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ABSTRACT 

Pre-designed IP cores for FPGAs represent a huge 
intellectual and financial wealth that must be leveraged by 
any high-level tool targeting reconfigurable platforms.  In 
this paper we describe a technique that automates the 
generation of IP core interfaces allowing these to be used as 
C functions transparently from within C source codes using 
a reconfigurable computing compiler. We also show how 
this same tool can be used to support run-time 
reconfiguration on FPGAs by generating a common 
wrapper that interfaces to multiple cores. 

1. INTRODUCTION  

Compilers for reconfigurable platforms have two major 
roles: the automation of code transformations and 
optimizations, and increasing the productivity of the 
application developer. On the other hand, industry has 
invested tremendous financial and technical efforts on pre-
designed intellectual property (IP) cores for FPGA-based 
platforms that are not only very efficient but have been 
thoroughly tested and verified. These IP cores come in the 
form of synthesizable HDL code or even lower level 
descriptions. They vary drastically with respect to their 
control and timing protocol specifications, which are 
intended to be interfaced to HDL-based designs. 
 Compilers for FPGA-based reconfigurable systems 
must therefore leverage that huge wealth of IP designs by 
allowing the user to import these into high-level language 
(HLL) source codes. To do so would require a wrapper 
structure that would hide the timing and stateful nature of 
the IP cores. It would make each core look, to the HLL 
compiler, as an un-timed side-effect free function call. 
 In this paper we describe a mechanism for the automatic 
generation of such a wrapper from a high-level description 
that is based on C with timing information. This approach is 
integrated in our ROCCC compiler. Run-time 
reconfiguration, where a sub-section of the circuit on an 
FPGA is switched between two functions, also require a 
careful and transparent interface between the static and 
dynamic parts. We show how this same approach can be 
used to support run-time reconfiguration. 

The rest of the paper is organized as follows. Next 
section reviews related work. Section three introduces our 
compiler system. Section four presents our heuristic 

approaches to automate IP wrapping. The tool’s support to 
dynamic partial reconfiguration is presented in section five. 
We validate our approaches in section six. Section seven 
concludes the paper. 

2. RELATED WORK 

Substantial amounts of effort have been devoted on 
standardizing or interfacing pre-designed IP cores. 

Companies and organizations tried to define IP bus 
standards. For example, VSIA [5] specifies interface 
standards that allow IP cores to fit into “virtual sockets”. 
Cores are designed using a standard internal interface and 
wrappers have to be provided to retarget cores into other 
buses. However, the current condition is that numerous 
standards exist and no standard is adopted widely.  
Several projects focus on bus wrapping that connects IP 
cores with microprocessors. Glue logic is generated in [6] 
to connect processors to peripheral devices and hardware 
co-processors. A prefetching technique is introduced in [7] 
to improve bus wrapper’s performance. The work in [8] 
raises the abstraction level and reuse IPs by extending 
traditional HDLs. A customization model for IP wrapping 
using UML class diagrams is proposed in [9]. In [11] the 
authors describe a system level approach for interfacing IP 
blocks generated by the behavioral synthesis tool itself. 
The I/O pins and timing information is fixed and known by 
the tool. This information, however, is not visible at the C 
level and the user cannot modify it. 

Trident [10] is a compiler framework for floating point 
algorithms. The floating-point units are pre-designed IP 
units with known pipeline delay. 

We have developed the ROCCC (Riverside Optimizing 
Compiler for Configurable Computing) system. ROCCC 
accepts applications written in untimed C code and 
generates synthesizable VHDL code for FPGA hardware. 
ROCCC also wraps IP cores when fed with wrapper 
abstractions in C with timing information. 

3. ROCCC SYSTEM OVERVIEW 

3.1. Compiler Overview 

Figure 1 shows an overview of the ROCCC framework. We 
have separated the front and back ends to achieve some 



modularity and eventually allow the use of other tools for 
either end. 

ROCCC is built on the SUIF2 [1] and Machine-SUIF 
[2] platforms. It compiles C code into VHDL code for 
mapping onto the FPGA fabric of a CSoC device. 
Information about loops and memory accesses is visible in 
front-end intermediate representation (IR), Hi-CIRRF 
(Compiler Intermediate Representation for Reconfigurable 
Fabrics). Accordingly, most loop level analysis and 
optimizations are done at this level. ROCCC performs a 
very extensive set of loop analysis and transformations, 
aiming at maximizing parallelism and minimizing area. 

