
AUTOMATION OF IP CORE INTERFACE GENERATION FOR RECONFIGURABLE
COMPUTING

 Zhi Guo Abhishek Mitra Walid Najjar
 Department of Electrical Engineering Department of Computer Science & Engineering

University of California, Riverside
{zguo, amitra, najjar}@cs.ucr.edu

ABSTRACT

Pre-designed IP cores for FPGAs represent a huge
intellectual and financial wealth that must be leveraged by
any high-level tool targeting reconfigurable platforms. In
this paper we describe a technique that automates the
generation of IP core interfaces allowing these to be used as
C functions transparently from within C source codes using
a reconfigurable computing compiler. We also show how
this same tool can be used to support run-time
reconfiguration on FPGAs by generating a common
wrapper that interfaces to multiple cores.

1. INTRODUCTION

Compilers for reconfigurable platforms have two major
roles: the automation of code transformations and
optimizations, and increasing the productivity of the
application developer. On the other hand, industry has
invested tremendous financial and technical efforts on pre-
designed intellectual property (IP) cores for FPGA-based
platforms that are not only very efficient but have been
thoroughly tested and verified. These IP cores come in the
form of synthesizable HDL code or even lower level
descriptions. They vary drastically with respect to their
control and timing protocol specifications, which are
intended to be interfaced to HDL-based designs.
 Compilers for FPGA-based reconfigurable systems
must therefore leverage that huge wealth of IP designs by
allowing the user to import these into high-level language
(HLL) source codes. To do so would require a wrapper
structure that would hide the timing and stateful nature of
the IP cores. It would make each core look, to the HLL
compiler, as an un-timed side-effect free function call.
 In this paper we describe a mechanism for the automatic
generation of such a wrapper from a high-level description
that is based on C with timing information. This approach is
integrated in our ROCCC compiler. Run-time
reconfiguration, where a sub-section of the circuit on an
FPGA is switched between two functions, also require a
careful and transparent interface between the static and
dynamic parts. We show how this same approach can be
used to support run-time reconfiguration.

The rest of the paper is organized as follows. Next
section reviews related work. Section three introduces our
compiler system. Section four presents our heuristic

approaches to automate IP wrapping. The tool’s support to
dynamic partial reconfiguration is presented in section five.
We validate our approaches in section six. Section seven
concludes the paper.

2. RELATED WORK

Substantial amounts of effort have been devoted on
standardizing or interfacing pre-designed IP cores.

Companies and organizations tried to define IP bus
standards. For example, VSIA [5] specifies interface
standards that allow IP cores to fit into “virtual sockets”.
Cores are designed using a standard internal interface and
wrappers have to be provided to retarget cores into other
buses. However, the current condition is that numerous
standards exist and no standard is adopted widely.
Several projects focus on bus wrapping that connects IP
cores with microprocessors. Glue logic is generated in [6]
to connect processors to peripheral devices and hardware
co-processors. A prefetching technique is introduced in [7]
to improve bus wrapper’s performance. The work in [8]
raises the abstraction level and reuse IPs by extending
traditional HDLs. A customization model for IP wrapping
using UML class diagrams is proposed in [9]. In [11] the
authors describe a system level approach for interfacing IP
blocks generated by the behavioral synthesis tool itself.
The I/O pins and timing information is fixed and known by
the tool. This information, however, is not visible at the C
level and the user cannot modify it.

Trident [10] is a compiler framework for floating point
algorithms. The floating-point units are pre-designed IP
units with known pipeline delay.

We have developed the ROCCC (Riverside Optimizing
Compiler for Configurable Computing) system. ROCCC
accepts applications written in untimed C code and
generates synthesizable VHDL code for FPGA hardware.
ROCCC also wraps IP cores when fed with wrapper
abstractions in C with timing information.

