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Abstract. The assignment of orthologous genes between a pair of
genomes is a fundamental and challenging problem in comparative ge-
nomics, since many computational methods for solving various biological
problems critically rely on bona fide orthologs as input. While it is usu-
ally done using sequence similarity search, we recently proposed a new
combinatorial approach that combines sequence similarity and genome
rearrangement. This paper continues the development of the approach
and unites genome rearrangement events and (post-speciation) duplica-
tion events in a single framework under the parsimony principle. In this
framework, orthologous genes are assumed to correspond to each other
in the most parsimonious evolutionary scenario involving both genome
rearrangement and (post-speciation) gene duplication. Besides several
original algorithmic contributions, the enhanced method allows for the
detection of inparalogs. Following this approach, we have implemented
a high-throughput system for ortholog assignment on a genome scale,
called MSOAR, and applied it to the genomes of human and mouse.
As the result will show, MSOAR is able to find 99 more true orthologs
than the INPARANOID program did. We have also compared MSOAR
with the iterated exemplar algorithm on simulated data and found that
MSOAR performed very well in terms of assignment accuracy. These
test results indiate that our approach is very promising for genome-wide
ortholog assignment.

1 Introduction

Orthologs and paralogs, originally defined in [6], refer to two fundamentally differ-
ent types of homologous genes. They differ in the way that they arose: orthologs
are genes that evolved by speciation, while paralogs are genes that evolved by
duplication. To better describe the evolutionary process and functional diver-
sification of genes, paralogs are further divided into two subtypes: outparalogs,
which evolved via an ancient duplication preceding a given speciation event un-
der consideration, and inparalogs, which evolved more recently, subsequent to
the speciation event [16][10]. For a given set of inparalogs on a genome, there
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Fig. 1. An illustration of orthologous and paralogous relationships. After two speciation
events and two gene duplications, three present genomes, G1 = (A1), G2 = (B1, C1)
and G3 = (B2, C2, C3) are obtained. In this scenario, all genes in G2 and G3 are co-
orthologous to gene A1. Genes B1 and C1 are outparalogs w.r.t. G3 (i.e., the 2nd
speciation), and are inparalogs w.r.t. G1 (i.e., the 1st speciation). Gene C2 is the
direct descendant (i.e., true exemplar) of the ancestral gene C while C3 is not, if C3 is
duplicated from C2. C1 and C2 are said to form a pair of main orthologs.

commonly exists a gene that is the direct descendant of the ancestral gene of the
set, namely the one that best reflects the original position of the ancestral gene
in the ancestral genome. Sankoff [17] called such a gene the true exemplar of the
inparalogous set. Given two genomes, two sets of inparalogous genes (one from
each genome) are co-orthologous if they are descendants of the same ancestral
gene at the time of speciation. These concepts are illustrated in Figure 1.

Clearly, orthologs are evolutionary and, typically, functional counterparts in
different species. Therefore, many existing computational methods for solving
various biological problems, e.g., the inference of functions of new genes and the
analysis of phylogenetic relationship between different species, use orthologs in
a critical way. A major complication with the use of orthologs in these methods,
however, is that orthology is not necessarily a one-to-one relationship because a
single gene in one phylogenetic lineage may correspond to a whole family of inpar-
alogs in another lineage. More caution should be taken while such one-to-many
and many-to-many relationships are applied to the transfer of functional assign-
ments because inparalogs could have acquired new functions during the course
of evolution. As a consequence, the identification of orthologs and inparalogs, es-
pecially those one-to-one orthology relationships, is critical for evolutionary and
functional genomics, and thus a fundamental problem in computational biology.