Machine-SUIF is an infrastructure for constructing the 
back end of a compiler. Machine-SUIF's existing passes, 
like the Control Flow Graph (CFG) library, Data Flow 
Analysis library and Static Single Assignment library [3] 
provide useful optimization and analysis tools for our 
compilation system. We build the back-end using Machine-
SUIF. The compiler’s back-end converts the input from 
control flow graph (CFG) into data flow graph (DFG), and 
generates synthesizable VHDL codes. We rely on 
commercial tools to synthesize the generated VHDL codes.  

3.2. Pipelining and Scheduling 

For an original CFG, we categorize basic nodes into to two 
types: do-all nodes (parallel) and non-do-all nodes 
(sequential).  

For do-all nodes, ROCCC exploits both instruction-
level and loop-level parallelisms and aggressively pipelines 

the loop body to be able to execute multiple loops 
simultaneously [4]. 

A non-do-all basic node either belongs to a non-do-all 
loop or does not belong to any loop at all. The compiler 
utilizes predication to schedule the execution of non-do-all 
nodes’ instructions. A predicator guards each pipeline 
stage. Multiple instructions might belong to the same 
pipeline stage and can be executed simultaneously. 
Predicators are passed inside basic nodes by PFW 
(predicator forward) instructions. 

For the IP cores that are fully pipelined with compile-
time known number of pipeline stages, ROCCC can simply 
synchronize its own pipelined circuit with the IP by adding 
more latches. In this paper, however, we discuss the most 
general cases, in which the IP cores use handshaking 
signals to communicate with external interface.  

4. INTERFACE SYNTHESIS 

As introduced in the system overview section, the ROCCC 
compiler generates synthesizable VHDL code for 
applications written in untimed C. In this section, we 
present our approach using the ROCCC system to wrap IP 
cores. The workflow is shown in Figure 2. Taking the high-
level wrapper abstractions as input, ROCCC generates 
synthesizable wrappers in VHDL separately and these 
wrappers are instantiated as components in the outer circuit.  
We start with a 16 samples complex FFT IP core, taken 
from the Xilinx website that we use to demonstrate out 
approach in this paper. 

4.1. An IP Core Example 

The grayed out part of Figure 3 is a 16-point discrete fast 
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Figure 1 – ROCCC system overview. 

 
Figure 2 – ROCCC’s workflow when IP function call 
present. Notice that an IP core is not necessarily a 
mandatory element of the main un-timed application C 
code. The grayed out part on the left only exists when 
there is an IP instantiation in the source code. 

 
Figure 3 - FFT16 and its wrappers 



Fourier transform core (FFT16). Pins di_r and di_i are 
respectively the real and imaginary serial data input; xk_r 
and xk_i are the output. Ce, clock enable, must be asserted 
only when the core is active. Start must be asserted two 
clock cycles ahead of the first pair of input data. Done is 
asserted when the first pair of output data is ready. Fwd_inv 
selects between forward or inverse FFT. Scale_mode 
selects from two scale-coefficients: 1/16 or 1/32. The ovflo 
pin indicates the core has generated an arithmetic overflow.  
Mode_ce input indicates when to sample fwd_inv and 
scale_mode. 

4.2. High-level Wrapper Abstraction 

An IP core requires a wrapper for both its input and output 
interfaces. In some cores these two interfaces have common 
signals that handle synchronization and handshaking. In our 
implementation the outer circuit within which the core is 
embedded covers this role.  

Figure 4 lists the code for the input wrapper of FFT16 
C. We use pointer type to distinguish output signals from 
input signals in the function declaration. The input set, 
which communicates with the outside, is composed of one 
token and several data variables. The output wrapper, not 
shown here, has the same structure. Thus both the input and 
output interfaces have the same structure as shown in 
Figure 3. 