3. ROCCC SYSTEM OVERVIEW

3.1. Compiler Overview

Figure 1 shows an overview of the ROCCC framework. We
have separated the front and back ends to achieve some

modularity and eventually allow the use of other tools for
either end.

ROCCC is built on the SUIF2 [1] and Machine-SUIF
[2] platforms. It compiles C code into VHDL code for
mapping onto the FPGA fabric of a CSoC device.
Information about loops and memory accesses is visible in
front-end intermediate representation (IR), Hi-CIRRF
(Compiler Intermediate Representation for Reconfigurable
Fabrics). Accordingly, most loop level analysis and
optimizations are done at this level. ROCCC performs a
very extensive set of loop analysis and transformations,
aiming at maximizing parallelism and minimizing area.

Machine-SUIF is an infrastructure for constructing the
back end of a compiler. Machine-SUIF's existing passes,
like the Control Flow Graph (CFG) library, Data Flow
Analysis library and Static Single Assignment library [3]
provide useful optimization and analysis tools for our
compilation system. We build the back-end using Machine-
SUIF. The compiler’s back-end converts the input from
control flow graph (CFG) into data flow graph (DFG), and
generates synthesizable VHDL codes. We rely on
commercial tools to synthesize the generated VHDL codes.

3.2. Pipelining and Scheduling

For an original CFG, we categorize basic nodes into to two
types: do-all nodes (parallel) and non-do-all nodes
(sequential).

For do-all nodes, ROCCC exploits both instruction-
level and loop-level parallelisms and aggressively pipelines

the loop body to be able to execute multiple loops
simultaneously [4].

A non-do-all basic node either belongs to a non-do-all
loop or does not belong to any loop at all. The compiler
utilizes predication to schedule the execution of non-do-all
nodes’ instructions. A predicator guards each pipeline
stage. Multiple instructions might belong to the same
pipeline stage and can be executed simultaneously.
Predicators are passed inside basic nodes by PFW
(predicator forward) instructions.

For the IP cores that are fully pipelined with compile-
time known number of pipeline stages, ROCCC can simply
synchronize its own pipelined circuit with the IP by adding
more latches. In this paper, however, we discuss the most
general cases, in which the IP cores use handshaking
signals to communicate with external interface.

4. INTERFACE SYNTHESIS

As introduced in the system overview section, the ROCCC
compiler generates synthesizable VHDL code for
applications written in untimed C. In this section, we
present our approach using the ROCCC system to wrap IP
cores. The workflow is shown in Figure 2. Taking the high-
level wrapper abstractions as input, ROCCC generates
synthesizable wrappers in VHDL separately and these
wrappers are instantiated as components in the outer circuit.
We start with a 16 samples complex FFT IP core, taken
from the Xilinx website that we use to demonstrate out
approach in this paper.

4.1. An IP Core Example

The grayed out part of Figure 3 is a 16-point discrete fast

 loop-level analyses,

transformations and

optimizations

user-input

C

operation-level analyses,

transformations and

optimizations

intermediate

C

front-end

synthesizable

VHDL
Hi-CIRRF

back-end

Lo-CIRRF

Figure 1 – ROCCC system overview.

Figure 2 – ROCCC’s workflow when IP function call
present. Notice that an IP core is not necessarily a
mandatory element of the main un-timed application C
code. The grayed out part on the left only exists when
there is an IP instantiation in the source code.

Figure 3 - FFT16 and its wrappers

Fourier transform core (FFT16). Pins di_r and di_i are
respectively the real and imaginary serial data input; xk_r
and xk_i are the output. Ce, clock enable, must be asserted
only when the core is active. Start must be asserted two
clock cycles ahead of the first pair of input data. Done is
asserted when the first pair of output data is ready. Fwd_inv
selects between forward or inverse FFT. Scale_mode
selects from two scale-coefficients: 1/16 or 1/32. The ovflo
pin indicates the core has generated an arithmetic overflow.
Mode_ce input indicates when to sample fwd_inv and
scale_mode.