It follows from the definition of orthologs and paralogs that the best way to
identify orthologs is to measure the divergence time between homologous genes
in two different genomes. As the divergence time could be estimated by com-
paring the DNA or protein sequences of genes, most of the existing algorithms
for ortholog assignment, such as the well-known COG system [21][23] and IN-
PARANOID program [16], rely mainly on sequence similarity (usually measured
via BLAST scores [1]). An implicit, but often questionable, assumption behind
these methods is that the evolutionary rates of all genes in a homologous family
are equal. Incorrect ortholog assignments might be obtained if the real rates of
evolution vary significantly between paralogs. On the other hand, we observe
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that molecular evolution proceeds in two different forms: local mutation and
global rearrangement. Local mutations include base substitution, insertion and
deletion, and global rearrangements include reversal (i.e. inversion), transloca-
tion, fusion, fission and so on. Apparently, the sequence similarity-based methods
for ortholog assignment make use of local mutations only and neglect genome
rearrangement events that might contain a lot of valuable information.

In our recent papers [4][5], we initiated the study of ortholog assignment via
genome rearrangement and proposed an approach that takes advantage of evolu-
tionary evidences from both local mutations and global rearrangements. It begins
by identifying homologous gene families on each genome and the correspondence
between families on both genomes using homology search. The homologs are then
treated as copies of the same genes, and ortholog assignment is formulated as
a natural optimization problem of rearranging one genome consisting of a se-
quence of (possibly duplicated) genes into the other with the minimum number
of reversals, where the most parsimonious rearrangement process should sug-
gest orthologous gene pairs in a straightforward way. A high-throughput system,
called SOAR, was implemented based on this approach. Though our preliminary
experiments on simulated data and real data (the X chromosomes of human and
mouse) have demonstrated that SOAR is very promising as an ortholog assign-
ment method, it has the drawback of ignoring the issue of inparalogs. In fact, it
assumed that there were no gene duplications after the speciation event consid-
ered. As a consequence, it only outputs one-to-one orthology relationships and
every gene is forced to form an orthologous pair. Moreover, it is only able to deal
with unichromosomal genomes. In this paper, we present several improvements
that are crucial for more accurate ortholog assignment. In particular, the method
will be extended to deal with inparalogs explicitly by incorporating a more realis-
tic evolutionary model that allows duplication events after the speciation event.
In summary, our main contributions in this study include

– We introduce a subtype of orthologs, called main orthologs, to delineate sets
of co-orthologous genes. For two inparalogous sets of co-orthologous genes,
the main ortholog pair is simply defined as the two true exemplar genes of
each set (see Figure 1 for an example).1 Since a true exemplar is a gene
that best reflects the original position of the ancestral gene in the ancestral
genome, main orthologs are therefore the positional counterpart of orthologs
in different species. By definition, main orthologs form a one-to-one corre-
spondence, thus allowing for the possibility of direct transfer of functional
assignments. We believe that, compared with other types of ortholog pairs,
main orthologs are more likely to be functional counterparts in different
species, since they are both evolutionary and positional counterparts.

– In our previous study, the evolutionary model assumes that there is no gene
duplication subsequent to the given speciation event. Thus, no inparalogs are
assumed to be present in the compared genomes, which is clearly inappro-
priate for nuclear genomes. In this paper, we propose a parsimony approach

1 Note that, our definition of a main ortholog pair is different from the one in [16],
where it refers to a mutually best hit in an orthologous group.



A Parsimony Approach to Genome-Wide Ortholog Assignment 581

based on a more realistic evolutionary model that combines both rearrange-
ment events (including reversal, translocation, gene fusion and gene fission)
and gene duplication events. This will allow us to treat inparalogs explicitly.
More specifically, in order to assign orthologs, we reconstruct an evolution-
ary scenario since the splitting of the two input genomes, by minimizing the
(total) number of reversals, translocations, fusions, fissions and duplication
events necessary to transform one genome into the other (i.e., by computing
the rearrangement/duplication distance between two genomes). Such a most
parsimonious evolutionary scenario should reveal main ortholog pairs and
inparalogs in a straightforward way.