By its very nature, an interface to an embedded core 
must support timed activity. We thereby call it timed C. It 
can be written either by the end user or by the IP designer 
and possibly modified by the end user. In Figure 4, the 
function call wait_cycles_for(n) indicates the statements 
behind it must be executed n cycles later. Any statements 
between two adjacent wait_cycles_for function calls must 
be executed in one clock cycle. For example, FFT16’s 
timing protocol requires that start signal needs to be high 
for one clock cycle, two clock cycles ahead of the first pair 
of input data. In order to describe this timing requirement, 
the user just assigns start to one, calls wait_cycles_for(1), 
de-asserts start, calls wait_cycles_for(1) again, and begins 
assigning input data into the core, as shown in Figure 4. 
The timing of signal Ce, which needs to be asserted for a 
87-cycle period, are expressed in the same way. Parallel to 
serial converse is also describes naturally in the timed C 
code. At the beginning of the function body, scale_mode 
and fwd_inv are statically assigned to high. If desired, they 
can also be assigned by the wrapper’s input signals at run-
time in the same way as assigning start or ce. That way, the 
FFT16 core can be easily switched between a forward FFT 
and an inverse FFT. This wrapping approach keeps the 
original IP core’s functionality to a great extent and still 
stays at high-level. This wrapper plays a role of a bridge 
between the timing diagram in an IP core’s data-sheet and 
the automatically generated synthesizable wrapper in 
VHDL. 

void in_fft16   (int in_token,  /*the core’s input predicator*/ 

   int real_0, ... , int real_15,  /*16 real-component inputs*/ 

   int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/ 

   int* CE, int* SCALE_MODE, /*pointers are output*/ 

   int* START, int* FWD_INV, int* DI_R, int* DI_I) 

 { 

      int real_reg_0, ..., real_reg_15; /*internal registers to*/ 

      int imag_reg_0, ..., imag_reg_15; /*store the input data*/ 
 

      *SCALE_MODE = 1; 

      *FWD_INV = 1; 
     

      if(in_token == 1)      { 

            wait_cycles_for(1); 

            real_reg_0 = real_0; 

            ...... 

            real_reg_15 = real_15; 
  

            imag_reg_0 = imag_0; 

           ...... 

            imag_reg_15 = imag_15; 
  

            *START = 1; /*assert start signal in this cycles*/ 

            *CE = 1; /*assert ce signal in this cycles*/ 
  

            wait_cycles_for(1); 

            *START = 0; /*de-assert start signal in this cycles*/ 
 

             wait_cycles_for(1); 

             *DI_R = real_reg_0; 

             *DI_I = imag_reg_0; 

 ...... 
  

             wait_cycles_for(1); 

             *DI_R = real_reg_15; 

             *DI_I = imag_reg_15; 
  

              wait_cycles_for(69);  

              *CE = 0; /*de-assert ce signal 69 cycles later*/ 

       }   } 

store the 16 pairs of 

input data into 

internal registers in 

this cycle 

export the 16 pairs 

of data into the core 

serially in 16 

consecutive cycles 

 
Figure 4 - Timed high-level abstraction of FFT16's input 

wrapper in C. Comments explain the code. 

  for( each basic node b in cfg) 

 { 

    for( each “WCF n” instruction instr in b) 

          if( n > 1) {replace instr with n “WCF 1” instructions} 
       

   assign the instructions between two adjacent WCF     

                   instructions into the same pipeline stage 
 

   replace all “WFC 1” instructions in b into “PFW $vr1, $vr2”   
  

  for( each PFW instruction instr in b)  { 

          guard all instructions at the same pipeline stage as instr  

          using instr’s source operand as the predicator 

       }  
 

   if( b ends in a conditional branch instruction instr)  

               convert instr to a Boolean instruction  

 } 
 

  { add more combinational Boolean instructions if necessary to  

   pass predicators appropriately from predecessor nodes to     

   successor nodes. 

  }  
Figure 5 – Wrapper pipelining and scheduling heuristic  



4.3. Wrapper Synthesis 

The timed high-level wrapper, the code in Figure 4 for 
example, is passed through the ROCCC compiler in Figure 

1 as user input. Currently, the front-end does not do any 
optimizations on IP wrappers. The back-end first gets the 
control flow graph (CFG) of a wrapper, and converts the 
CFG into static single assignment (SSA) CFG. Starting 
from this SSA-CFG, the back-end constructs the DFG 
[Figure 5]. First, the pre-process pass converts 
wait_cycles_for(n) function calls into instruction “WCF n”, 
where n is an immediate operand. When building the data-
flow, the compiler replaces each “WCF n” into n 
consecutive “WCF 1” instructions. Thus a WCF instruction 
has a clear hardware timing meaning, passing the predicator 
to the next pipeline stage. The compiler enforces all 
instructions between two adjacent WCFs to be at the same 
pipeline stage, as in the pseudo-code shown in Figure 5. 
This constraint ensures that the back-end’s pipelining 
consists with the high-level C’s timing semantics, and 
thereby satisfies the IP cores’ timing requirement. In 
scheduling process, WCF instructions are replaced by PFW 
(predicator forward) instructions. PFW instructions pass 
predicators through the data-flow, while predicators guard 
other pipelined instructions. 

