loops is a 5-tap FIR. The upper FIR reads array

a and writes array b, while the lower FIR reads array c and writes array d. ROCCC’s front-

end performs scalar replacement, and instantiates a one-dimensional smart buffer macro and
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void alternative_fir5() { 
 int i,j, m; 
 int a[256], b[256]; 
 int c[256], d[256]; 
 int flag; 
 
 flag = 1; 
 for (m = 0; m < 10; m = m + 1) { 
    if(flag == 1) { 
       for(i = 1; i < 251; i = i + 1)  
          b[i] = (3 * a[i-1] + 5 * a[i]) + 
                  (7 * a[i+1] + 9 * a[i+2]) + 11 * a[i+3]; 
                          } 

      else            { 
       for(j = 1; j < 251; j = j + 1)  
          d[j] = (3 * c[j-1] + 5 * c[j]) +  
               (7 * c[j+1] + 9 * c[j+2]) + 11 * c[j+3]; 
                       } 

    flag = flag ^ 1;  
 } 
    return; 
} 

Fig. 7. An alternative FIR example in C. The first highlighted segment is a 5-tap FIR reading array a and writing
array b, while the second highlighted segment is a 5-tap FIR reading array c and writing array d. flag alternates the
execution of these two segments.

a one-dimensional memory write FIFO buffer macro into each inner do-all loop, as described

in Section 4.

The back-end first builds a CFG from the input. For this example, there are two do-

all loops nested inside the outer non-do-all loop. The back-end scans the whole CFG and

transforms the two inner 5-tap FIRs into data flow. Each FIR’s loop body is aggressively

pipelined, and the resulting data-path has a throughput of one iteration per clock cycle.

These two FIRs are controlled by two do-all loop controllers, as shown in Figure 8 (a). The

back-end then converts the outer loop and the rest of the CFG into a DFG by predicating all

the non-do-all nodes. We list the instructions of these nodes in Figure 8 (b). Node 2 and node

10 are the head and tail nodes of the outer loop, respectively. The first instruction of node 2,

the ior instructions, produces the predicator (vr1321) for the two instructions below it (pfw

and sle) by examining a valid output predicator from either node 1 (not shown), the first
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node 2 
[L0]   ior $vr1321 !  $vr1324,$vr1314 

[L1]    pfw $vr1322 ! $vr1321 

[L1 P] sle $vr1326!10,$vr79,$vr1321 

node 3 
[L0]  not $vr1333 ! $vr1326 

[L0]  and $vr1334 ! $vr1333, $vr1322 

[L1]  pfw $vr1320 ! $vr1334 

[L1 P] sne $vr1325!$vr78, 1, $vr1334 

node 10  
[L0]     ior $vr1311 ! $vr1328, $vr1329 

[L3 P]  xor $vr230 ! $vr78, 1, $vr1311 

[L3 P]  add  $vr233 ! $vr79, 1, $vr1311 

[L3]     pfw $vr1312 ! $vr1311 

[L2 P]  mov  $vr78 ! $vr230, $vr1312 

[L2 P]  mov $vr79 ! $vr233, $vr1312 

[L2]     pfw  $vr1313 ! $vr1312 

[L1]     pfw  $vr1314 ! $vr1313 

node 11 
[L0]   and $vr1327! $vr1326, $vr1322 

[L1]   ret $vr1327 

 

(b) 

vr1326 

vr1326 

vr1324 

vr1314 

vr1328 vr1329 

ior 

10"? pfw 

vr1314 vr1324 

vr79 

vr1326 

vr1321 

vr1322 

(c) 

Fig. 8. The DFG and IR of alternative FIR. (a) is the DFG. Node 3’s successors are two do-all loops controlled by
their loop controllers. For simplicity, we are not presenting the details of these two loops. Operands’ data types are
not shown. Node 1 through 3 and node 10 through 12 are non-do-all nodes, scheduled by predicators that are carried
by the edges. (b) The DFG IR of node 2, 3, 10 and 11. The L field is the pipeline stage (latch level) of the instruction
within its node. An instruction with a P field is predicated by its last source operand, which is the predicator. (c)
Shows node 2’s circuit, in which a solid lines carry data and a dashed lines carry predicators.

active node; or node 11, the loop tail. Figure 8 (c) depicts node 2’s circuit in detail. Guarded

by vr1321, the sle instruction asserts its destination operand when the outer loop is done, or

de-asserts its destination operand when needing to execute a new outer loop iteration. Node