4.2. High-level Wrapper Abstraction

An IP core requires a wrapper for both its input and output
interfaces. In some cores these two interfaces have common
signals that handle synchronization and handshaking. In our
implementation the outer circuit within which the core is
embedded covers this role.

Figure 4 lists the code for the input wrapper of FFT16
C. We use pointer type to distinguish output signals from
input signals in the function declaration. The input set,
which communicates with the outside, is composed of one
token and several data variables. The output wrapper, not
shown here, has the same structure. Thus both the input and
output interfaces have the same structure as shown in
Figure 3.

By its very nature, an interface to an embedded core
must support timed activity. We thereby call it timed C. It
can be written either by the end user or by the IP designer
and possibly modified by the end user. In Figure 4, the
function call wait_cycles_for(n) indicates the statements
behind it must be executed n cycles later. Any statements
between two adjacent wait_cycles_for function calls must
be executed in one clock cycle. For example, FFT16’s
timing protocol requires that start signal needs to be high
for one clock cycle, two clock cycles ahead of the first pair
of input data. In order to describe this timing requirement,
the user just assigns start to one, calls wait_cycles_for(1),
de-asserts start, calls wait_cycles_for(1) again, and begins
assigning input data into the core, as shown in Figure 4.
The timing of signal Ce, which needs to be asserted for a
87-cycle period, are expressed in the same way. Parallel to
serial converse is also describes naturally in the timed C
code. At the beginning of the function body, scale_mode
and fwd_inv are statically assigned to high. If desired, they
can also be assigned by the wrapper’s input signals at run-
time in the same way as assigning start or ce. That way, the
FFT16 core can be easily switched between a forward FFT
and an inverse FFT. This wrapping approach keeps the
original IP core’s functionality to a great extent and still
stays at high-level. This wrapper plays a role of a bridge
between the timing diagram in an IP core’s data-sheet and
the automatically generated synthesizable wrapper in
VHDL.

void in_fft16 (int in_token, /*the core’s input predicator*/

 int real_0, ... , int real_15, /*16 real-component inputs*/

 int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/

 int* CE, int* SCALE_MODE, /*pointers are output*/

 int* START, int* FWD_INV, int* DI_R, int* DI_I)

 {

 int real_reg_0, ..., real_reg_15; /*internal registers to*/

 int imag_reg_0, ..., imag_reg_15; /*store the input data*/

 *SCALE_MODE = 1;

 *FWD_INV = 1;

 if(in_token == 1) {

 wait_cycles_for(1);

 real_reg_0 = real_0;

 real_reg_15 = real_15;

 imag_reg_0 = imag_0;

 imag_reg_15 = imag_15;

 *START = 1; /*assert start signal in this cycles*/

 *CE = 1; /*assert ce signal in this cycles*/

 wait_cycles_for(1);

 *START = 0; /*de-assert start signal in this cycles*/

 wait_cycles_for(1);

 *DI_R = real_reg_0;

 *DI_I = imag_reg_0;

 wait_cycles_for(1);

 *DI_R = real_reg_15;

 *DI_I = imag_reg_15;

 wait_cycles_for(69);

 *CE = 0; /*de-assert ce signal 69 cycles later*/

 } }

store the 16 pairs of

input data into

internal registers in

this cycle

export the 16 pairs

of data into the core

serially in 16

consecutive cycles

Figure 4 - Timed high-level abstraction of FFT16's input

wrapper in C. Comments explain the code.

 for(each basic node b in cfg)

 {

 for(each “WCF n” instruction instr in b)

 if(n > 1) {replace instr with n “WCF 1” instructions}

 assign the instructions between two adjacent WCF

 instructions into the same pipeline stage

 replace all “WFC 1” instructions in b into “PFW $vr1, $vr2”

 for(each PFW instruction instr in b) {

 guard all instructions at the same pipeline stage as instr

 using instr’s source operand as the predicator

 }

 if(b ends in a conditional branch instruction instr)

 convert instr to a Boolean instruction

 }

 { add more combinational Boolean instructions if necessary to

 pass predicators appropriately from predecessor nodes to

 successor nodes.