The IR, right before VHDL emission of the FFT16 
input wrapper, is shown in Figure 6. The IR records the 
predicated hardware actions with cycle-level timing 
constrains. In front of an instruction, the L field is the latch-
level, namely, at which pipeline stage the instruction is 
executed. Instructions with a zero latch-level are 
combinational logic or even just wires if the opcode is mov. 
A predicator guards an instruction with a Boolean P field, 
which is the last source operand. For IP wrappers, a str 
(store) instruction with zero address offset is treated as a 
mov instruction, whose destination is the operand that the 
pointer is pointing to. From line 16 through line 33, the 
anticipated hardware does the following: monitoring the 
assertion of the predicator from outside and passing it (line 
16 and 17), storing all the 16 pairs of input data into 

(1) .in_fft16 
(2)  Node 1, {0} {2, 3} 
(3) [L0] mov  $vr85.u1 <- in_fft16.in_token 
(4) [L0]   mov  $vr84.u16 <- in_fft16.real_0 
      ……   
(5) [L0]  mov  $vr53.u16 <- in_fft16.imag_15 
(6) [L0]  mov  $vr52.p1 <- in_fft16.CE 
(7) [L0]  mov  $vr51.p1 <- in_fft16.SCALE_MODE 
(8) [L0]  mov  $vr50.p1 <- in_fft16.START 
(9) [L0]  mov  $vr49.p1 <- in_fft16.FWD_INV 
(10) [L0] mov  $vr48.p16 <- in_fft16.DI_R 
(11) [L0] mov  $vr47.p16 <- in_fft16.DI_I 
(12) [L0] str     0($vr51.p16) <- 1 /*configure SCALE_MODE*/ 
(13) [L0] str     0($vr49.p16) <- 1 /* configure FWD_INV*/ 
(14) [L0] sne    $vr559.u1 <- $vr85.u1, 1 /*set if not equal*/ 
 
(15) Node 2, {1} {3} 
(16) [L0]   not    $vr560.u1 <- $vr559.u1 
(17) [L87] pfw  $vr471.u1 <- $vr560.u1 
 
(18) [L87, P] mov   $vr167.u16 <- $vr84.u16,     $vr560.u1 
……  /* latch the input data to the internal registers. */ 
(19) [L87, P] mov   $vr198.u16 <- $vr53.u16,    $vr560.u1 
 
(20) [L87, P]  str  0($vr50.p1) <- 1, $vr560.u1/*assert START*/ 
(21) [L87, P]  str   0($vr52.p1) <- 1,  $vr560.u1 /*assert CE*/  
(22) [L86]      pfw $vr472.u1 <- $vr471.u1    
(23) [L86,P] str 0($vr50.p1)<-0, $vr471.u1/*de-assert START*/ 
 
(24) [L85]      pfw $vr473.u1 <- $vr472.u1 
(25) [L85, P]  str   0($vr48.p16) <- $vr167.u16,    $vr472.u1 
(26) [L85, P]  str   0($vr47.p16) <- $vr183.u16,    $vr472.u1 
…/*export the 16 pairs of data elements serially to the IP core*/ 
(27) [L70]      pfw $vr488.u1 <- $vr487.u1 
(28) [L70, P]  str   0($vr48.p16) <- $vr182.u16,    $vr487.u1 
(29) [L70, P]  str   0($vr47.p16) <- $vr198.u16,    $vr487.u1 
 
(30) [L69, E69]      pfw   $vr489.u1 <- $vr488.u1 
……   /* wait for 69 clock cycles */ 
(31) [L2]   pfw      $vr556.u1 <- $vr555.u1 
(32) [L1]   pfw      $vr557.u1 <- $vr556.u1 
(33) [L1, P] str  0($vr52.p1) <- 0,    $vr556.u1 /*de-assert CE*/ 
 
(34) Node 3, [-1], {2, 1} {4} 
(35) in_fft16._no_while_iTmp0: 
(36) [L0]   ior     $vr558.u1 <- $vr557.u1, $vr559.u1 
(37) [L0]   ret     $vr558.u1 
 