2’s pfw instruction forwards a valid vr1321 to the two successor nodes, node 3 and node 11,

for their predicator evaluation. Node 3 enables one of the two FIRs by either asserting or

de-asserting vr1325, depending the value of flag (vr78). Node 10 is activated by the done

signal from one of the FIRs’ loop controller and updates the value of flag (vr230) and the

loop counter m (vr233). Node 11 indicates the completion of the whole procedure.
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Table I. Synthesis results of case study examples

gray scale FIR

datapath bitsize 16 8

memory bus bitsize 16 8

slices 318 531

clock (MHz) 59.7 100

iterations per cycle 0.5 1

Table I shows the synthesis results of the gray scale transformation example discussed in

previous sections and the alternative FIR. The target FPGA is the Xilinx xc2v8000-5 with

46592 slices. The generated VHDL is synthesized and placed-and-routed using the Xilinx

tool chain. The second and the third rows are the data-path’s bit-size and BRAM bus’s bit-

size. slices and clock are collected from place-and-route reports. The last row is the number

of do-all loop iterations executed per clock cycle. For gray scale transformation, the do-all

loop’s loop body has nested if-else statements, as shown in Figure 4. After undergoing if-

conversion, in the IR right before VHDL emission [Figure 6], the control flow is eliminated

and the resulting data flow is capable of executing one iteration each clock cycle. Notice we

configure the BRAM’s data bus (the third row) to have the same bit-size as that of the data

elements (pixels), and each iteration needs four (2x2) pixels. Though the smart buffer reuses

one column of the pixels loaded in previous iteration, it still needs two cycles to load the

remaining two new pixels. This explains why, for the gray scale transformation example, the

number of iterations per cycle is 0.5. For the alternative FIR, the VHDL generator generates

one smart buffer and one memory write FIFO buffer for each of the two do-all loops according

to the buffer representations in the IR. When either one of the two do-all loops is active,

the corresponding smart buffer exports one window of data (five elements) to the data-path

every clock cycle, and therefore the circuit executes one iteration per cycle. slices consists of

the hardware of two do-all loops (the data-path, the buffers and the controller for each FIR)

and the hardware of the non-do-all nodes, as shown in Figure 8(a).
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3 On-chip Buffers - Implementation and Evaluation

The on-chip buffer macro is one of the features of CIRRF. In [3] and [5] we introduced the

smart buffer approach to input data reuse. The smart buffer is ideally suited for operations

that involve a heavy reuse of fetched data, windowing operations on images being an obvious

example. In order to support more memory access patterns this mechanism is extended by

adding more types of FIFO buffers as described in Section 2.2. In this section we describe

the implementation of various on-chip FIFO buffer structures and report on the evaluation

of their area and speed.

3.1 Implementation of FIFO Buffers

ROCCC supports both pre-designed VHDL library FIFO buffers and compiler generated

buffers. The smart buffer falls in the later category. This section describes the three VHDL

library FIFO buffers and an improvement to the smart buffer design.

The three FIFO buffers in the ROCCC VHDL library are push stack FIFO buffer, circular

FIFO buffer and hybrid FIFO buffer. The first two are built with pure logic, while the hybrid

FIFO buffer uses BRAM for storage. They are instantiated by the compiler when generating

VHDL code. Each of these FIFOs have registered outputs - the data output and data output

assertion are synchronized together instead of having to wait one cycle after assertion for

the data output to be valid.

A template that all the library fifos follow is show in Figure 9(a): each fifo has datain,

dataout, and handshaking signal ports. Figures 9(b), 9(c), 9(d) are different implementations

based on that template.

– Push stack FIFO buffer. Shown in Figure 9(b). Items are pushed onto the top of the

stack buffer (like a real FIFO system) and popped out from the bottom.
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DATAIN

WRITE

FULL

ROCCC FIFO

DATAOUT

READ

EMPTY

(a) Library FIFO template

DATAIN
WRITE

FULL ROCCC LOGIC FIFO (push fifo buffer)

DATAOUT
READ
EMPTY

FSM Control

PUSH FIFO 
REGISTER
ARRAYWRITE 

POINTER

(b) Push stack FIFO

DATAIN
WRITE

FULL ROCCC LOGIC FIFO (circular buffer)

DATAOUT

READ

EMPTY

FSM Control

REGISTERED
OUTPUT

REGISTER
ARRAY

WRITE 
POINTER

READ 
POINTER

(c) Circular FIFO

DATAIN
WRITE

FULL ROCCC BRAM FIFO

DATAOUT

READ

EMPTY

FSM Control

DATAIN

WRITE

FULL

MINI BUFFER
(ROCCC LOGIC FIFO)

DATAOUT

READ

EMPTY

Dual Port BRAM
PORT B
WRITE

PORT A
READ

addrB addrA

dinB

addr_validB addr_validA
doutA

dout_rdyA

(d) Hybrid FIFO

Fig. 9. Library FIFO BUFFERS

– Circular FIFO buffer.Shown in Figure 9(c). It uses a single buffer and two array

pointers, write prt and read ptr, for keeping track of where the data has been written and

where it can be read from. Due to the implementation, if a size of N elements is needed

to be stored in the FIFO, N+1 elements must be allocated for the buffer.