 }
Figure 5 – Wrapper pipelining and scheduling heuristic

4.3. Wrapper Synthesis

The timed high-level wrapper, the code in Figure 4 for
example, is passed through the ROCCC compiler in Figure

1 as user input. Currently, the front-end does not do any
optimizations on IP wrappers. The back-end first gets the
control flow graph (CFG) of a wrapper, and converts the
CFG into static single assignment (SSA) CFG. Starting
from this SSA-CFG, the back-end constructs the DFG
[Figure 5]. First, the pre-process pass converts
wait_cycles_for(n) function calls into instruction “WCF n”,
where n is an immediate operand. When building the data-
flow, the compiler replaces each “WCF n” into n
consecutive “WCF 1” instructions. Thus a WCF instruction
has a clear hardware timing meaning, passing the predicator
to the next pipeline stage. The compiler enforces all
instructions between two adjacent WCFs to be at the same
pipeline stage, as in the pseudo-code shown in Figure 5.
This constraint ensures that the back-end’s pipelining
consists with the high-level C’s timing semantics, and
thereby satisfies the IP cores’ timing requirement. In
scheduling process, WCF instructions are replaced by PFW
(predicator forward) instructions. PFW instructions pass
predicators through the data-flow, while predicators guard
other pipelined instructions.

The IR, right before VHDL emission of the FFT16
input wrapper, is shown in Figure 6. The IR records the
predicated hardware actions with cycle-level timing
constrains. In front of an instruction, the L field is the latch-
level, namely, at which pipeline stage the instruction is
executed. Instructions with a zero latch-level are
combinational logic or even just wires if the opcode is mov.
A predicator guards an instruction with a Boolean P field,
which is the last source operand. For IP wrappers, a str
(store) instruction with zero address offset is treated as a
mov instruction, whose destination is the operand that the
pointer is pointing to. From line 16 through line 33, the
anticipated hardware does the following: monitoring the
assertion of the predicator from outside and passing it (line
16 and 17), storing all the 16 pairs of input data into

(1) .in_fft16
(2) Node 1, {0} {2, 3}
(3) [L0] mov $vr85.u1 <- in_fft16.in_token
(4) [L0] mov $vr84.u16 <- in_fft16.real_0
 ……
(5) [L0] mov $vr53.u16 <- in_fft16.imag_15
(6) [L0] mov $vr52.p1 <- in_fft16.CE
(7) [L0] mov $vr51.p1 <- in_fft16.SCALE_MODE
(8) [L0] mov $vr50.p1 <- in_fft16.START
(9) [L0] mov $vr49.p1 <- in_fft16.FWD_INV
(10) [L0] mov $vr48.p16 <- in_fft16.DI_R
(11) [L0] mov $vr47.p16 <- in_fft16.DI_I
(12) [L0] str 0($vr51.p16) <- 1 /*configure SCALE_MODE*/
(13) [L0] str 0($vr49.p16) <- 1 /* configure FWD_INV*/
(14) [L0] sne $vr559.u1 <- $vr85.u1, 1 /*set if not equal*/

(15) Node 2, {1} {3}
(16) [L0] not $vr560.u1 <- $vr559.u1
(17) [L87] pfw $vr471.u1 <- $vr560.u1

(18) [L87, P] mov $vr167.u16 <- $vr84.u16, $vr560.u1
…… /* latch the input data to the internal registers. */
(19) [L87, P] mov $vr198.u16 <- $vr53.u16, $vr560.u1

(20) [L87, P] str 0($vr50.p1) <- 1, $vr560.u1/*assert START*/
(21) [L87, P] str 0($vr52.p1) <- 1, $vr560.u1 /*assert CE*/
(22) [L86] pfw $vr472.u1 <- $vr471.u1
(23) [L86,P] str 0($vr50.p1)<-0, $vr471.u1/*de-assert START*/

