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Assignment of Orthologous Genes via
Genome Rearrangement

Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao Jiang

Abstract—The assignment of orthologous genes between a pair of genomes is a fundamental and challenging problem in comparative
genomics. Existing methods that assign orthologs based on the similarity between DNA or protein sequences may make erroneous
assignments when sequence similarity does not clearly delineate the evolutionary relationship among genes of the same families. In this
paper, we present a new approach to ortholog assignment that takes into account both sequence similarity and evolutionary events at a
genome level, where orthologous genes are assumed to correspond to each other in the most parsimonious evolving scenario under
genome rearrangement. First, the problem is formulated as that of computing the signed reversal distance with duplicates between the
two genomes of interest. Then, the problem is decomposed into two new optimization problems, called minimum common partition and
maximum cycle decomposition, for which efficient heuristic algorithms are given. Following this approach, we have implemented a high-
throughput system for assigning orthologs on a genome scale, called SOAR, and tested it on both simulated data and real genome
sequence data. Compared to a recent ortholog assignment method based entirely on homology search (called INPARANOID), SOAR
shows a marginally better performance in terms of sensitivity on the real data set because it is able to identify several correct orthologous
pairs that are missed by INPARANOID. The simulation results demonstrate that SOAR, in general, performs better than the iterated

exemplar algorithm in terms of computing the reversal distance and assigning correct orthologs.

Index Terms—Ortholog, paralog, gene duplication, genome rearrangement, reversal, comparative genomics.

1 INTRODUCTION

RTHOLOGS and paralogs were originally defined by

Fitch [10] in 1970. Orthologs are genes in different
species that evolved from the same gene in the last common
ancestor of the species, and paralogs are genes that were
duplicated from a single gene on the same genome. In order
to avoid ambiguity, Sonnhammer and Koonin [19] further
divided paralogs into two subtypes: inparalogs and out-
paralogs. Outparalogs between two species are paralogs in
a species that were duplicated before the speciation (i.e.,
split of the two species) and inparalogs are duplicated after
the speciation. For a given set of paralogs on a genome,
there commonly exists a gene that is the direct descendant
of the ancestral gene of the set, namely, the one that best
reflects the original position of the ancestral gene in the
ancestral genome. Sankoff [18] called such a gene the true
exemplar of the paralogous set. These concepts are illu-
strated in Fig. 1.

Orthologous genes are typically evolutionary and func-
tional counterparts in different species. Many existing
computational methods for solving various biological
problems (e.g., the inference of functions of new genes or
the analysis of phylogenetic relationship between different
species) and many other tools in comparative genomics use
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orthologs in a critical way. As a consequence, the identifica-
tion of orthologs, especially direct descendants of ancestral
genes in current species, is a fundamental problem in
computational biology. It follows from the definitions of
ortholog and paralogs that the best way to recognize
orthologs is to measure the divergence time between
homologous genes in two different genomes. As the
divergence time could be estimated by comparing the
DNA /protein sequences of genes, most existing algorithms
for ortholog assignment, such as the well-known COG
system [24], [23] and INPARANOID program [17], employ
a homology search algorithm such as BLAST [1]. However,
the evolutionary rates of all genes in a homologous gene set
may vary greatly and, thus, the estimation of divergence
times from sequence similarity can be inaccurate. Therefore,
information from homology search alone may not be
sufficient for recognizing orthologs reliably, although it is
usually sufficient for identifying paralogs. On the other
hand, we observe that molecular evolution proceeds in two
different forms: local mutations and global rearrangements.
Local mutations include base substitution, insertion, and
deletion and global rearrangements include genome inver-
sion, translocation, transposition, etc. The homology-based
ortholog assignment methods only use local mutations and
neglect genome rearrangement events that might actually
provide valuable information.

In this paper, we propose a new approach for assigning
orthologs by taking into account both local mutations and
genome rearrangement events. Our method starts by
identifying sets of paralogs (i.e., gene families) on each
genome and the family correspondences between two
genomes by using homology search. The paralogs are then
treated as copies of the same genes and ortholog assignment
is formulated as a natural optimization problem of
rearranging one genome consisting of a sequence of
(possibly duplicated) genes into the other with the smallest
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Fig. 1. An illustration of orthologous and paralogous relationships. After
two speciation events and two gene duplications, three present
genomes, G = (Ay), Gy = (By,C)), and G3 = (Bs,(,,C3), are ob-
tained. In this scenario, all genes in G, and G are co-orthologous to
gene A;. Genes B; and (' are outparalogs with respect to G; (i.e., the
second speciation) and are inparalogs with respect to G; (i.e., the first
speciation). Gene C; is the direct descendant (i.e., true exemplar) of the
ancestral gene C, while Cj is not if C5 is duplicated from C..

number of rearrangement events. This most parsimonious
rearrangement process should suggest pairs of orthologous
genes in a straightforward way. To simplify the discussion
(and as a first attempt), we first consider only inversion
events in genome rearrangement. The above optimization
problem thus becomes a problem of computing the signed
reversal distance with duplicates (SRDD) between two gen-
omes. SRDD is a simple extension of the well-known
problem of sorting by reversals [14]. Although the problem
of sorting by reversals has been intensively studied in the
past decade, SRDD has basically been untouched. We give
an efficient and effective heuristic algorithm for solving
SRDD, using the techniques of minimum common partition of
two given genomes and maximum cycle decomposition on a
complete graph. Based on this algorithm, we develop a high-
throughput system for assigning orthologs on a genome
scale, called System for Ortholog Assignment by Reversals
(SOAR). The heuristic algorithm for SRDD and the system
SOAR have been tested on both simulated and real genomic
sequence data (from human, mouse, and rat X chromo-
somes) and, compared with two existing algorithms in the
literature, the exemplar algorithm [18] (actually, an iterative
version of it) and INPARANOID [17], which is an efficient
ortholog assignment method based on homology search.
The test results demonstrate that our heuristic algorithm for
SRDD, in general, performs better than the iterated
exemplar algorithm in terms of computing the reversal
distance and assigning correct orthologs and SOAR is
marginally better than INPARANOID in terms of the
sensitivity of its predictions because it is able to find several
true orthologous pairs that are missed by INPARANOID.'

The rest of the paper is organized as follows: The next
section reviews some related work on ortholog assignment

1. SOAR is slightly worse than INPARANOID in terms of specificity.
However, the specificity numbers may not be very reliable here because we
validate orthologs by matching their names in Genbank. It is well known
that the gene names in Genbank are not completely consistent at the present
stage and orthologous genes could be named differently. Besides, the
validation method is biased in favor of homology-based ortholog assign-
ment methods since many genes in Genbank were named via homology
search.

and genome rearrangement. Section 3 introduces the system
SOAR that we have implemented for ortholog assignment.
The heuristic algorithm for SRDD, which is used in SOAR,
is described in Section 4. Preliminary experiments on
simulated data and real data are presented in Section 5.
Some concluding remarks are given in Section 6.