– Hybrid FIFO buffer. Shown in Figure 9(d), its component’s layout is actually similar

to that of the logic FIFO - circular. Read and Write pointers are used, but the buffer

is implemented with BRAM instead of a set of register buffers. To improve the latency,

a mini buffer (a logic FIFO) is used to cache a few elements from the top of the FIFO.

BRAM FIFOs do not spend FPGA fabrics on storage and are area efficient.

The implementation of the smart buffer (Figure 10(a)) is designed so that if no reuse is

needed, the buffer generated acts like a FIFO. In such a case, the compiler builds a small
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cache within the smart buffer, now used as a FIFO, so it can work in the background during

pipeline stalls, memory fetch stalls, or buffer synchronization stalls. This structure is called

the ROCCC Input Array FIFO Buffer (Figure 10(b)).

(a) ROCCC Smartbuffer (b) ROCCC Input Array FIFO Buffer

Fig. 10. Smartbuffer and Input Array FIFO Buffer

A couple of assumptions that are required before designing this input array FIFO buffer:

– The input array FIFO buffer must not be used in cases where re-use is needed. If this is

done then extra logic will be used for storing the same element and thus wasting resources.

– The desired latency and acceptable area cost of the input FIFO. If an area efficient system

is desirable then the use of the smartbuffer with no-reuse (which downgrades to a FIFO)

would be best to use.

If the system can afford extra area cost to allow decrease of execution time, and no-reuse

is needed, then the input array FIFO should be generated.

3.2 Evaluation

In this section we evaluate the performance of the various FIFO implementations and their

tradeoffs.

ROCCC Lib FIFO Buffer Experimental Results The library FIFOs area and tim-

ing are as followings in Figure 11(a) and Figure 11(b), respectively. The figures suggest the
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BRAM FIFO is one of the most efficient in area and with a decent clock speed. The short-

coming with this type of FIFO is the latency is about 4 cycles (from the time when data is

inputed to when it is outputted). For the logic FIFOs the latency is about 1 cycle (which is

a good as it can get), but as can be seen in the figures the area usage is more but the clock

speed suffers. If we compare the two logic FIFOs we get that the push stack implementation

is more area efficient than the circular implementation. This is most likely due to the rout-

ing of the outputs of each of the registers in the circular buffer to the output as opposed to

routing only the last register to the output in the push stack implementation.
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Fig. 11. 3D plots of library fifos

Input Array FIFO Buffer Experimental Results Figure 12(a) and Figure 12(b) show

how the area or timing is affected by the type and depth of the buffer. Each buffer holds

4 or 8 elements (32 bits each) per line of cache. There is data for the SMB1D (smartbuffer

1-dimension), which acts as a fifo for 1 cache line. The rest are the input array FIFO buffer

implementations of different depths (depths 2, 3, and 4), which are listed horizontally on

the table. So the table lists buffers for sizes 1 to 4, but the size 1 implementation is the

smartbuffer, and the rest are the FIFOs so that one can compare the relative growth in area
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and time. On top of all the implementation we can include the buffers with some BRAM

or not, so that the synthesis tools knows to use the internal board components or port map

all I/O pins of the buffer to the I/O pines of the board. As can be seen, offers some area

discrepancy.
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Fig. 12. Input Array Buffers - Area and Timing plots

The plots show in Figure 12 exhibit a linear growth in area for different cache sizes of

2 to 4 elements. If the compilation process requires optimal area then a cache size of 1 is

considered and the smartbuffer is generated. The timing on the other hand exibits a decrease

in clock rate, faster frequency, from cache level 2 to 4 (all the input array fifos), due to the

way the cache is implemented (in this case generated with a cache built from the library

ROCCC logic fifo - stack). All things considered, if area can be sacrificed the compilation

process may consider to reduce stalls by generating the input array FIFO buffer.

4 Interface Synthesis

Pre-designed IP core represent a huge intellectual and financial wealth that high-level com-

pilation tools targeting FPGAs should not ignore. The ROCCC compiler does support the

import of pre-designed IP cores into C source codes. Most often, the interface to these cores

is timed and requires several cycles of synchronization and handshaking. These characteris-
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tics do not fit well with the C semantics. In this section we describe our approach which is

to generate a wrapper that would make the IP core look and behave like a C function. The

workflow is shown in Figure 13. Taking the high-level wrapper abstractions as input, ROCCC

generates synthesizable wrappers in VHDL separately and these wrappers are instantiated

as components in the outer circuit. Notice that an IP core is not necessarily a mandatory

element of the main untimed application C code. The grayed out part on the left only exists

when there is an IP instantiation in the source code.