(24) [L85] pfw $vr473.u1 <- $vr472.u1
(25) [L85, P] str 0($vr48.p16) <- $vr167.u16, $vr472.u1
(26) [L85, P] str 0($vr47.p16) <- $vr183.u16, $vr472.u1
…/*export the 16 pairs of data elements serially to the IP core*/
(27) [L70] pfw $vr488.u1 <- $vr487.u1
(28) [L70, P] str 0($vr48.p16) <- $vr182.u16, $vr487.u1
(29) [L70, P] str 0($vr47.p16) <- $vr198.u16, $vr487.u1

(30) [L69, E69] pfw $vr489.u1 <- $vr488.u1
…… /* wait for 69 clock cycles */
(31) [L2] pfw $vr556.u1 <- $vr555.u1
(32) [L1] pfw $vr557.u1 <- $vr556.u1
(33) [L1, P] str 0($vr52.p1) <- 0, $vr556.u1 /*de-assert CE*/

(34) Node 3, [-1], {2, 1} {4}
(35) in_fft16._no_while_iTmp0:
(36) [L0] ior $vr558.u1 <- $vr557.u1, $vr559.u1
(37) [L0] ret $vr558.u1

The L field is the latch-level, a P field marks a predicated
instruction. Line 12 and 13 configure the IP core. Line 18
through line 19 latch the 32 input data elements into internal
registers. Line 20 and 21 assert start and ce, while line 23 de-
asserts start (one cycle later). Ce is de-asserted in line 33, 85

Figure 6 - Back-end IR of FFT16's input wrapper

Figure 7 – The execution model of a wrapped IP inside
the predicated data-path. A core’s wrapper also consumes
and produces predicators. From the point of view of
outside, a wrapped IP core has an identical predication
mechanism as other regular predicated instructions.

internal registers and asserting start and ce (line 18 through
line 21), one cycle later (line 22) de-asserting start, one
more cycle later (line 24) starting feeding input data into the
core pair by pair serially (line 25 through line 29), after 69
more cycles waiting (line 30 through line 31), de-asserting
Ce. The compiler’s very last pass emits the VHDL code for
the wrappers. The combinational instructions become
combinational logic in hardware and pipelined instructions
become sequential logic. From the point of view of outside,
the generated wrappers (the wrappers of FFT16 in Figure 3,
for example) have unified interface: input data ports and
one input predicator at input side, and output data ports and
one output predicator at output side. Figure 7 shows a
wrapped IP core embedded in a compiler-generated outer
circuit. The wrapped IP core has an identical interface as
that of other regular predicated instructions.

5. DYNAMIC PARTIAL RECONFIGURATION

We also use our tool to support dynamic partial
reconfiguration. Dynamic partial reconfiguration at runtime
allows re-use of FPGA resources to obtain a plurality of
functionality, from the same hardware block, but at
different times, and also without affecting the static parts of
the device. The compiler generates the wrappers for each IP
cores that need to be dynamically reconfigured.

The design flow involves the generation of the static
logic along with partial reconfigurable logic (wrapped IP
cores). Thereafter the FPGA is floor planned to allocate
pre-determined areas for the dynamic logic and static logic
respectively. The area dedicated to the dynamic logic, also
known as the PR-Block (Partial Reconfigurable Block), is
such that it may allow for the largest IP block to be placed
and routed within. I/O and communication of the static
logic with the PR-block takes place using certain pre-
configured CLBs known as slice-macros. These slice-
macros need to be manually placed around the boundary of
the PR-block. We have employed the Xilinx PlanAhead
visual floorplanning tool for iterative design and
placement. The final stage of the partial reconfigurable
flow generates ‘N’ static bitstreams and ‘N’ partial
bitstreams, where ‘N’ is the number of different IP blocks
to be configured in the PR-Block. Each of the ‘N’ static
bitstream contains the static design with the partial-
reconfigurable block numbered ‘N’ already programmed
into the stream, while each of the ‘N’ partial bitstreams
contains the logic to just program the PR-Block with the
functionality of the ‘N’th IP core. Thus the system may
choose to start with one of the static bitstreams during
power-up and thereafter reprogram the PR-Block with the
desired functionality.