– Computing the rearrangement/duplication distance between two genomes is
known to be very hard. We have developed an efficient heuristic algorithm
that works well on large multichromosomal genomes like human and mouse.
We strengthen and extend some of the algorithmic techniques developed in
[4][5], including (sub)optimal assignment rules, minimum common partition,
and maximum graph decomposition, as well as a new post-processing step
that removes “noise” gene pairs that are most likely to consist of inparalogs.

– Based on the above heuristic algorithm, we have implemented a high-through
put system for automatic assignment of (main) orthologs and the detection
of inparalogs on a genome scale, called MSOAR. By testing it on simulated
data and human and mouse genomes, the MSOAR system is shown to be
quite effective for ortholog assignment. For example, it is able to find 99 more
true ortholog pairs between human and mouse than INPARANOID [16].

Related work. In the past decade, many computational methods for ortholog
assignment have been proposed, most of which are based primarily on sequence
similarity. These methods include the COG system [21][23], EGO (previously
called TOGA)[11], INPARANOID [16], and OrthoMCL [12], just to name a few.
Some of these methods combine sequence similarity and a parsimony principle,
such as the reconciled tree method [25] and the bootstrap tree method [20],
or make use of synteny information, such as OrthoParaMap [3] and the recent
method proposed by Zheng et al. [26]. However, none of these papers use genome
rearrangement. On the other hand, there have been a few papers in the litera-
ture that study rearrangement between genomes with duplicated genes, which
is closely related to ortholog assignment. Sankoff [17] proposed an approach to
identify the true exemplar gene of each gene family, by minimizing the break-
point/reversal distance between two reduced genomes that consist of only true
exemplar genes. El-Mabrouk [14] developed an approach to reconstruct an ances-
tor of a modern genome by minimizing the number of duplication transpositions
and reversals. The work in [13][18] attempts to find a one-to-one gene corre-
spondence between gene families based on conserved segments. Very recently,
Swenson et al. [19] presented some algorithmic results on the cycle splitting
problem in a combinatorial framework similar to the one introduced in [4][5].

The rest of the paper is organized as follows. We first discuss the parsimony
principle employed in our ortholog assignment approach in Section 2. Section 3
describes the heuristic algorithm implemented in MSOAR. Section 4 will present
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our experiments on simulated data and on the whole genome data of human and
mouse. Finally, some concluding remarks are given in Section 5.

2 Assigning Orthologs Under Maximum Parsimony

The two genomes to be compared, denoted as Π and Γ , have typically under-
gone series of genome rearrangement and gene duplication events since they split
from their last common ancestral genome. Clearly, we could easily identify main
orthologs and inparalogs if given such an evolutionary scenario. Based on this
observation, we propose an approach to reconstruct the evolutionary scenario
on the basis of the parsimony principle, i.e., we postulate the minimal possible
number of rearrangement events and duplication events in the evolution of two
genomes since their splitting so as to assign orthologs. Equivalently, it can be
formulated as a problem of finding a most parsimonious transformation from
one genome into the other by genome rearrangements and gene duplications,
without explicitly inferring their ancestral genome. Let R(Π, Γ ) and D(Π, Γ )
denote the number of rearrangement events and the number of gene duplica-
tions in a most parsimonious transformation, respectively, and RD(Π, Γ ) de-
notes the rearrangement/duplication (RD) distance between Π and Γ satisfying
RD(Π, Γ ) = R(Π, Γ ) + D(Π, Γ ). Most genome rearrangement events will be
considered in this study, including reversal, translocation, fusion and fission.

In practice, we will impose two constraints on this optimization problem,
based on some biological considerations. First, we require that at least one
member of each family that appears in the other genome be assigned orthol-
ogy, because each family should provide an essential function and the gene(s)
retaining this function is more likely conserved during the evolution. Second,
observe that the assignment of orthologs that leads to the minimum rearrange-
ment/duplication distance is not necessarily unique. Therefore, among all as-
signments with the minimum rearrangement/duplication distance, we attempt
to find one that also minimizes R(Π, Γ ), in order to avoid introducing unneces-
sary false orthologous pairs.