 Untimed application C code with 
optional IP function calls 

IP wrappers 
in timed C 

ROCCC 

IP wrappers in 
synthesizable VHDL Synthesizable VHDL with wrapped 

IP instantiations embedded inside the 

generated data-path 

Fig. 13. ROCCC’s workflow when IP function call present. Notice that an IP core is not necessarily a mandatory
element of the main untimed application C code. The grayed out part on the left only exists when there is an IP
instantiation in the source code.

We start with an example of a 16 samples complex FFT, in Section 4.1, taken from the

Xilinx website that we use to demonstrate our approach in the remainder of this section.

4.1 An IP Core Example

The grayed out part of Figure 14 is a 16-point complex Fast Fourier Transform core (FFT16).

Pins di r and di i are respectively the real and imaginary serial data input, xk r and xk i

are the output. Ce, clock enable, must be asserted only when the core is active. Start must

be asserted two clock cycles ahead of the first pair of input data. Done is asserted when

the first pair of output data is ready. Fwd inv selects between forward or inverse FFT.

Scale mode selects from two scale-coefficients: 1/16 or 1/32. The ovflo pin indicates the
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core has generated an arithmetic overflow. mode ce input indicates when to sample fwd inv

and scale mode.

 

rs 
clk 

start 
ce 

scale_mod

e 

fwd_inv 

di_i 
di_r 

done 
ovflo 

mode_ce 

xk_i 
xk_r 

start 
ce 

scale_mode 
fwd_inv 

di_i 
di_r 

done 
ovflo 

xk_i 
xk_r 

in_token 
in_real_0 

in_imag_15 

out_token 
out_real_0 

out_imag_15 

in_wrapper out_wrapper 

 FFT16 core   

Fig. 14. The grayed out square is the FFT16 IP core. A wrappers interface consists of one or more data ports and
one token (either input or output token).

4.2 High-level Wrapper Abstraction

An IP core requires a wrapper for both its input and output interfaces. In some cores these

two interfaces have common signals that handle synchronization and handshaking. In our

implementation this role is covered by the outer circuit within which the c ore is embedded.

Figure 15 lists the code for input wrapper of FFT16’s in C. We use pointer type to

distinguish output signals from input signals in the function declaration. The input set,

which communicates with the outside, is composed of one token and several data variables.

The output wrapper, not shown here, has the same structure.Thus both the input and output

interfaces have the same structure as shown in Figure 16.

By its very nature, an interface to an embedded core must support timed activity. In

Figure 15, the function call wait cycles for(n) indicates the statements following it must be

executed n cycles later. Any statements between two adjacent wait cycles for calls must be

executed in one clock cycle. For example, FFT16’s timing protocol requires that the start
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void in_fft16   (int in_token,  /*the core’s input predicator*/ 

   int real_0, ... , int real_15,  /*16 real-component inputs*/ 

   int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/ 

   int* CE, int* SCALE_MODE, /*pointers are output*/ 

   int* START, int* FWD_INV, int* DI_R, int* DI_I) 

 { 

      int real_reg_0, ..., real_reg_15; /*internal registers to*/ 

      int imag_reg_0, ..., imag_reg_15; /*store the input data*/ 
 

      *SCALE_MODE = 1; 

      *FWD_INV = 1; 
     

      if(in_token == 1)      { 

            wait_cycles_for(1); 

            real_reg_0 = real_0; 

            ...... 

            real_reg_15 = real_15; 
  

            imag_reg_0 = imag_0; 

           …… 

            imag_reg_15 = imag_15; 
  

            *START = 1; /*assert start signal in this cycles*/ 

            *CE = 1; /*assert ce signal in this cycles*/ 
  

            wait_cycles_for(1); 

            *START = 0; /*de-assert start signal in this cycles*/ 
 

             wait_cycles_for(1); 

             *DI_R = real_reg_0; 

             *DI_I = imag_reg_0; 

 ...... 
  

             wait_cycles_for(1); 

             *DI_R = real_reg_15; 

             *DI_I = imag_reg_15; 
  

              wait_cycles_for(69);  

              *CE = 0; /*de-assert ce signal 69 cycles later*/ 

       }   } 

store the 16 pairs of 

input data into 

internal registers in 
this cycle 

export the 16 pairs 

of data into the core 

serially in 16 

consecutive cycles 

Fig. 15. Timed high-level abstraction of FFT16’s input wrapper in C.