2 RELATED WORK

Since our approach for ortholog assignment combines
homology search with genome rearrangement, we briefly
review some related work in ortholog assignment and
genome rearrangement.

2.1 Previous Results on Ortholog Assignment

One of the earliest systems developed to identify orthologs
is the COG database [24], [23], which is widely used to infer
the functions of new genes from annotated genomes. COG
stands for clusters of orthologous groups, each of which
consists of individual orthologous genes or orthologous sets
of paralogs from at least three lineages. When a gene is
queried against the COG database, it is classified into a
COG if it has at least three best BLAST hits in this COG.
However, as its name implies, the COG database actually
does not report exactly which gene is the ortholog of the
query gene if paralogs exist. That is, it does not distinguish
the true ortholog of the query gene and its paralogs.

Yuan et al. proposed an approach based on the analysis
of reconciled trees [28]. The authors first construct a gene tree
for a set of homologous genes and then a phylogenetic
(species) tree for the species from which the genes came.
When there are discrepancies between these two trees, a
reconciled tree is computed by taking into consideration the
presence of gene duplications, which results in an assign-
ment of orthologous genes. This approach fails when the
involved species belong to the same genus because the
species background cannot provide sufficient information
for resolving the genes under consideration [28]. Further-
more, accurate reconstruction of gene and species trees is a
nontrivial problem itself, which further limits the effective-
ness of the approach as a method for assigning orthologous
genes. A similar approach that uses a set of bootstrap trees
instead of reconciled trees was proposed in [22] recently.
These tree-based methods are not designed to assign
orthologs between complete genomes.

To avoid potential errors that might be introduced by
multiple alignments or phylogenetic trees, a homology-
based tool, called INPARANOID, was introduced in [17]. It
uses all-versus-all pairwise gene sequence comparison and
bidirectional best hits (BBHs) to identify the so-called main
orthologs (and their inparalogs) between a given pair of
genomes. Although this approach is in general pretty
reliable, it may miss many pairs of orthologs or even assign
orthologs incorrectly when the similarity between gene
sequences does not accurately reflect the evolutionary
relationship among the genes (either because local muta-
tions are not the only evolutionary events that occurred in
the history of a gene family or because the sequence
similarity measure used does not count local mutations
accurately).
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Fig. 2. An outline of SOAR.

Recently, Cannon and Young [4] developed a suite of
programs, called OrthoParaMap, to distinguish orthologs
from paralogs, which may represent the first effort to assign
orthology by making use of comparative genomic positional
information. This information is retrieved from conserved
synteny blocks in the two species of interest and then mapped
onto gene family phylogeny to infer a gene duplication
mechanism like speciation, segmental duplications, or
tandem gene duplications. However, it is widely believed
that genome rearrangement scenarios can essentially provide
more valuable positional information than synteny blocks.
This makes the assignment of orthologous genes via genome
rearrangement a very promising approach.

2.2 Genome Rearrangement

Hannenhalli and Pevzner [14] developed an elegant
algorithm for computing signed reversal distance and
translocational distance between two genomes (with distinct
genes) in polynomial time. A permutation is represented as
a breakpoint graph. The reversal distance between the
permutation and the identity permutation is calculated by
decomposing the breakpoint graph into a maximum
number of edge-disjoint cycles and counting the numbers
of breakpoints, cycles, and hurdles, as well as checking the
existence of a fortress. The best running time for sorting a
permutation by the minimum number of reversals is
quadratic [15], although the signed reversal distance can
be computed in linear time [2].

As mentioned before, the above model and algorithms
only deal with genomes consisting of distinct genes. When
studying divergent genomes that contain many highly
homologous genes (i.e., paralogs) scattered across each
genome, we need to consider genome rearrangement with
duplicated genes. Sankoff [18] designed an exemplar algorithm
to find the genes from two corresponding gene families that
are direct descendants of the same gene in the most recent
common ancestral genome. The basic idea is to delete all but
one member of every gene family on each of the two genomes
being compared so as to minimize some rearrangement
distance over all choices of reduced genomes thus derived.

El-Mabrouk [9] recently proposed an algorithm to
reconstruct an ancestral genome, giving rise to the minimal
number of duplication transpositions and reversals, which
works only for genomes containing sets of gene families of
sizes at most two. Tang and Moret [25] presented a
straightforward approach by enumerating all the possible
assignments of orthologs between two genomes with
duplicates. However, the number of such possible assign-
ments grows exponentially as the number of paralogs
increases, making their approach applicable only to
genomes with a very small number of duplicated genes.

List of orthologous
gene pairs output

2. Apply minimum common partition
3. Decompose complete graph into cycles

3 A SYSTEM FOR ORTHOLOG ASSIGNMENT BASED
ON SORTING BY REVERSALS

Our proposed approach for ortholog assignment takes into
account both local mutations at the gene level and global
rearrangements at the genome level. Local mutations are
measured by sequence similarity and genome rearrange-
ments are measured by the minimum number of rearrange-
ment events (e.g., inversions of contiguous segments of
genes) necessary to transform one genome into the other.
Following this approach, we have implemented a system,
called SOAR, that consists of two major steps: 1) identify
paralogs and construct gene families from an annotated
genome via homology search and 2) assign orthologs via a
heuristic algorithm for SRDD. The steps are illustrated in
Fig. 2 and described separately below.

3.1 Construction of Gene Families

SOAR takes as input two annotated genomes (or chromo-
somes). Gene protein sequences, as well as their locations,
are extracted to form a gene list for each genome, which is
then formatted and indexed to facilitate an all-versus-all
gene sequence comparison by BLASTp [1]. BLASTp gen-
erates several high scoring segment pairs (HSPs) for each pair
of genes. Since the HSPs may overlap with each other, a
simple summation of their scores may overestimate the
similarity between the two genes. We apply a chaining
algorithm [8] to find a set of compatible HSPs while
maximizing their combined E-value. As in [17], two genes
are considered homologous if 1) the combined E-value is
less than 1e-20 and 2) the compatible HSPs span 50 percent
of each gene in length. Each set of homologous genes from
the same genome constitutes a gene family. Since we do not
deal with gene insertions and deletions in a genome
rearrangement process (i.e.,, we assume that there were no
gene loss or insertion events after the speciation), genes
without homologous counterparts in the other genome will
be removed from the gene lists.

In this preliminary version of SOAR, there is no attempt
to identify and group inparalogs in a gene family because
we do not know of any effective method for identifying
inparalogs (except for the related work in [17]). This is a
pitfall in the evolutionary model assumed in SOAR,
although it should not be a serious problem for closely
related genomes. Moreover, there is some speculation that
small gene families (i.e., with sizes of at most 6) are mostly
primordial, i.e., they have been maintained from the earliest
time of evolution [20]. This speculation, if true, could
somewhat justify our method. On the other hand, since we
do not consider gene loss or insertion events after the
speciation, we simply remove from a gene family those
members that are the least homologous (i.e., with the largest
combined E-value) to the members of the counterpart



CHEN ET AL.: ASSIGNMENT OF ORTHOLOGOUS GENES VIA GENOME REARRANGEMENT 305

G Tl Yy

H sy < ——< @
a b b C

Fig. 3. The most parsimonious transformation using three reversals.

family so that corresponding gene families from both
genomes always have equal sizes.