Figure 2 presents a simple example to illustrate the basic idea behind our par-
simony approach. Consider two genomes, Π = −b−a1+c+a2+d+a4+e+f +g
and Γ = +a1 + b + c + a2 + d + e + a5 + f + a3 + g, sharing a gene family a
with multiple copies. As shown in Figure 2, both genomes evolved from the same
ancestral genome +a + b + c + d + e + f + g, Π by one inversion and one gene
duplication and Γ by two gene duplications, respectively. By computing the re-
arrangement/duplication distance RD(Π, Γ ) = 4, the true evolutionary scenario
can be reconstructed, which then suggests that the two genes a1 form a pair of
main orthologs, as well as the two genes a2. Meanwhile, a3, a4, and a5 are inferred
as inparalogs that were derived from duplications after the speciation event. It
is interesting to see that here a4 is not assigned orthology to a3 or a5 greedily.
(Note that they are orthologs, but not main orthologs, by our definition.) This
simple example illustrates that, by minimizing the reversal/duplication distance,
our approach is able to pick correct main orthologs out of sets of inparalogs.
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Fig. 2. An evolutionary history of two genomes Π and Γ . Π evolved from the ancestor
by one inversion and one gene duplication, and Γ by two duplications.

Note that, although gene loss may occur in the course of evolution, it actually
has no impact on the capability of assigning ortholog by our method. If an
inparalog is lost, the gene loss event can be simply ignored and this will not affect
ortholog assignment. If some gene of a main ortholog pair is lost, our approach
attempts to identify the other gene as an inparalog rather than to assign it a
wrong orthology, which also makes some sense especially when considering the
transfer of functional assignment.

3 The MSOAR System

Following the parsimony principle discussed in the previous section, we have im-
plemented a high-throughput system for ortholog assignment, called MSOAR. It
employs a heuristic to calculate the rearrangement/duplication distance between
two genomes, which can be used to reconstruct a most parsimonious evolutionary
scenario. In this section, we discuss in detail the heuristic algorithm.

We represent a gene by a symbol of some finite alphabet A, and its orientation
by the sign + or −. A chromosome is a sequence of genes, while a genome is a set
of chromosomes. Usually, a genome is represented as a set Π = {π(1), · · · , π(N)},
where π(i) = 〈π(i)1 · · · π(i)ni〉 is a sequence of oriented genes in the ith chro-
mosome. Recall the genome rearrangement problem between two genomes with
distinct oriented genes. Hannenhalli and Pevzner developed algorithms for cal-
culating genome rearrangement distance on both unichromosomal [7] and mul-
tichromosomal genomes [8] in polynomial time. The rearrangement distance
between multichromosomal genomes is the minimum number of reversals, translo-
cations, fissions and fusions that would transform one genome into the other.
Given two multichromosomal genomes Π and Γ , Hannenhalli and Pevzner [8]
gave a formula for calculating the genome rearrangement distance (called the
HP formula in this paper). Tesler [22], and Ozery-Flato and Shamir [15] then
suggested some corrections to the formula (called the revised HP formula):

d(Π, Γ )=b(Π, Γ ) − c(Π, Γ )+pΓΓ (Π, Γ )+r(Π, Γ )+� s
′
(Π,Γ )−gr

′
(Π,Γ )+fr

′
(Π,Γ )

2 �

where b(Π, Γ ) is the number of black edges in the breakpoint graph G(Π, Γ ),
c(Π, Γ ) is the overall number of cycles and paths, pΓΓ (Π, Γ ) is the number of
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′
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′
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[15]. In practice, the dominant parts of the formula are the first three terms.
When the genomes Π and Γ contain duplicated genes, however, the rearrange-

ment/duplication distance problem (i.e. RD(Π, Γ )) cannot be directly solved
by the revised HP formula. In fact, we can prove that computing the rearrange-
ment/duplication distance is NP-hard by a reduction similar to the one employed
in the proof of Theorem 4.2 of [5]. Note that, once the main ortholog pairs are as-
signed and the inparalogs are identified, the rearrangement/duplication distance
can be easily computed as follows. The number of duplications is determined by
the number of inparalogs. After removing all the inparalogs, the rearrangement
distance between the reduced genomes, which now have equal gene content, can
be computed using the above formula since every gene can be regarded as unique.
An outline of MSOAR is illustrated in Figure 3.