signal be high for one clock cycle, two clock cycles ahead of the first pair of input data. In

order to describe this timing requirement, the user assigns start = 1, calls wait cycles for(1),

de-asserts start, calls wait cycles for(1) again, and begins assigning input data into the core,

as shown in Figure 15. The timing of signal Ce, which needs to be asserted for a 87-cycle

period, is expressed in the same way. Parallel to serial conversion is also describes naturally

in the timed C code. At the beginning of the function body, scale mode and fwd inv are

statically assigned to high. If desired, they can also be assigned by the wrapper’s input
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 instr.  0 instr.  1 instr.  ni predict i 

instr.  0 instr.  1 instr.  nj predict j 

instr.  0 instr.  1 instr.  nk predict k 

 

output data 

in_token 

out_token 

pipeline stage i: 

i 

pipeline stage j: 

i 

pipeline stage k: 

i 

wrapped core: original core 

in wrapper 

input data 

out wrapper 

Fig. 16. The execution model of a wrapped IP core inside the predicated data-path. From the outside, a wrapped IP
core has an identical predication mechanism as other predicated instructions.

signals at run-time in the same way as assigning start or Ce. That way, the FFT16 core can

be easily switched between a forward FFT and an inverse FFT.

The wrapped FFT16 core is instantiated in high-level C in the form of:

FFT16 (di r[0], di i[0], ......, di r[15], di i[15], *xk r[0], *xk i[0], ......, *xk r[15],

*xk i[15]);

This wrapping approach keeps the original IP core’s functionality to a great extent and

still stays at high-level. The wrapper plays a role of a bridge between the timing diagram in

an IP core’s data-sheet and the automatically generated synthesizable wrapper in VHDL.

4.3 Wrapper Synthesis

The timed high-level wrapper, the code in Figure 15 for example, is passed through the

ROCCC compiler in Figure 1 as user input. Currently, the front-end does not do any op-

timizations on IP wrappers. The back-end first gets the control flow graph (CFG) of a

wrapper, and converts the CFG into static single assignment (SSA) CFG. Starting from this

SSA-CFG, the back-end constructs the DFG [Figure 17]. First, the pre-process pass converts

wait cycles for(n) function calls into instruction WCF n, where n is an immediate operand.

When building the data-flow, the compiler replaces each WCF n into n consecutive WCF
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1 instructions. Thus a WCF instruction has a clear hardware timing meaning, passing the

predicator to the next pipeline stage. Essentially, at this point of the compilation, the wrap-

per is a timed CFG in CIRRF. The compiler forces all instructions between two adjacent

WCFs to be in the same pipeline stage, as in the pseudo-code in Figure 17.

This constraint ensures that the back-end’s pipelining consists with the high-level C’s

timing semantics, and thereby satisfies the IP core’ timing requirement.

  for( each basic node b in cfg) 

 { 

    for( each “WCF n” instruction instr in b) 

          if( n > 1) {replace instr with n “WCF 1” instructions} 
       

   assign the instructions between two adjacent WCF     

                   instructions into the same pipeline stage 
 

   replace all “WFC 1” instructions in b into “PFW $vr1, $vr2”   
  

  for( each PFW instruction instr in b)  { 

          guard all instructions at the same pipeline stage as instr  

          using instr’s source operand as the predicator 

       }  
 

   if( b ends in a conditional branch instruction instr)  

               convert instr to a Boolean instruction  

 } 
 

  { add more combinational Boolean instructions if necessary to  

   pass predicators appropriately from predecessor nodes to     

   successor nodes. 

  } 

Fig. 17. Wrapper pipelining and scheduling heuristic.

In the scheduling process, WCF instructions are replaced by PFW (predicator forward)

instructions. PFW instructions pass predicators through the data-flow, while other pipelined

instructions are guarded by predicators.

The IR, right before VHDL emission of the FFT16 input wrapper, is shown in Figure 18.

The IR records the predicated hardware actions with cycle-level timing constrains. In front

of an instruction, the L field is the latch-level, namely, at which pipeline stage the instruction
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(1) .in_fft16 
(2)  Node 1, {0} {2, 3} 
(3) [L0] mov  $vr85.u1 <- in_fft16.in_token 
(4) [L0]   mov  $vr84.u16 <- in_fft16.real_0 
      ……   

(5) [L0]  mov  $vr53.u16 <- in_fft16.imag_15 
(6) [L0]  mov  $vr52.p1 <- in_fft16.CE 
(7) [L0]  mov  $vr51.p1 <- in_fft16.SCALE_MODE 
(8) [L0]  mov  $vr50.p1 <- in_fft16.START 
(9) [L0]  mov  $vr49.p1 <- in_fft16.FWD_INV 
(10) [L0] mov  $vr48.p16 <- in_fft16.DI_R 
(11) [L0] mov  $vr47.p16 <- in_fft16.DI_I 
(12) [L0] str     0($vr51.p16) <- 1 /*configure SCALE_MODE*/ 