Finally, all the remaining genes from each genome are
ordered according to their locations on the genome and the
resulting two sequences of genes will be input into the
following heuristic algorithm for SRDD.

3.2 Identification of Orthologs Using a Heuristic

Algorithm for SRDD

Now, we have two genomes of equal content and all the
genes are assumed to be the direct descendants of their
ancestral genes in the most recent common ancestral
genome. The sequence of genes on each genome thus
evolved from the sequence of genes on the common
ancestral genome by genome rearrangement events such
as reversals and transpositions. By reconstructing the most
parsimonious rearrangement scenario, we could identify
pairs of genes, where each pair contains one gene from each
genome, that came from the same ancestral gene and, thus,
likely candidates for orthologs. Equivalently, we may
consider the most parsimonious transformation from one
genome into the other by reversals and transpositions. Since
transpositions occur much less frequently than reversals,
hereafter we will only consider reversals. The following is a
simple example to illustrate the idea of ortholog assignment
via sorting by reversals. Consider two genomes, G =
+c—b+a+band H=+a—b—0b—c consisting of four
genes and one multigene family each. Fig. 3 shows the
parsimonious transformation from G into H using three
reversals. In this transformation, the first (or second) copy
of gene b in G is found to correspond to the first (or second,
respectively) gene b in H, indicating that they might be a
pair of orthologous genes.

In contrast, it may happen that orthologs are not
conserved very well compared to nonorthogous pairs
between two genomes. In the example above, we may have
that the first copy of gene b in G is the bidirectional best hit
of the second copy of gene b in H. If the sequence similarity
does not accurately reflect its evolutionary relationship,
orthologous pairs in this gene family will more likely be
assigned incorrectly by any approach based solely on local

mutations. Therefore, as one of the valuable evolutionary
evidences, genome rearrangement events may allow us to
reveal the true orthologous relationship, but local mutations
cannot.

This approach for ortholog assignment raises a new
computational problem, i.e., how to sort a sequence of genes
(with duplicates) into another with the minimum number of
reversals (SRDD). SOAR uses an efficient and effective
heuristic algorithm for SRDD, which will be explained in
the next section.

4 AN EFFICIENT HEURISTIC ALGORITHM
For SRDD

In this section, a genome is represented as a string of signed
symbols from a finite alphabet .4, where each sign (+ or -)
represents a transcriptional orientation and a symbol denotes
a gene. All occurrences of a symbol in a genome constitute a
gene family. A geneis called a singleton if it is the only member
of its family; otherwise, it is a duplicated gene. Two genomes ¢
and H are related if they have the same gene content, i.e., an
equal number of gene families and an equal size of each
family. A reversal operation p(i, j) transforms a genome G =
(91" 9i-19iGiv1 - Gj-19;9j+1 - gn) into another genome
G-p(i,g) =(g1 =+ gis1 — 95— gj-1" " — Gix1 — GiGj+1 """ Gn),
where —g; means the gene g; with an opposite orientation.
Given two related genomes G and H, the reversal distance
problemis to find the smallestnumber of reversals p,, p,, - - -, p,
suchthatG - p; - py - - - p, = H. The reversal distance between GG
and H is thus d(G, H) = t. If all the genes in G and H are
singletons, the reversal distance problem is usually referred
to as the problem of sorting by reversal and the distance can be
calculated by the Hannenhalli-Pevzner (H-P) formula [14]:

d(G,H) =b(G,H) — c(G,H)+ h(G,H)+ f(G, H),

where b(G,H) is the number of black edges in the
breakpoint graph for G and H, ¢(G,H) the number of
cycles in maximum cycle decomposition, h(G,H) the
number of hurdles, and f(G,H) the number of fortresses,
respectively.”

When G and H contain duplicated genes, however, the
problem cannot be directly solved by the H-P algorithm
anymore. Once ortholog assignment between the two
genomes is accomplished, the signed reversal distance with
duplicates (SRDD) can be simply computed using the H-P
formula since every gene can then be regarded as unique. Let
us denote by M the set of all the possible ortholog assign-
ments. Given an assignment m € M and a genome G, let G™
denote the gene sequence of G after orthologs have been
assigned by m. The following straightforward lemma relates
SRDD to the assignment of orthologs.

Lemma 4.1. Given genomes G and H, we have d(G,H) =
minmgg,jd(Gm7 Hm).

Unfortunately, the following theorem shows that SRDD
is NP-hard. Observe that the NP-hardness of sorting
unsigned strings over a fixed alphabet [7] does not imply
Theorem 4.2.

2. Refer to [14] for the definitions of black edges, hurdles, and fortresses.
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Theorem 4.2. SRDD is NP-hard, even when the maximum size
of a gene family is limited to two.

Proof. The proof is by a simple reduction from the NP-
hardness of sorting an unsigned permutations by reversals
[5], [6]. Consider a permutation 7 = (mmy---m,) as an
instance of sorting an unsigned permutation by reversals,
where each element m; is a positive integer and distinct
from any other element. We encode such a permutation by
simply replacing each 7; with a pair of two signed integers
(+m — m;) and obtain a new sequence 7 = (+m — ™ +
Ty — Ty - - - 4+, — my,) of size 2n. The identity permutation
7= (12---n) can be encoded in the same way as 7 =
(+1=1+42-2---+n—n). In the following, we prove
that there is an optimal transformation from 7 to 7 that
does not include any reversal that breaks an adjacent pair
(+7|'i — ﬂ'i) in 7.

Consider an optimal transformation from « to 7. The
transformation defines a correspondence between each
element in 7 and an element in 7. Since there are exactly
two duplicates for each ; in 7 (and 7), only one of two
possible correspondences between the duplicates of m;
could occur, as shown below:

T e [ | (7 B—— +my —i
[ >
T: T P (TR T B o PR I

In both cases, each pair of elements (+m; — 7;) are adjacent
in both 7 and 7. In other words, there are no breakpoints
[14] between (+m; — ;). Let (@,7™) be the genome
sequences after assigning orthologs according to the above
optimal transformation from 7 to 7. The H-P theory [14]
shows that there exists an optimal solution to transform 7
into 7 in which no reversal operation would break a pair
of adjacent elements. By Lemma 4.1, this transformation is
also an optimal solution to transform 7 into 7. Such an
optimal solution to transform 7 into 7 will naturally give an
optimal solution to transform 7 into 7. Since sorting
unsigned permutations by reversals is NP-hard [5], [6], the
theorem follows. ]

In the following, we devise an efficient and effective
heuristic algorithm for SRDD. To simplify the discussion,
we assume without loss of generality that the first genes
and the last genes of the two related genomes are identical
and are positive singletons.