3.1 Homology Search and Gene Family Construction

MSOAR starts by calculating the pairwise similarity scores between all gene
sequences of the two input genomes. An all-versus-all gene sequence comparison
by BLASTp is used to accomplish this. As in [16], two cutoffs are applied to
each pair of BLASTp hits. Two genes are considered homologous if (1) the bit
score is no less than 50 and (2) the matching segment spans above 50% of each
gene in length. In order to eliminate potential false main ortholog pairs, we take
the top five bidirectional best hits of each gene as its potential main orthologs if
their logarithmic E-value is less than the 80% of the best logarithmic E-value. By
clustering homologous genes using the standard single linkage method, we obtain
gene families. A gene family is said to be trivial if it has cardinality exactly 2,
i.e. with one occurrence in each genome. Otherwise it is said to be non-trivial.
A gene belonging to a trivial (or non-trivial) family is said to be trivial (or non-
trivial, resp.). We use a hit graph (denoted as H) to describe the relationship
between genes within each family. A hit graph is a bipartite graph illustrating
the BLASTp hits between two genomes. Each vertex represents a gene and an
edge connects two vertices from different genomes if they are potential main
orthologs. Figure 4 gives an example of the hit graph. Adjacent genes in the hit
graph are regarded as candidates for main ortholog pairs.

3.2 (Sub)Optimal Assignment Rules

We presented three assignment rules for identifying individual ortholog assign-
ments that are (nearly) optimal in SOAR [4][5]. In MSOAR, we will add two
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Fig. 4. A hit graph for genomes Π = {〈+a, +d〉, 〈+b1, −c1, −b2〉} and Γ =
{〈+a, +b3, +c2〉, 〈+b4, +c3, +d〉}, each having two chromosomes

more assignment rules, which could make the system more efficient. The four
rearrangement operations (reversal, translocation, fission and fusion) can be
mimicked by reversals when we represent a multichromosomal genome by a con-
catenate [8][22]. This approach reduces the problem of computing rearrangement
distance between two multichromosomal genomes to the problem of computing
the reversal distance between two optimal concatenates. Since these two new
rules are only concerned with segments of consecutive genes within a single
chromosome, which also form gene segments in an optimal concatenate, the
unichromosomal HP formula [7] can be used to prove their (sub)optimality. Let
G and H be two chromosomes in genomes Π and Γ , respectively. A chromo-
some segment is defined as a substring of some chromosome (i.e. a consecutive
sequence of genes). A chromosome segment (gi1gi2 · · · gin) in G matches a chro-
mosome segment (hj1hj2 · · · hjn) in H if git and hjt are connected by an edge in
the hit graph and have the same orientations for all 1 ≤ t ≤ n.

Theorem 1. Assume that a chromosome segment (gi1gi2 · · · gin) in G, matches
a chromosome segment (hj1hj2 · · · hjn) in H or its reversal, where gi1 ,gin , hj1

and hjn are trivial but the other genes are not. Define two new genomes Π ′ and
Γ ′ by assigning orthology between git and hjt or git and gjn+1−t (in the case of
matching by a reversal), for all 1 ≤ t ≤ n. Then, RD(Π, Γ ) ≤ RD(Π ′, Γ ′) ≤
RD(Π, Γ ) + 2.