(13) [L0] str     0($vr49.p16) <- 1 /* configure FWD_INV*/ 
(14) [L0] sne    $vr559.u1 <- $vr85.u1, 1 /*set if not equal*/ 
 
(15) Node 2, {1} {3} 
(16) [L0]   not    $vr560.u1 <- $vr559.u1 
(17) [L87] pfw  $vr471.u1 <- $vr560.u1 
 
(18) [L87, P] mov   $vr167.u16 <- $vr84.u16,     $vr560.u1 

……  /* latch the input data to the internal registers. */ 
(19) [L87, P] mov   $vr198.u16 <- $vr53.u16,    $vr560.u1 
 
(20) [L87, P]  str  0($vr50.p1) <- 1, $vr560.u1/*assert START*/ 
(21) [L87, P]  str   0($vr52.p1) <- 1,  $vr560.u1 /*assert CE*/  
(22) [L86]      pfw $vr472.u1 <- $vr471.u1    
(23) [L86,P] str 0($vr50.p1)<-0, $vr471.u1/*de-assert START*/ 
 

(24) [L85]      pfw $vr473.u1 <- $vr472.u1 
(25) [L85, P]  str   0($vr48.p16) <- $vr167.u16,    $vr472.u1 
(26) [L85, P]  str   0($vr47.p16) <- $vr183.u16,    $vr472.u1 
…/*export the 16 pairs of data elements serially to the IP core*/ 
(27) [L70]      pfw $vr488.u1 <- $vr487.u1 
(28) [L70, P]  str   0($vr48.p16) <- $vr182.u16,    $vr487.u1 
(29) [L70, P]  str   0($vr47.p16) <- $vr198.u16,    $vr487.u1 
 
(30) [L69, E69]      pfw   $vr489.u1 <- $vr488.u1 

……   /* wait for 69 clock cycles */ 
(31) [L2]   pfw      $vr556.u1 <- $vr555.u1 
(32) [L1]   pfw      $vr557.u1 <- $vr556.u1 
(33) [L1, P] str  0($vr52.p1) <- 0,    $vr556.u1 /*de-assert CE*/ 
 
(34) Node 3, [-1], {2, 1} {4} 
(35) in_fft16._no_while_iTmp0: 
(36) [L0]   ior     $vr558.u1 <- $vr557.u1, $vr559.u1 

(37) [L0]   ret     $vr558.u1 
 

 

Fig. 18. Back-end IR of FFT16’s input wrapper. The L field is the latch-level, a P field marks a predicated instruction.
Line 12 and 13 configure the IP core. Line 18 through line 19 latch the 32 input data elements into internal registers.
Line 20 and 21 assert start and Ce, while line 23 de-asserts start (one cycle later). Ce is de-asserted in line 33, 85
cycles later. Line 24 through line 29 export the 16 pairs of input date elements into the IP serially.
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is executed. Instructions with a zero latch-level are combinational logic or even just wires if

the opcode is mov. An instruction with a Boolean P field is guarded by its predicator, which

is the last source operand. For IP wrappers, a str (store) instruction with zero address offset

is treated as a mov instruction, whose destination is the operand that the pointer is pointing

to. From line 16 through line 33, the anticipated hardware does the following: monitoring

the assertion of the predicator from outside and passing it (line 16 and 17), storing all the

16 pairs of input data into internal registers and asserting start and Ce (line 18 through

line 21), one cycle later (line 22) de-asserting start, one more cycle later (line 24) starting

feeding input data into the core pair by pair serially, after 69 more cycles waiting (line 30

through line 31), de-asserting Ce.

The compiler’s very last pass emits the VHDL code for the wrappers. The combinational

instructions become combinational logic in hardware and pipelined instructions become se-

quential logic. From the point of view of outside, the generated wrappers (the wrappers of

FFT16 in Figure 14, for example) have unified interface: one input predicator and input data

ports at input side, and one output predicator and output data ports at output side. Figure

16 shows a wrapped IP core embedded in a compiler-generated outer circuit. The wrapped

IP core has an identical interface as that of other regular predicated instructions.

4.4 Experimental Results

We have used five Xilinx IP cores, shown in Table II, in our experimental evaluation .

Cordic performs a rectangular-to-polar vector translation. The input is a vector in Cartesian

coordinate and the outputs are the magnitude and the angle in a polar coordinate. 10b/8b

decodes 10-bit symbols into 8-bit bytes and an accompanying K bit. DCT8 performs a one-

dimensional 8-point discrete cosine transform. FFT16 is the IP core shown in Figure 14.