4.1 A Useful Lower Bound

The following definitions are adapted from [7], [9]. We
convert a (signed) genome G = (g192 - - - g») to an unsigned
one by replacing each gene g; with a string ¢"¢! if g; is positive
or gtgl if g; isnegative, as is done in the breakpoint graph of H-
P. A partial graph [9] associated with a genome G =
(9192 - - gn) is the graph G(V, E), where V = {g{|1 <i <mn,
s € {h,t}},and each (undirected) edge in E'links twonodesin
V' that correspond to adjacent symbols in the genome G
except pairs of ¢/ and ¢! from the same gene g;. Let V be the set
of distinct symbols in V, where ¢! and g/ are viewed as the
same symbol if g; and g; are from the same family. Clearly, the
partial graphs of a pair of related genomes have an identical
vertex set V and set V. For each pair of elements {0, 7,} € v,
let f¢(?1,72) denote the number of edges in E that link two

nodes in the partial graph G(V, E) of G with symbols ¢, and
Uy, respectively. The number of reversal breakpoints between
two related genomes G and H is defined as:

b (G, H) = Z 6(fu(1,02) — fo(v1,02)),

{0152}V

where §(z) = x if z > 0 and 0 otherwise [7]. It is easy to see
that b,(G, H) = b,(H,G), although the above definition is
not explicitly symmetric with respect to the two genomes.
The definition is a natural extension to the concept of the
number of breakpoints employed in the problem of sorting
by reversals when duplicated genes are present. The
following theorem follows from the observation that a
reversal operation could reduce the number of breakpoints
by at most two.

Theorem 4.3. Let G and H be a pair of related genomes. Their
reversal distance is lower bounded by d(G, H) > [b.(G, H)/2].

For example, the partial graph for genomes G =
+c—a—-b+a+dand H=+c+a+b+a+d is shown in
Fig. 6a where the dashed cross-genome edges are masked
out. From the above definition, we have

fa(da)=1 fo(a"b)=1 fo(".a")=1 fe(a'd")=1 fa(d'a")=0 fa(a'b")=0
fu(ca)=0 fu(a"p)=1 fu(t"a")=0 fu(a".d")=1 fu(c'.a")=1 fu(a'p")=1.

These imply that the number of reversal breakpoints is two,
ie., b(G,H) = 2. By the above theorem, we need at least
one reversal to transform G to H.

4.2 (Sub)Optimal Assignments

Our heuristic algorithm begins by finding individual
ortholog assignments that are (nearly) optimal with respect
to SRDD. Note that the (correct) identification of each
ortholog reduces the number of duplicates in the related
genomes and, thus, makes the SRDD problem easier. The
following lemma gives a nearly optimal rule by making use
of the H-P formula [14]. Let G = (g192---¢g,) and H =
(hihy - - - hy) be two related genomes.

Lemma 4.4. Assume that g;_19;9i+1 is identical to hj_ih;hj
or its reversal, where g;_y and g;1, are singletons, but g;
is not. Define two new genomes G' and H' from G and
H by assigning orthology between g¢; and h; Then,
d(G,H) <d(G',H') < d(G,H)+1.

Proof. By Lemma 4.1, we have d(G, H) < d(G’, H'). Let us
prove the second inequality. Let (G™, H™) be the genome
sequences after orthologies have been assigned by an
optimal solution to transform G into H, i.e., d(G™, H™)
= d(G, H).If thereis an orthology assigned between g; and
h;, then the lemma clearly holds. In the following, we
assume that the two orthologous pairs assigned between
G™ and H™ are (g;, ly) and (gi, h;), where i # kand j # [.

Denote by (G, H™) the genome sequences with the
same orthology assigned as in (G, H™), except that g; is
assigned to h; and g is assigned to h;. We now prove
that d(G"™, H™) < d(G™,H™)+ 1, which then implies
d(G',H') < d(G, H) + 1. Since the genome sequences G,
H™, G'", and H™ contain only singletons, the H-P
formula can be applied here to calculate the reversal
distances d(G™, H™) and d(G"", H™). Therefore, we will
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Fig. 4. (a) The breakpoint graph B(G™, H™), (b) the breakpoint graph B(G"™, H™), and (c) seven possible hurdles in B(G'™, H"™).

count the numbers of black edges, cycles, hurdles, and
fortresses in the breakpoint graphs B(G™,H™) and
B(G'™, H™), respectively.

Consider a general case illustrated in Fig. 4. Since
9i—19igi+1 is identical to h;_1hjhj or its reversal and both
gi-1 and g;41 are singletons, we have b(G™,H™) —
c(G™,H™) =b(G™,H™) — ¢(G™, H™) — 2. Further, ob-
serve that the number of fortresses f(-) takes only 0 or
1 values. Therefore, we need only to prove that the number
of hurdles isincreased by nomore than threein (G, H'™),
ie,h(G"™,H™) — h(G™, H™) < 3, and that the breakpoint
graph of (G, H'™) is not a fortress when h(G"", H™) —
h(G™, H™) = 3. This would imply h(G"™, H™) + f(G™,
H/m) S h(G’ﬂL’HWL) + f(G?TL’H?Tl) _"_ 3.

Consider the components (i.e., the union of overlapping
cycles) in the two breakpoint graphs B(G™, H™) and
B(G™, H™). Observe that the components containing end
nodes of g; or g, in B(G™, H™) may be decomposed into
multiple components in B(G"™, H™) since some edges
have been removed (while some other edges added),
while other components in B(G™, H") remain the same
in B(G',H'™). As a result, seven possible (unoriented)
components could become new hurdles in the break-
point graph of (G, H™), as illustrated in Fig. 4c. In the
figure, component 1 does not overlap with any old
component containing nodes from g; or g, in B(G™, H™)
(see also Fig. 4a) and has a large span; components 2-5
overlap with one of the old components in B(G™, H™)
and they were created due to the removal of some edges;
and components 6-7 are the two each of which contains
one of the two end nodes of g; (i.e., g or g}).

By the H-P theory [14], we observe thatif component 1is
a hurdle in B(G'™, H'™) but not a hurdle in B(G™, H™),
then none of the components 2-7 could become a new
hurdle in B(G"™, H™). Further, observe that at most three
of the components 2-7 could be hurdles simultaneously in
the breakpoint graph B(G"", H™). Therefore, the number
of hurdles in B(G"™, H™) is increased by no more than
three, and there is only one case where three new hurdles
are added. In this case, both components 6 and 7 must be

hurdles. By the H-P theory [14], two super hurdles must be

separated by some unoriented component in a breakpoint

graph. Since each of the components 6 and 7 contains an
end node of g;, these components cannot be super hurdles.

As a result, the breakpoint graph B(G"™, H™) cannot be a

fortress if both components 6 and 7 are hurdles because a

fortress is defined as a permutation with an odd number of

hurdles, all of which are super hurdles. O

The above bound is tight. For example, d(G"™, H™) =
d(G™,H™) + 1 holds for genomes G =+c+b+a+d+ g+
fre+h+j+l+d+m—k+n+iand H=+a+b+c+
d+e+ f+g+h+i+j+k+1l+d+m+n, where only
one duplicated gene d exists. It implies that the second
gene of d in G will correspond to the first one in H in the
most parsimonious scenario transforming from G to H by
reversals. This is a surprising finding as it contradicts our
common intuition regarding gene order conservedness
under reversals.