Theorem 2. Assume that for a chromosome segment (gi1gi2 · · · gin) in G and
a chromosome segment (hj1hj2 · · ·hjn) in H, gi1 matches hj1 , gin matches hjn ,
and gi2 · · · gin−1 matches the reversal of hj2 · · · hjn−1 , where gi1 , gin , hj1 and
hjn are trivial but the other genes are not. Define two new genomes Π ′ and
Γ ′ by assigning orthology between git and gjn+1−t, for all 1 < t < n. Then,
RD(Π, Γ ) ≤ RD(Π ′, Γ ′) ≤ RD(Π, Γ ) + 2.

3.3 Minimum Common Partition

We extend the minimum common partition (MCP) problem, which was first in-
troduced in [4][5] to reduce the number of duplicates of each gene in ortholog
assignment, to multichromosomal genomes. Use π(i)j to represent a chromo-
some segment or its reversal in chromosome i of genome Π . A chromosome
partition is a list {π(i)1, π(i)2, · · · , π(i)n} of chromosome segments such that the
concatenation of the segments (or their reversals) in some order results in the
chromosome i. A genome partition is the union of some partitions of all the
chromosomes. A list of chromosome segments is called a common partition of
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two genomes Π and Γ if it is a partition of both Π and Γ . Furthermore, a min-
imum common partition is a partition with the minimum cardinality (denoted
as L(Π, Γ )) over all possible common partitions of Π and Γ . The MCP problem
is the problem of finding the minimum common partition between two given
genomes. Two genomes have a common partition if and only if they have equal
gene content (i.e. they have the same number of duplications for each gene).

We can further extend MCP to an arbitrary pair of genomes that might have
unequal gene contents. A gene matching M between genomes Π and Γ is a
matching between the genes of Π and Γ , which can be defined by a maximum
matching in their hit graph H. Given a gene mathing M, two reduced genomes
(denoted as Π̃M and Γ̃M) with equal gene content can be obtained by removing
all the unmatched genes. The minimum common partition of Π and Γ is defined
as the minimum L(Π̃M, Γ̃M)) among all gene matchings M.

Given two genomes Π and Γ , recall that RD(Π, Γ ) is the rearrangement/
duplication distance between them. Let Nu be the number of unmatched genes
introduced by a gene matching and Nc be the number of chromosomes. Based
on the fact that inserting two genes into the two genomes under consideration,
one for each genome, will increase the rearrangement distance by at most three,
the following theorem can be obtained to establish the relationship between the
minimum common partition and the rearrangement/duplication distance.

Theorem 3. For any two genomes Π and Γ , (L(Π, Γ ) − Nc − 2)/3 + Nu ≤
RD(Π, Γ ) ≤ L(Π, Γ ) + 2Nc + Nu + 1.

An efficient heuristic algorithm for MCP on unichromosomal genomes was given
in [4][5]. The algorithm constructs the so called ”pair-match” graphs and then
attempts to find a large independent set. We extend the method to multichro-
mosomal genomes in a straightforward way.

3.4 Maximum Graph Decomposition

After minimum common partition, the genomes Π and Γ may still contain du-
plicates, although the number of duplicates is expected to be small. In order to
match all the genes, we define another problem, called maximum graph decom-
position (MGD). The MGD problem is: among all pairs of reduced genomes of
Π and Γ obtained by all possible gene matchings, find one with the maximum
value of c(Π, Γ ) − pΓΓ (Π, Γ ).