RS encode is a (15, 13) Reed-Solomom encoder. It has a 13-symbol code block and outputs

15 symbols, including 13 original data symbols followed by two check symbols. In Table II,
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Total Area is the total circuit including the input and output interfaces and the IP core

itself. Area (slice) and Area (%) are the area utilization of the wrappers in number of slices

and in percentage with respect to the entire circuit, respectively. Additional Cycles is the

number of extra clock cycles after the addition of the wrappers. Total Cycles is the total

number of clock cycles to compute one set of input data. The input data size in DCT8 is

8-bit while its output data size is 19-bit. RS encode’s input and output data sizes are 4-bit.

Both Cordic and FFT16’s input and output sizes are 16-bit. The target architecture is the

Xilinx Virtex-II XC2V8000-5 FPGA having 46592 slices.

Table II. Synthesis results of the wrappers for five Xilinx IPs

Cordic 10b/8b DCT8 FFT16 RS encode

Input wrapper
Area(slice) 2 2 55 532 53
Area(%) 0.3 5.9 6.7 24 64
Additional cycles 1 1 1 1 1

Output wrapper
Area(slice) 2 2 426 290 9
Area(%) 0.3 5.9 52 13 11
Additional Cycles 1 1 1 1 1

Total
Total Area(slice) 663 34 817 2183 83
Clock(MHz) 123 223 68.7 45.0 96.4
Total Cycles 23 3 23 200 20

Cordic has only two inputs and two outputs and a simple handshaking protocol. 10b/8b

has an 8-bit output and a 1-bit special character indicator (the K bit). DCT8’s input wrap-

per latches all eight 16-bit input data. These are fed serially into the IP core. The wrapper

asserts the new data signal to be high during the data transmission and de-asserts it right

after the transmission, following the timing requirement of the DCT8 IP core. The output

wrapper monitors the output ready signal from the core and starts receiving the eight serial

output data elements once it is asserted high. On the next clock cycle after all the eight out-

put elements have been collected, the wrapper exports them all in parallel. FFT16 requires

similar serial to parallel and parallel to serial conversions, except that the IP imports and

exports data in pairs, one real component and one imaginary component. FFT16’s input
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timing is different in the way that start and ce (clock enable) have certain cycle-level spec-

ifications described in the previous section. The generated interface meets all those timing

requirements. The FFT16 core’s overflow output pin, OVFLO, is duplicated and exported

by the wrapper to the outside data-path for further use.

In RS encode’s output, the first 12 data elements are the data symbols that were fed to

the IP. From the point of view of the outside data-path, these data are known and do not

necessarily need to be recovered from the IP core again, and only the two check symbols,

which follow the first 12 data elements, are needed. The RS encode IP core uses output signal

info to indicate the present of the check symbols. The generated wrapper monitors info’s

de-assertion and latches the check symbols in an appropriate timing.

These five examples illustrate CIRRF’s capability to describe various timing protocols of

IP cores. ROCCC wraps these IPs so that they have unified outside interface. The execution

time overhead at both the input side and output side for these five examples is one clock

cycle. The area of wrappers accounts for 2% ˜ 64% of the corresponding wrapped cores.

Most of the wrappers area cost comes from the registers used to do serial to parallel and

parallel to serial conversion. Compared to the capacity of modern FPGAs, this overhead is

quite small.

5 Related Work

We have grouped the related work discussions in two sections addressing the intermediate

representation and the IP core wrapping respectively.

5.1 Intermediate Representations

Several projects have worked on reconfigurable compilers. These projects either target reg-

ular configurable devices and generate HDLs, or target special, coarse-grained, configurable

architectures.
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The Streams-C compiler [6] relies on the CSP model for communication between pro-

cesses, both hardware and software, and can meet relatively high-density control require-

ments. Streams-C has three distinct objects - processes, streams and signals - in the user-

input abstraction. Abstract Syntax Tree (AST) is used to partition a process into the data-

path, encompassing basic blocks and pipeline blocks, and control flow. A state machine is

generated for the control flow in the AST. User-defined input or output streams form the

interfaces with memories.

Trident [7] uses LLVM (Low Level Virtual Machine [8]) as a C/C++ front-end to produce

low-level object code. The low-level object code is transformed into a predicated IR.

SA-C’s [9] input is a single-assignment high-level synthesizable language. The SA-C com-

piler translates loops into a data-dependence and control-flow (DDCF) graph. A DDCF

graph is flattened into a token-driven data-flow graph. The DFG is eventually translated

into an abstract hardware architecture graph (AHA), which includes timing information.

The customizable hardware compiler in [10] takes the Cobble language as source and

produces the target language, Pebble. Cobble is based on a subset of C with extensions for

synchronous parallel threads and channels for synchronous communication between them.