6. EXPERIMENTAL RESULTS

We have used four Xilinx IP cores, shown in Table 1, in
our experimental evaulation. Cordic performs a
rectangular-to-polar vector translation. The input is a
vector (X, Y) in a Cartesian coordinate and the IP’s outputs
are the magnitude and the angle in a polar coordinate.
DCT8 performs a one-dimensional 8-point discrete cosine
transform. FFT16 is the IP core shown in Figure 3. RS
encode is a (15, 13) Reed-Solomom encoder. It has a 13-
symbol code block and outputs 15 symbols, including 13
original data symbols followed by two check symbols. In
Table 1, Total area is the total circuit including the input
and output interfaces, and the IP core itself. Area (slice)
and Area (%) are the area utilization in the number of slice
and in percentage with respect to the entire circuit,
respectively. Addtl Cycl is the number of extra clock cycles
after the addition of the wrappers. Total cycle is the total

number of clock cycles to compute on one set of input
data. DCT8’s input data size is 8-bit while its output data
size is 19-bit. RS encode’s input and output data sizes are
4-bit. Both Cordic and FFT16’s input and output sizes are
16-bit. The target architecture is the Xilinx Virtex-II
XC2V8000-5 FPGA having 46592 slices.

Cordic has only two inputs and two outputs, and a
simple handshaking protocol. DCT8's input wrapper
latches all eight 16-bit input data. These are fed serially
into the IP core. The wrapper asserts the new_data signal
to be high during the data transmission and de-asserts it
right after the transmission, following the timing
requirement of the DCT8 IP core. The output wrapper
monitors the output_ready signal from the core and starts
receiving the eight serial output data elements once it is
asserted high. On the next clock cycle after all the eight
output elements have been collected, the wrapper exports
them all in parallel. FFT16 requires similar serial to
parallel and parallel to serial conversions, except that the
IP imports and exports data in pairs, one real component

Table 1 - Results of the wrappers for four Xilinx IPs
 Cordic DCT8 FFT16 RS encode

area (slice) 2 55 532 53
area (%) 0.3 6.7 24 64

input
wrapper

addtl cycl. 1 1 1 1
area (slice) 2 426 290 9

area (%) 0.3 52 13 11
output

wrapper

addtl cycl. 1 1 1 1
area (slice) 663 817 2183 83

clock (MHz) 123 68.7 45.0 96.4
total area

total cycles 23 23 200 20

and one imaginary component. FFT16's input timing is
different in the way that start and ce (clock enable) have
certain cycle-level specifications described in the previous
section. The generated interface meets all those timing
requirements. The FFT16 core’s overflow output pin,
OVFLO, is duplicated and exported by the wrapper to the
outside data-path for further use. In RS_encode’s output,
the first 13 data elements are the data symbols that were
fed into the IP. From the point of view of the outside data-
path, these data are known and do not necessarily need to
be recovered from the IP core again, and only the two
check symbols, which follow the first 13 data elements, are
needed. The RS_encode IP core utilizes output signal info
to indicate the present of the check symbols. The generated
wrapper monitors info’s de-assertion and latches the check
symbols in an appropriate timing.

ROCCC wraps these IPs so that they have unified
outside interface. These four examples illustrate ROCCC's
capability to meet various timing protocols of IP cores.
The execution time overhead at both the input side and
output side for these four examples is one clock cycle. The
area of wrappers accounts for 2% ~ 64% of the
corresponding wrapped cores. Most of the wrappers’ area
cost comes from the registers used to do serial to parallel
and parallel to serial conversion. Compared to modern
FPGAs’ capacity, this overhead is quite small.