The next lemma gives an optimal assignment rule, and
can be proven similarly to the above. Note that its
optimality is due to the fact that either component 6 or
component 7 must represent an adjacent pair in the
breakpoint graph B(G'™,H) (such that the number of
hurdles cannot increase by more than two).

Lemma 4.5. Assume that g;_1g; and g;_.g; are identical to hy_, hy,
and hi_yh; or their reversals, respectively. Suppose that each of
the above four pairs is composed of a singleton and a duplicated
gene and the four duplicated genes are from the same family and
without any other gene included. Define two new genomes G' and
H' from G and H by assigning orthology between the duplicated
genes in g;_1g; and hj,_; hy, and between the duplicated genes in
9j-19; and h[_lhl. Then, d(G7 H) = d(G/, Hl)

It is well known that, in the problem of sorting permuta-
tions by reversals, the distance value is highly dominated by
the first two terms of the H-P formula, ie., d(G, H) =
b(G,H) — c¢(G, H). Caprara [6] proved that the probability
that d(G, H) > d(G,H) is O(1/n®) for a random unsigned
permutation of n elements and O(1/n?) for a random signed
permutation. As an extension to genomes with duplicate
genes, we can naturally define d(G,H) = min,cud(G™,
H™), where M is the set of all the possible ortholog
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assignment between G and H as mentioned earlier. By
working with d(G,H), we could potentially approximate
d(G, H) in SRDD. Based on this observation, one can devise
the following assignment rule, which, unfortunately, does
not guarantee optimality with respect to SRDD. The proof can
again be done in a similar way as for Lemma 4.4.

Lemma 4.6. Assume that g;,_1g; is identical to h;_1h; or its
reversal, where each of the pairs consists of a singleton and a
duplicated gene. Define two new genomes G' and H' from G
and H by assigning orthology between the duplicated genes in
Gi—13i and ]’L]',lh]‘. Then, d(G,H) = d(G/,H/).

4.3 Minimum Common Partition

In order to formulate an efficient algorithm for the problem of
SRDD, we introduce here, for the first time, a new optimiza-
tion problem, called minimum common partition (MCP).%Letus
first define a segment g; as a substring (or its reversal) of a
genome sequence G. A partition is a list {g1,g2,---,Gn} oOf
segments of a genome G such that the concatenation of the
segments (or their reversals) in some order results in the
genome G. Thelist can be thought as a contracted representation
of G if we consider each segment g; as a symbol. A list of
segments is called a common partition of two related genomes
G and H if it is a partition of G and a partition of H as well.
Note that the contracted representations of two related
genomes induced by a common partition are still related to
each other. Furthermore, a minimum common partition is a
partition with the minimum cardinality (denoted as L(G, H))
over all choices of common partitions of G and H. For
example, for genomes G=+c+a+b—a+dand H = +c+
a—b—a+d, a minimum common partition is {+c+
a,+b,—a+d} with L(G,H)=3. The minimum common
partition (MCP) problem is naturally defined as the problem
of finding the minimum common partition between two
given genomes.* The following theorem establishes the
relationship between SRDD and MCP. As mentioned earlier,
the first genes of G and H, as well as the two last genes, are
assumed to be identical and positive singletons.

Theorem 4.7. Given two related genomes G and H, we have
[(L(G,H)—1)/2] <d(G,H) < L(G,H) — 1.

Proof. Consider the distance between the contracted
representations G and H of G and H obtained from a
minimum common partition between them, respectively.
Because the size of G (and H) is equal to L(G, H), by the
H-P theory we have d(G,H)< L(G,H) -1, where
d(G, H) is the reversal distance between G and H. Notice
that any solution that transforms G into H by reversals is
also a feasible solution to transform G into H by
reversals, which implies that d(G,H) < d(G,H). It
follows that d(G, H) < L(G,H) — 1.

Let G™ (and H™) be the genome of G (and H,
respectively) after orthologs are assigned based on an
optimal solution to transform G to H by reversals, i.e.,
d(G™,H™) = d(G, H). Note that any common partition
between G"" and H™ is also a common partition between
G and H such that L(G,H) < L(G™, H™) holds. On the

3. The problem of MCP was also independently introduced recently in
[21], under the name sequence cover.

4. The MCP problem can be naturally generalized. One variant is to find
a minimum common partition between two strings where no sign is
involved and another is to find a minimum common partition among
multiple genomes.

other hand, any gene in G™ or H™ can be considered as a

singleton, which makes b,(G"™, H") = L(G™,H™) -1

correct. By Theorem 4.3, we have [b,(G™,H™)/2] <

d(G™,H™), from which [(L(G,H)—-1)/2] <d(G,H)

follows. O

Theorem 4.7 suggests a way to approximate SRDD by
MCP. Unfortunately, MCP is also NP-hard.

Theorem 4.8 (Goldstein et al. [12]). Let k-MCP denote the
version of MCP where each gene family is of size at most k.
The problem k-MCP is NP-hard, for any k > 2.

Now, we present an approximation algorithm for MCP.
Given two related genomes G and H, a single-match is a pair
of identical genes g; and h; from G and H that may have
different signs. A pair-match is a pair of adjacent gene pairs
gigi+1 and hjhj,; that are identical or the reversal of each
other. Clearly, a pair-match consists of two single-matches.
A common partition {gi, g2, -, g} between G and H can
be considered as a one-to-one mapping M from G to H.
When M(g;) = hj, g; and h; form a single-match. If A
induces a pair-match between g;g;;1 and hjh;;1, we say that
g; is a nonbreakpoint; otherwise, it is a breakpoint. Denote by b
the number of breakpoints in G (or H). Clearly, b + 1 is the
cardinality of the common partition induced by M. There-
fore, MCP is equivalent to maximizing the number of
nonbreakpoints, which is in turn equivalent to maximizing
the number of pair-matches in a common partition.

Observe that two pair-matches may not coexist in a
common partition. Such pair-matches are said to be
incompatible. For two related genomes G and H, we can
construct a pair-match graph P(V, E), where V consists of all
possible pair-matches between G and H and E includes
edges connecting incompatible pair-matches. The following
lemma is straightforward.

Lemma 4.9. The maximum independent set problem on P(V, E)
is equivalent to the minimum common partition problem on
(G, H).

Since the complement of an independent set of P(V, E) is
a vertex cover of P(V,E), we can approximate MCP by
using an efficient approximation algorithm for the vertex
cover (VC) (e.g., the standard greedy algorithm with
approximation ratio 2). An outline of our approximation
algorithm is shown in Fig. 5.