Cobble is a timed language since it has timing semantics. Pebble is a variant of structural

VHDL. Similar to VHDL, Pebble has GENERATE statements, which provide conditional

compilation and recursive definition. Using the Visitor design pattern, the compiler’s AST

can be extended in terms of input languages, custom compile schemes and transformations.

DEFACTO [11][12] system takes C as input and generates behavioral VHDL code. The

behavioral VHDL code is then synthesized by the Synopsys Behavioral Compiler or the

Monet behavioral compiler from Mentor Graphics. DEFACTO is built on SUIF.

SPARK [13] is another C to VHDL compiler. Its optimizations include code motion,

variable renaming, etc. The transformations implemented in SPARK reduce the number
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of states in the controller FSM, and the number of cycles in the longest path. SPARK

encapsulates basic blocks into Hierarchical Task Graphs (HTGs).

The GARP [14] compiler is designed for the GARP reconfigurable architecture, and

generates GARP configuration file. The GARP compiler forms a hyperblock in a DFG by

joining all frequent-executed basic blocks of the loop body.

Pegasus [15] is the IR of the CASH compiler. CASH generates data-flow machines im-

plemented as asynchronous circuits. Pegasus decomposes a Control Flow Graph (CFG) into

hyperblocks, and hyperblocks are connected by merge and other specialized nodes.

5.2 IP wrapping

Substantial amounts of effort have been devoted on standardizing or interfacing pre-designed

IP cores. Companies and organizations tried to define IP bus standards. For example, VSIA

[16] specifies interface standards that allow IP cores to fit into virtual sockets. Cores are

designed using a standard internal interface and wrappers have to be provided to retarget

cores into other buses.

Several projects focus on bus wrapping that connects IP cores with microprocessors.

Glue logic is generated in [17] to connect processors to peripheral devices and hardware

co-processors. A prefetching technique is introduced in [18] to improve bus wrapper’s per-

formance.

A Meta-RTL is proposed in [19] that raises the abstraction level and reuse IPs by ex-

tending traditional HDLs. Meta-programming [20] is a proposed customization model for IP

wrapping using UML class diagrams.

Trident [7] is a compiler framework for floating point algorithms. The floating point units

are pre-designed IP units with known pipeline delay. Users can select floating point units

from a VHDL library.
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In [21] the authors describe a system level approach for interfacing IP blocks generated

by the behavioral synthesis tool itself. The I/O pins and timing information is fixed and

known by the tool. This information, however, is not visible at the C level and the user

cannot modify it.

6 Conclusion

We have presented CIRRF, an intermediate representation for compiling high-level languages

to reconfigurable fabrics. CIRRF is designed to support spatial computations as opposed to

temporal computations as in traditional compiler IRs. Features that distinguish CIRRF from

traditional compiler IRs include (1) Support for declaring and accessing on-chip storage, (2)

Preserving loop semantics and parameters in the IR. In addition, we have designed CIRRF

to support the seamless import of IP cores into original C source codes thereby allowing the

user to re-use a very large amount of pre-designed IP cores.

We have described two levels of CIRRF: Hi-CIRRF and Lo-CIRRF. Hi-CIRRF consists

of C code that has been augmented with macros that support the spatial computing model.

The macros are used to record information associated with buffers, pipelining, look-up tables

and special operations etc. Lo-CIRRF decomposes conventional CFGs into parallel, do-all

loop nodes, and sequential, non-do-all nodes. The loop body instructions of a do-all loop

are placed into execution levels. Each execution level is an instantiation of one iteration at

different execution phases. One or multiple consecutive execution levels are assigned into one

pipeline stage. Lo-CIRRF provides a platform for the compiler to aggressively pipeline do-all

loops. Non-do-all nodes are predicated in Lo-CIRRF and predicators are passed within and

between nodes. The CFG is therefore transformed into a DFG. We have shown, through case

studies, how CIRRF models the application examples and provides a solid foundation for

the compiler to generate efficient hardware.
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We extended CIRRF to support the automated generation of IP core wrapper. As the

input to the ROCCC system, IP wrappers are written in high-level timed C by the user.

Clock cycle delays are described as function calls and users do not have to implement any

cycle-level details in the input abstraction. CIRRF records the IP wrapper as a timed CFG

in the IR. Constrained by the delay macros, ROCCC converts the wrapper from control flow

graph to data flow graph. The compiler schedules pipelined instructions using predication.

Wrapped IP cores have unified interface compared with the outer predicated circuit that

also generated by ROCCC.

The wrappers of the IP core examples meet the various timing protocol requirements,

and unify the IP cores interface with the outer compiler-generated circuit. The results show

that the execution time and area overhead are reasonable low.
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