Using the basic framework developed in [4][5], we design a greedy algorithm
in MSOAR to solve MGD using a new graph, called the complete-breakpoint
graph. The complete-breakpoint graph associated with Π and Γ is denoted as
G, which is adapted from the breakpoint graph of multichromosomal genomes
of equal gene content consisting of only singletons [8]. The prefix “complete” is
added here to differentiate from the partial graphs in [4][5]. If Π and Γ have
different numbers of chromosomes, add null chromosomes to the genome with
fewer chromosomes to make them both have Nc chromosomes. As defined in [8],
a cap is used as a marker that serves as a chromosomal end delimiter when we
convert a multichromosomal genome into a unichromosomal genome. A capping



A Parsimony Approach to Genome-Wide Ortholog Assignment 587

a t a h

d ta t a hcap1 h d h cap2 t cap4 t

cap2 t cap3 h d t d h

b 1
t

b 1
h

c 1
h

c 1
t

b 2
h

b 2
t

b 3
t

c 2
t

c 2
h

b 4
t

b 4
h

c 3
t

c 3
h

b 3
h

cap1 h

cap3 h

cap4 t

Fig. 5. The complete-breakpoint graph of two genomes with unequal gene contents
Π = {〈+a, +d〉, 〈+b1, −c1, −b2〉} and Γ = {〈+a,+b3, +c2〉, 〈+b4, +c3, +d〉}. The hit
graph of these two genomes is shown in Figure 4.

of a chromosome π(i) is π(i) = 〈π(i)0π(i)1 · · ·π(i)niπ(i)ni+1〉, where π(i)0 is the
left cap of π(i), called lcap, and π(i)ni+1 is the right cap, called rcap. Choose any
capping and an arbitrary concatenation to transform Π and Γ into unichrom-
somal genomes π̂ and γ̂. In the complete-breakpoint graph G, every gene or cap
g from each genome is represented by two ordered vertices αt αh if α is positive
or αh αt if it is negative. Insert black edges between vertices that correspond to
adjacent genes (or caps) in the same genome except the pairs of the form αh

i and
αt

i from the same gene (or cap) αi. Insert cross-genome grey edges (π̂t
i ,γ̂

t
j) and

(π̂h
i , γ̂h

j ) if gene π̂i and gene γ̂j are connected by an edge in the hit graph or they
are the same caps. Next, we delete the left vertex of every lcap, the right vertex
of every rcap and all the edges incident on them. The calculation of RD dis-
tance using the resulting graph no longer depends on the actual concatenations.
Finally, we make the complete-breakpoint graph independent on the capping of
Γ , by deleting the 2Nc black edges incident on the γ̂ cap vertices. These cap
vertices are called Π-caps. The vertex on the other end of a deleted black edge
is called a Γ -tail unless the black edge arises from a null chromosome, in which
case both of its ends are Π-caps. An example of the complete-breakpoint graph
is shown in Figure 5. The complete-breakpoint graph contains both cycles and
paths. Depending on whether the end points are both Π-caps, both Γ -tails or
one of each, a path could be classified as a ΠΠ-path,ΓΓ -path or ΠΓ -path.

After the complete-breakpoint graph is constructed, we try to find small cycles
and short ΠΓ -paths first, and then finish the decomposition by finding the rest
of ΠΠ-paths and ΓΓ -paths. The decomposition has to satisfy the following three
conditions: (1) every vertex belongs to at most one cycle or path (2) the two
vertices representing each gene must be connected respectively to the two vertices
of a single gene in the other genome by edges of the cycles or paths, otherwise
both must be removed, i.e., the connections satisfy a pairing condition; and (3)
the edges within a genome and across genomes alternate in a cycle or a path.
Intuitively, small cycles may lead to large cycle decompositions, although it is not
always the case. Moreover, the more ΠΓ -paths, the fewer ΓΓ -paths, because the
number of Γ -tail vertices is fixed and each vertex can only belong to at most one
path. Note that during the cycle decomposition, some gene vertices might have
all of their cross-genome edges removed since Π and Γ may have unequal gene
contents and these genes are regarded as inparalogs. If two gene vertices αt

i and
αh

i have no cross genome edges incident on them during the cycle decomposition,
they need to be removed from the complete-breakpoint graph right away and a
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black edge need to be inserted between two endpoints of the deleted black edges
arising from αt

i and αh
i .