We measured the time required to load a static
bitstream as well as the time required for programming
partial bitstreams on the FPGA [Table 2]. JTAG and
SelectMAP are two interfaces for reconfiguration of the
FPGA. Since the partial bitstreams are smaller in size than
the static bitstreams, a partial reconfiguration can be
achieved in a shorter time vis-à-vis complete
reconfiguration.

7. CONCLUSION

Increasing silicon capacity requires both higher level design
methods and easier intellectual property core reuse.
ROCCC, a reconfigurable computing compiler, is designed
to take applications in C as input and generate RTL VHDL
code. In this paper, we introduced one aspect of ROCCC’s
functionalities, the IP wrapper generation.

As the input to the ROCCC system, users write IP
wrappers in high-level timed C. Clock cycle delays are
described as function calls and users do not have to
implement any cycle-level details in the input abstraction.
Constrained by the delay function calls, ROCCC converts
the wrapper from control flow graph to data flow graph.
The compiler schedules pipelined instructions using
predication. Wrapped IP cores have identical interface
compared with the outer predicated circuit that also
generated by ROCCC.

The wrappers of the IP core examples meet the various
timing protocol requirements, and unify the IP cores’
interface with the outer compiler-generated circuit. The
results show that the execution time and area overhead are
reasonable low. We also show the same tool can be used to
support run-time reconfiguration on FPGAs by generating
one wrapper that interfaces to multiple cores.

8. REFERENCES

[1] SUIF Compiler System. http://suif.stanford.edu, 2006

[2] Machine-SUIF. 2006
http://www.eecs.harvard.edu/hube/research/machsuif.html

[3] G. Holloway. The Machine-SUIF Static Single Assignment
Library. Division of Engineering and Applied Sciences,
Harvard University 2002.

[4] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized
Generation of Data-path from C Codes for FPGAs, Int.
ACM/IEEE Design, Automation and Test in Europe
Conference (DATE 2005). Munich, Germany, March, 2005.

[5] Virtual Socket Interface Association (VSIA),
http://www.vsi.org/ , 2006

[6] P.Chou, G. Ortega, G. Borriello. Interface co-synthesis
techniques for embedded systems, Int. Conf. on Computer
Aided Design, San Jose, USA,1995.

[7] R. Lysecky and F. Vahid. Prefetching for Improved Bus
Wrapper Performance in Cores, ACM Transactions on
Design Automation of Electronic Systems, Vol. 7, No. 1, pp.
58-90, January 2002.

[8] J. Zhu. MetaRTL: Raising the abstraction level of RTL
design, Design, Automation, and Test in Europe, Munich,
Germany, 2001

[9] V. Stuikys, R. Damasevicius. Soft IP Customisation Model
Based on Metaprogramming Techniques, Informatica, Lith.
Acad. Sci. 15(1): 111-126 (2004)

[10] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, M. Gokhale.
Trident: An FPGA Compiler Framework for Floating-Point
Algorithms, int. Conference on Field Programmable Logic
and Applications (FPL 2005). Finland, 2005.

[11] R. Mukherjee, A. Jones, P. Banerjee, System Level
Synthesis of Multiple IP Blocks in the Behavioral Symthesis
Tool, Int. Conf. on Parallel and Distributed Computing and
Systems (PDCS), November 2003.

Table 2 - Reconfiguration time for static and partial
reconfiguration on a Xilinx Virtex-2 PRO (XC2VP30)

design type
(Static/Partial)

of
slices

Btstrm
size

(Kbits)

prgrm.
time

JTAG(ms)

program. time
SelectMAP(ms)

static conf 13696 1415 2318 48
DCT8 prtl recnf 378 216 354 7.3
FFT8 prtl recnf 512 426 698 14.3