If one assumes that the approximation algorithm for
vertex cover has ratio r, we can obtain an upper bound on
the performance of APPROX-MCP as follows:

Lemma 4.10. If the size of the common partition found by the
APPROX-MCP algorithm is I, then | < (r —1)(|V| —n) +r
-L(G, H), where |V | is the size of the vertex set of the pair-match
graphand nis the size of genome G. In particular, for 2-MCP, the
above algorithm achieves an approximation ratio of 1.5.

Proof. Let C* denote an optimal solution of minimum
vertex cover on P(V, E) and C the solution output from
an approximation algorithm, where |C|/|C*| < r. Let [
denote the number of segments in the common partition
obtained from the solution C' for minimum vertex cover.
By Lemma 4.9, we have |C*| =|V|—n+ L(G,H) and
|IC|=|V|—-n+1, from which [ < (r—1)(|V|—n)+r-
L(G, H) follows.
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Algorithm APPROX-MCP(G, H)

/* G and H are a pair of related genomes. */

1. Construct the pair-match graph P(V, E) for G and H

2. Find an approximation of the vertex cover C' of P

3. Identify the segments based on the pair-matches in V' — C
4. Output all the segments as a common partition of G and H

Fig. 5. An efficient approximation algorithm for MCP.

In order to prove the approximation ratio for 2-MCP,
we first prove |V| < n by considering two cases of gene
duplicates as shown below:

G:...ab...ab... G:...ab...a...b...
H:...ab...ab... H:...ab...ab...

In the case shown on the left, gene b can be absorbed into
gene q, i.e., these two genes can be regarded as only one
gene during the process of assigning orthology while
guaranteeing the optimality. Therefore, we can assume
that there are no such pair-matches in G or H. In the case
on the right, there are exactly two pair-matches begin-
ning with gene « in G, which implies |V| < n and, thus,
I <r-L(G, H) for 2-MCP.

Moreover, we observe that the pair-match graph of
P(V, E) is 6-claw-free [13] since the degree of a vertex is
at most four. Using a 1.5-approximation algorithm for
vertex cover on a 6-claw-free graph [13], a 1.5-approx-
imation algorithm for 2-MCP can be obtained. 0

4.4 Maximum Cycle Decomposition

Although the contracted representations of the genomes G
and H may still contain duplicates, we do not expect the
number of duplicates to be large. Again, we define another
new problem, called maximum cycle decomposition (MCD), to
complete the solution for SRDD.

The complete graph associated with a pair of related
genomes G = (¢192---g,) and H = (hihy---h,), denoted
G(V,E), includes the partial graphs of both G and H as
subgraphs, plus cross-genome edges joining g; and h;, where
1<i<n,1<j<n,se{th}if g;and h; are identical genes
[9]. For example, the complete graph for genomes G =
+c—a—-b+a+dand H=+c+a+b+a+dis shown in
Fig. 6.

The maximum cycle decomposition (MCD) problem is the
problem of decomposing a given complete graph into a
maximal set of cycles such that 1) every vertex belongs to
exactly one cycle, except for the first and last vertices of each
genome; 2) the two vertices representing each gene must be
connected, respectively, to the two vertices of some (identical)
gene in the other genome by edges of the cycles, i.e., the
connections satisfy a pairing condition; and 3) edges within a
genome and across genomes alternate in a cycle. The
following theorem is a simple extension of the H-P formula
and gives tighter bounds on reversal distance in terms of
MCD compared to the bounds in terms of MCP in the
previous section.

Theorem 4.11. Given two related genomes G and H, we have
n—1—-C<d(G,H) <n—1-Cy, where nis the size of G,
C' is the number of cycles in the maximum cycle decomposi-
tion, and C, is the maximal number of cycles of size four in
any feasible solution to MCD.
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Fig. 6. (a) The complete graph of two related genomes G =
+c—a—b+a+dand H=+c+a+b+a+d, in which each gene is
represented by two vertices. Dashed lines are cross-genome edges,
while solid lines connect two adjacent vertices belonging to different
genes of the same genome. (b) A maximum cycle decomposition
consisting of two cycles.

Proof. Observe that any optimal solution to transform G
into H by reversals could result in a feasible cycle
decomposition (of size C*) of the complete graph
between G and H. The latter, however, may not be
maximal (ie., C* < (). By the H-P theory, we have
n—1—-C<n—-1-C*<d(G,H). On the other hand,
any feasible cycle decomposition (e.g., the one has the
maximal number of cycles of size four) could provide a
solution to transform G into H by reversals (of size
d*(G, H)) because the complete graph after cycle decom-
position is a standard breakpoint graph as defined in
[14], which, however, may not be optimal (i.e.,
d(G,H) <d*(G, H)). Further observe that any cycle of
size four in a cycle decomposition would not be broken
by reversals in its corresponding solution (i.e., the one
whose breakpoint graph includes this cycle of four) since
it actually represents an adjacent consecutive pair
between G' and H. Again, by the H-P theory we have
d(G,H) <d"(G,H)<n—-1-Cj. O
The complexity of MCD has been proven to be NP-hard

[11] by a reduction from the problem of MAX-ACD [6], i.e.,

finding the maximum-cardinality of edge-disjoint alternat-

ing cycle decomposition in a breakpoint graph associated
with an unsigned permutation without duplicates. There-
fore, we use a greedy algorithm in SOAR to solve MCD, as
outlined in Fig. 7. The basic idea of the algorithm is to find
small cycles that satisfy the above three conditions.

Intuitively, small cycles result in large cycle decomposi-

tions, although it is not always the case.

Our heuristic algorithm for SRDD combines the three
(sub)optimal ortholog assignment rules, APPROX-MCP and
GREEDY-MCD, as outlined in Fig. 8. Wenote that this heuristic
algorithm also works for genomes with unequal gene
contents, although the above discussion and claimed proper-
ties assume two related genomes with equal gene content.

5 EXPERIMENTAL RESULTS

In order to test the performance of SOAR as a tool to assign
orthologs, we have applied it to both simulated data and
real genome sequence data and compared its results with
two algorithms in the literature, namely, an iterated version
of the exemplar algorithm [18] and INPARANOID [17].
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Algorithm GREEDY-MCD(G, H)
/* G and H are a pair of related genomes */

1. Construct the complete graph G(V, F) for G and H
2. while V' is not empty do

a. Select a vertex from V'
b. Find a shortest cycle that passes through the selected

vertex while not violating the pairing constraint
c. Remove all vertices and edges in the shortest cycle
3. Output all the cycles found as a cycle decomposition

Fig. 7. The greedy algorithm for maximum cycle decomposition.