The L field is the latch-level, a P field marks a predicated 
instruction. Line 12 and 13 configure the IP core.  Line 18 
through line 19 latch the 32 input data elements into internal 
registers. Line 20 and 21 assert start and ce, while line 23 de-
asserts start (one cycle later). Ce is de-asserted in line 33, 85 

 
Figure 6 - Back-end IR of FFT16's input wrapper 

 
Figure 7 – The execution model of a wrapped IP inside 
the predicated data-path. A core’s wrapper also consumes 
and produces predicators. From the point of view of 
outside, a wrapped IP core has an identical predication 
mechanism as other regular predicated instructions. 



internal registers and asserting start and ce (line 18 through 
line 21), one cycle later (line 22) de-asserting start, one 
more cycle later (line 24) starting feeding input data into the 
core pair by pair serially (line 25 through line 29), after 69 
more cycles waiting (line 30 through line 31), de-asserting 
Ce. The compiler’s very last pass emits the VHDL code for 
the wrappers. The combinational instructions become 
combinational logic in hardware and pipelined instructions 
become sequential logic. From the point of view of outside, 
the generated wrappers (the wrappers of FFT16 in Figure 3, 
for example) have unified interface: input data ports and 
one input predicator at input side, and output data ports and 
one output predicator at output side. Figure 7 shows a 
wrapped IP core embedded in a compiler-generated outer 
circuit. The wrapped IP core has an identical interface as 
that of other regular predicated instructions. 

5. DYNAMIC PARTIAL RECONFIGURATION 

We also use our tool to support dynamic partial 
reconfiguration. Dynamic partial reconfiguration at runtime 
allows re-use of FPGA resources to obtain a plurality of 
functionality, from the same hardware block, but at 
different times, and also without affecting the static parts of 
the device. The compiler generates the wrappers for each IP 
cores that need to be dynamically reconfigured.  

The design flow involves the generation of the static 
logic along with partial reconfigurable logic (wrapped IP 
cores). Thereafter the FPGA is floor planned to allocate 
pre-determined areas for the dynamic logic and static logic 
respectively. The area dedicated to the dynamic logic, also 
known as the PR-Block (Partial Reconfigurable Block), is 
such that it may allow for the largest IP block to be placed 
and routed within. I/O and communication of the static 
logic with the PR-block takes place using certain pre-
configured CLBs known as slice-macros. These slice-
macros need to be manually placed around the boundary of 
the PR-block. We have employed the Xilinx PlanAhead 
visual floorplanning tool for iterative design and 
placement. The final stage of the partial reconfigurable 
flow generates ‘N’ static bitstreams and ‘N’ partial 
bitstreams, where ‘N’ is the number of different IP blocks 
to be configured in the PR-Block. Each of the ‘N’ static 
bitstream contains the static design with the partial-
reconfigurable block numbered ‘N’ already programmed 
into the stream, while each of the ‘N’ partial bitstreams 
contains the logic to just program the PR-Block with the 
functionality of the ‘N’th IP core. Thus the system may 
choose to start with one of the static bitstreams during 
power-up and thereafter reprogram the PR-Block with the 
desired functionality. 

6. EXPERIMENTAL RESULTS 

We have used four Xilinx IP cores, shown in Table 1, in 
our experimental evaulation. Cordic performs a 
rectangular-to-polar vector translation. The input is a 
vector (X, Y) in a Cartesian coordinate and the IP’s outputs 
are the magnitude and the angle in a polar coordinate. 
DCT8 performs a one-dimensional 8-point discrete cosine 
transform. FFT16 is the IP core shown in Figure 3. RS 
encode is a (15, 13) Reed-Solomom encoder. It has a 13-
symbol code block and outputs 15 symbols, including 13 
original data symbols followed by two check symbols. In 
Table 1, Total area is the total circuit including the input 
and output interfaces, and the IP core itself. Area (slice) 
and Area (%) are the area utilization in the number of slice 
and in percentage with respect to the entire circuit, 
respectively. Addtl Cycl is the number of extra clock cycles 
after the addition of the wrappers. Total cycle is the total 

number of clock cycles to compute on one set of input 
data. DCT8’s input data size is 8-bit while its output data 
size is 19-bit. RS encode’s input and output data sizes are 
4-bit. Both Cordic and FFT16’s input and output sizes are 
16-bit. The target architecture is the Xilinx Virtex-II 
XC2V8000-5 FPGA having 46592 slices.  