5.1 Simulated Data

We use simulated data to assess the performance of our
heuristic algorithm for SRDD. In order to make a
comparison test, we implemented the exemplar algorithm
of Sankoff [18] and extended it into a tool for assigning
orthologs. Although the exemplar algorithm was not
originally proposed for the purpose of ortholog assignment,
its objective is closely related to that of solving the ortholog
assignment problem. More precisely, the algorithm looks
for a pair of homologous (or identical) genes from two
genomes that are direct descendants of the same gene in
their most recent common ancestral genome. Therefore, for
any two given genomes, the pairs of genes found by the
exemplar algorithm should be orthologous to each other.
The basic idea of the exemplar algorithm is to delete all but
one member of each gene family (i.e., its exemplar) in each
genome being compared and return a pair of two reduced
genomes with the minimum rearrangement distance. We
further iterate the exemplar algorithm by marking the
output orthologs as singletons and repeating the algorithm

Algorithm ALG-SRDD(G, H)

/* G and H are a pair of related genomes */

1. Apply the three (sub)optimal rules given in Lemmas 4.4 — 4.6
2. Run the APPROX-MCP algorithm

3. Run the GREEDY-MCD algorithm

4. Sort G into H according to the above cycle decomposition

Fig. 8. An outline of the heuristic for SRDD.

on the new genomes again and again until no duplicated
genes are left in the genomes.

The simulated data is generated as follows: Start from a
genome G with n distinct symbols whose signs are
generated randomly. Each symbol defines a single gene
family. Then, randomly combine two gene families into a
new family until r singletons are left in the genome G. In
order to obtain a related genome H, perform k reversals on
the genome G. The boundaries of these reversals are
uniformly distributed within the size of the genome.
Therefore, the triple (n,r, k) specifies the parameters for
generating a pair of related genomes.

We ran the exemplar algorithm and ALG-SRDD on
10 random instances for each combination of parameters.
Each run of ALG-SRDD typically takes less than 1 second on
a PC with 24GHz CPU and 1GB RAM, while the exemplar
algorithm needs about 4 seconds. Fig. 9 shows the average
performance of both algorithms over 10 instances in terms
of the number of incorrectly assigned orthologs and the
reversal distance. On average, the number of genes with
incorrectly assigned orthologs generally increases as the
number of reversals k increases. However, our heuristic
always produces fewer incorrect ortholog assignments than
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Fig. 9. Comparison of ALG-SRDD and the exemplar algorithm on simulated data. The two pictures on the left depict the average numbers of
incorrectly assigned orthologs on instances with different numbers of reversals and the pictures on the right depict the average difference between

the calculated reversal distance and the actual reversal distance.
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Fig. 10. The size distribution of gene families constructed for each pair of genomes. The numbers of gene families of size two are not shown in the

figure for clarity (they are 355, 321, and 348, respectively).

the exemplar algorithm. In fact, the gap grows with the
number of reversals and the number of duplicates. For n =
100 and r = 80, our algorithm produces an average of one
or fewer errors for each k£ < 50 and an average of 5 or fewer
errors for each k < 80 reversals. For r = 60, our algorithm
then produces an average of one or fewer errors for each
k < 20 and 5 or fewer errors for each k < 50 reversals. These
statistics indicate that our method is quite reliable in
assigning orthologs. We also observe that the distance
values calculated by both algorithms are almost equal to the
actual reversal distance k& when k is small (or moderately
large). However, as k increases, both algorithms constantly
underestimate the actual reversal distance (even when no
duplicated gene exists in every genome of interest [27]).

5.2 Real Genome Sequence Data

Here, we analyzed the X chromosomes of human (Hormo-
sapiens, NCBI build 34, July 2003; UCSC hg16), mouse (Mus
musculus, NCBI build 32, October 2003; UCSC mm4), and
rat (Rattus norvegicus, Baylor HGSC v. 3.1, June 2003; UCSC
rn3). We excluded genes whose (protein) sequences are not
available in Genbank (as of January 2004), we downloaded
922 genes from the human X chromosome, 1,030 genes from
mouse, and 899 genes from rat, respectively. In the first step
of SOAR, an all-versus-all sequence comparison was
performed between each pair of chromosomes using

BLASTp and then families of homologous genes were
constructed. The size distribution of gene families (consist-
ing of genes from a pair of genomes) is illustrated in Fig. 10.
Because orthology between two singletons (one from each
genome) from gene families of size two can be trivially
assigned, we are left with 92 families between human and
mouse (87 between human and rat and 102 between mouse
and rat, respectively) whose orthology needs to be
determined. By using ALG-SRDD, SOAR assigned 583 pairs
of orthologous genes between human and mouse, 518 pairs
between human and rat, and 599 pairs between mouse and
rat (as shown in Table 1).

The genome rearrangement between human and mouse X
chromosomes found by ALG-SRDD consists of 123 reversal
operations and its breakpoint graph includes 143 break-
points, which is depicted in Fig. 11. In contrast, by studying
synteny blocks, Pevzner and Tesler [16] reported that there
are at least seven macrorearrangements (with a DNA
sequence span > 1 Mb) and 177 microrearrangements, some
of which may be inaccurate due to assembly errors. Note that
the synteny blocks are required to be unique when generated
so that the H-P formula can be applied to calculate the
reversal distance. The breakpoint graphs showing genome
rearrangement for human/rat (117 reversals and 135 break-
points) and for mouse/rat (155 reversals and 188 breakpoints)
obtained by ALG-SRDD are also shown in Fig. 11. Given these

TABLE 1
Comparison of Ortholog Assignments by INPARANOID and SOAR
assignable INPARANOID SOAR common
orthologs' | assigned? | specificity” | sensitivity¢ | assigned | specificity | sensitivity | orthologsé
human/mouse 300 527 65.5% 92.6% 583 62.4% 94.6% 509
human/rat 116 468 78.8% 93.1% 518 75.8% 92.2% 448
mouse/rat 115 542 81.8% 98.2% 599 81.4% 99.1% 524

t The total number of assignable ortholog pairs between two chromosomes. ' The total number of ortholog pairs assigned. " The number of true
positives divided by the total number of true positives and false positives (excluding pairs with unknown names). ¢ The percentage of true positives
among all assignable ortholog pairs. ¢ The number of orthologs assigned by both INPARANOID and SOAR.
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Fig. 11. The breakpoint graph of human and mouse X chromosomes (top), of human and rat X chromosomes (middle), and of mouse and rat X
chromosomes (bottom). Note that the pictures only show the orderings of the genes in the genomes, not their physical locations.