Cordic has only two inputs and two outputs, and a 
simple handshaking protocol. DCT8's input wrapper 
latches all eight 16-bit input data. These are fed serially 
into the IP core. The wrapper asserts the new_data signal 
to be high during the data transmission and de-asserts it 
right after the transmission, following the timing 
requirement of the DCT8 IP core. The output wrapper 
monitors the output_ready signal from the core and starts 
receiving the eight serial output data elements once it is 
asserted high. On the next clock cycle after all the eight 
output elements have been collected, the wrapper exports 
them all in parallel. FFT16 requires similar serial to 
parallel and parallel to serial conversions, except that the 
IP imports and exports data in pairs, one real component 

Table 1 - Results of the wrappers for four Xilinx IPs 
  Cordic DCT8 FFT16 RS encode 

area (slice) 2 55 532 53 
area (%) 0.3 6.7 24 64 

input 
wrapper 

addtl cycl. 1 1 1 1 
area (slice) 2 426 290 9 

area (%) 0.3 52 13 11 
output 

wrapper 

addtl cycl. 1 1 1 1 
area (slice) 663 817 2183 83 

clock (MHz) 123 68.7 45.0 96.4 
total area 

total cycles 23 23 200 20 



and one imaginary component. FFT16's input timing is 
different in the way that start and ce (clock enable) have 
certain cycle-level specifications described in the previous 
section. The generated interface meets all those timing 
requirements. The FFT16 core’s overflow output pin,  
OVFLO, is duplicated and exported by the wrapper to the 
outside data-path for further use. In RS_encode’s output, 
the first 13 data elements are the data symbols that were 
fed into the IP. From the point of view of the outside data-
path, these data are known and do not necessarily need to 
be recovered from the IP core again, and only the two 
check symbols, which follow the first 13 data elements, are 
needed. The RS_encode IP core utilizes output signal info 
to indicate the present of the check symbols. The generated 
wrapper monitors info’s de-assertion and latches the check 
symbols in an appropriate timing.  

ROCCC wraps these IPs so that they have unified 
outside interface. These four examples illustrate ROCCC's 
capability to meet various timing protocols of IP cores. 
The execution time overhead at both the input side and 
output side for these four examples is one clock cycle. The 
area of wrappers accounts for 2% ~ 64% of the 
corresponding wrapped cores. Most of the wrappers’ area 
cost comes from the registers used to do serial to parallel 
and parallel to serial conversion. Compared to modern 
FPGAs’ capacity, this overhead is quite small. 
 

We measured the time required to load a static 
bitstream as well as the time required for programming 
partial bitstreams on the FPGA [Table 2]. JTAG and 
SelectMAP are two interfaces for reconfiguration of the 
FPGA. Since the partial bitstreams are smaller in size than 
the static bitstreams, a partial reconfiguration can be 
achieved in a shorter time vis-à-vis complete 
reconfiguration. 

7. CONCLUSION 

Increasing silicon capacity requires both higher level design 
methods and easier intellectual property core reuse. 
ROCCC, a reconfigurable computing compiler, is designed 
to take applications in C as input and generate RTL VHDL 
code. In this paper, we introduced one aspect of ROCCC’s 
functionalities, the IP wrapper generation.  

As the input to the ROCCC system, users write IP 
wrappers in high-level timed C. Clock cycle delays are 
described as function calls and users do not have to 
implement any cycle-level details in the input abstraction. 
Constrained by the delay function calls, ROCCC converts 
the wrapper from control flow graph to data flow graph. 
The compiler schedules pipelined instructions using 
predication. Wrapped IP cores have identical interface 
compared with the outer predicated circuit that also 
generated by ROCCC. 

The wrappers of the IP core examples meet the various 
timing protocol requirements, and unify the IP cores’ 
interface with the outer compiler-generated circuit. The 
results show that the execution time and area overhead are 
reasonable low. We also show the same tool can be used to 
support run-time reconfiguration on FPGAs by generating 
one wrapper that interfaces to multiple cores. 
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Table 2 - Reconfiguration time for static and partial 
reconfiguration on a Xilinx Virtex-2 PRO (XC2VP30) 

design type 
(Static/Partial) 

# of 
slices 

Btstrm 
size  

(Kbits) 

prgrm. 
time 

JTAG(ms) 

program. time 
SelectMAP(ms) 

static conf 13696 1415 2318 48 
DCT8 prtl recnf 378 216 354 7.3 
FFT8 prtl recnf 512 426 698 14.3 

 