breakpoint graphs, orthologs between each pair of chromo-
somes can be assigned in a straightforward way. The
resulting dot-plot graphs showing orthology mappings are
illustrated in Fig. 12. The dot-plot graph between human and
mouse is very similar to the one obtained by Pevzner and
Tesler [16], which uses (unique) synteny blocks. However, if
we disregard the difference in coordinate units, there is an
interesting and noticeable difference between them. The
difference occurs in the synteny block (ID 279) spanning from
coordinate 78,691,856bp to 83,712,889bp in human X chromo-
some with the block spanning from coordinate 100,126,658bp
to 105,951,929bp in mouse X chromosome. Pevzner and
Tesler’s results were based on the old versions of human
assembly (NCBI build 30, June 2002; UCSC hg12) and mouse
assembly (MGSC v3, Februry 2002; UCSC mm?2) and reported
that these two synteny blocks correspond to each other with
opposite orientations [16]. We looked at the genes that are
located in these blocks. Because different versions of genome
assemblies were investigated, the coordinates of synteny
blocks have greatly changed. Using a tool that converts
genome coordinates between assemblies (from http://
genome.ucsc.edu/cgi-bin/hgLiftOver), we found that the
corresponding block in human NCBI build 34 spans from
82,083,913bp to 87,212,145bp, where 13 annotated genes were
located. Unfortunately, we could not find a way to convert
coordinates between different mouse assemblies. Thus, the
exact coordinates of block 279 in mouse NCBI build 32 are
unknown to us. Out of the 13 human genes, however, 10 are
assigned orthologous genes that are closely located in a block

chrX:101,348,568-106,260,520 in the new version of mouse
assembly and two genes have no homologous hits at all.” In
addition, by comparing gene names between these two
mouse assemblies (via http://genome-mma2.cse.ucsc.edu/
cgi-bin/hgGateway), three orthologous genes can also be
found in the synteny block 279 of mouse MGSC v3 assembly,
further indicating that the block chrX:101,348,568-106,260,520
in the new assembly probably corresponds to synteny
block 279 of the previous version of mouse assembly (MGSC
v3, February 2002, UCSC mm?2). Of all these 10 orthologous
pairs, each has the same transcription direction, which
suggests the same orientation of the two human and mouse
blocks. This discrepancy can be viewed as a sampling
problem where gene-based maps are examined instead of
sequence-based maps, and would be worth an in-depth
investigation.

5. One may wonder why the remaining gene, named RPS6KA6, was
assigned a mouse orthologous gene that is far from the block
chrX:101,348,568-106,260,520 in mouse genome. We examined all the
annotated genes in mouse NCBI build 32 assembly and found no gene
with name RPS6KA6 (see our Web site for the detailed experimental
data, which was downloaded from the NCBI GenBank database as of
January 2004). It implies that the human gene RPS6KA6 was destined
to be given a wrong ortholog by our approach because its true mouse
ortholog was missing. We further looked at the latest version of
mouse assembly (NCBI build 33 May 2004; UCSC mmb5), and found a
gene with the name Rpséka6, which is located at chrX:102,716,041-
102,790,574 and really within the block chrX:101,348,568-106,260,520 (if
we assume no or small coordinate shift between mouse NCBI build
32 assembly and NCBI build 33 assembly). Detailed information can
be found on the Web site http://www.cs.ucr.edu/~xinchen/soar.htm.
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Fig. 12. Dot-plot graphs showing ortholog mapping between pairs of
human, mouse, and rat X chromosomes. The X-axis/Y-axis represent
the human/mouse/rat X chromosomes in terms of genes instead of DNA
sequences as used in [16]. A blue point in the graph represents an
orthologous pair of genes having the same transcriptional direction,
while a red point represents an orthologous pair of genes that have
different transcriptional directions.

The number of rearrangement events that occurred
between mammalian X chromosomes is believed to be well
below 40 percent of the number of common genes involved
[3]. According to the preceding simulation results, among
the 583 pairs of assigned orthologs between human and
mouse X chromosomes, less than eight pairs are expected to
be incorrectly assigned if we could assume that no other

rearrangement events than reversals have taken place since
the split of human and mouse.

Unfortunately, not much is known (or has been experi-
mentally verified) about the true orthology among these
genes because the functions of them are mostly unknown.
Therefore, we took an indirect approach to validate our
assignments by using the gene annotation information in
Genbank, namely, gene names (or symbols). The name of a
gene is usually given to convey the character or function of
the gene [26]. Genes with identical names are likely to be an
orthologous pair, although genes with different names
could still be orthologs due to naming inconsistency in
Genbank. Some of the names begin with “LOC,” implying
that these genes have not yet been assigned official names/
symbols. Gene pairs involving such names are ignored in all
subsequent statistics. If a pair of genes output by SOAR
have completely identical names, we count them as a true
positive pair; otherwise, it is counted as a false positive pair.
We also calculate the total number of assignable pairs of
orthologs between all three pairs of X chromosomes in our
dataset, i.e., the total number of pairs of genes with identical
names. For example, there are 300 assignable ortholog pairs
between human and mouse. Among the 583 ortholog pairs
predicted by SOAR, 284 are true positives, 128 involve
genes without official names, and 171 are false positives,
resulting in a sensitivity of 94.6 percent and a specificity of
62.4 percent (see Table 1 for definitions). Observe that the
specificity number may not be accurate because genes with
different names could still be orthologs.

In order to compare SOAR with existing homology-
based methods for ortholog assignment, we implemented
the INPARANOID algorithm described in [17]. The latter
algorithm relies on BBHs (i.e., bidirectional best hits)
between genes from two genomes. In practice, BBHs have
been widely used to assign orthologs between two species,
e.g., the HomoloGene database of Genbank (http://
www.ncbinlm.nih.gov/HomoloGene). In our experiment,
INPARANOID reported 527 ortholog pairs between human
and mouse with a sensitivity of 92.6 percent, which is
slightly worse than that of SOAR, and a specificity of
65.5 percent, which is slightly better than that of SOAR (but
recall that the specificity numbers are not very reliable).
One of the ortholog pairs that were correctly assigned by
SOAR but not by INPARANOID is gene MAGEA4 of
human and gene Magea4 of mouse. Since BLASTp did not
give any BBH between MAGEA4 and Magea4, INPAR-
ANOID failed to assign orthology between them. There are
a total of 509 pairs of orthologs assigned by both
INPARANOID and SOAR, accounting for 96.5 percent of
all the ortholog pairs assigned by INPARANOID, indicating
the agreement between these two different approaches.
More experimental results can be found on the SOAR
Webpage (http:/ /www.cs.ucr.edu/~xinchen/soar.htm).

The comparative results on all three pairs of genomes are
summarized in Table 1. The results demonstrate that SOAR
and INPARANOID make similar assignments, although
they use different methods to assign orthologs, i.e., one is
entirely based on homology search and the other relies
mainly on genome rearrangement. SOAR performs slightly
better than INPARANOID in terms of sensitivity, even
though the validation method is a bit biased in favor of
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homology-based ortholog assignment methods since many
genes in Genbank were named via homology search.

6 CONCLUSION AND FUTURE RESEARCH

In this paper, we presented a novel approach to ortholog
assignment that takes into account both sequence similarity
and evolutionary events (i.e., reversals) at the genome level.
We formulated the problem as that of computing the signed
reversal distance with duplicates (SRDD) between the two
genomes of interest. The problem was decomposed into two
new optimization problems (MCP and MCD), for which we
designed and analyzed efficient algorithms. We implemen-
ted the algorithm in a system for assigning orthologs on a
genome scale, called SOAR.

Our preliminary experiments on simulated and real data
have demonstrated that ortholog assignment via genome
rearrangement is a very promising method. The current
version of SOAR does not consider genome rearrangement
events such as transposition, gene loss, and gene insertion.
It also ignores the issue of inparalogs and works only with
single-chromosomal genomes. We plan to look into these
extensions in the future.
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