Any feasible solution of the MCD problem gives a maximal matching between
the genes of Π and the genes of Γ . The genes that have not been matched will be
assigned as inparalogs of the matched ones in the same family. The matched genes
suggest possible main ortholog pairs and a rearrangement scenario to transform
Π to Γ by the operations reversal, translocation, fusion and fission.

3.5 “Noise” Gene Pairs Detection

The maximum graph decomposition of a complete-breakpoint graph G deter-
mines a one-to-one gene matching between two genomes. Unmatched genes are
removed since either they are potential inparalogs or their orthology counter-
parts were lost during the evolution. However, some individual paralogs might
be forced to be assigned as main ortholog pairs because the maximum graph
decomposition always gives a maximal matching between all the genes. There-
fore, it is necessary to remove these “noise” gene pairs so that the output main
ortholog pairs are more reliable.

After removing the unmatched genes, we obtain two reduced genomes with
equal gene content. Remove all the gene pairs whose deletion would decrease
the rearrangement distance of reduced genomes by at least two. Note that, in
this case, the rearrangement/duplication distance will never increase since the
deletion of a gene pair may only increase the number of duplications required in
an optimal scenario by two. As mentioned before, we require that at least one
main ortholog pair of each gene family be kept during this post-processing.

MSOAR combines the suboptimal ortholog assignment rules, heuristic MCP
algorithm, heuristic MGD algorithm, and “noise” gene pair detection step to
find all the potential main ortholog pairs and detect inparalogs.

4 Experiments

In order to test the performance of MSOAR as a tool of assigning orthologs, we
have applied it to both simulated and real genome sequence data, and compared
its results with two well-known algorithms in the literature, namely, an iterated
version of the exemplar algorithm and INPARANOID.

4.1 Simulated Data

In order to assess the validity of our parsimony principle as a means of distin-
guishing main orthologs from inparalogs, we conduct two simple experiments
to estimate the probability of inparalogs that may incorrectly be assigned or-
thology by transforming one genome into another with the minimum number of
rearrangement and duplication events. The first experiment is done as follows.
First, we simulate a genome G with 100 distinct genes, and then randomly per-
form k reversals on G to obtain another genome H . The boundaries of these
reversals are uniformly distributed within the genome. Next, make a copy of
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Fig. 6. Distribution of the number of inparalogs correctly identified by the parsimony
principle

some gene that is randomly selected from H and insert it back into H as a
duplicate. Clearly, the inserted gene is an inparalog, by definition. In this case,
there are only two possible ortholog assignments between G and H . Therefore,
we can easily calculate the rearrangement/duplicate distance between G and H ,
and know the ortholog assignment that will be made by the parsimony principle.
We repeat the above procedure on 100 random instances for each k, 0 ≤ k < 60,
and count the number of instances for which the inparalogs are correctly iden-
tified. The distribution of these inparalogs against the number k of reversals
is plotted in Figure 6 (the curve marked “one inparalog inserted”). The result
shows that with a very high probability (> 90%, for each k < 55) the main
ortholog and inparalog can be correctly identified. This suggests that an orthol-
ogy assignment between two genes that are the positional counterparts between
two genomes tends to result in the smaller rearrangement/duplication distance,
compared to the distance given by an assignment involving inparalogs.

The second experiment is conducted to estimate the probability that two in-
paralogs, one from each genome, would be identified as a main ortholog pair,
instead of as two individual inparalogs. Its data is generated similarly as the first
experiment, except that a same copy of the gene is also inserted into genome G,
resulting in a non-trivial gene family of size four in both genomes. As before,
we count the number of instances for which two inparalogs are correctly iden-
tified, and plot its distribution in Figure 6 (the curve marked “two inparalogs
inserted”). The result shows that it is very unlikely that two inparalogs from
different genomes are assigned as a (main) ortholog pair. This and the above
findings provide some basic support for the validity of using the parsimony ap-
proach to identify main orthologs.

We further use simulated data to assess the performance of our heuristic
algorithm for ortholog assignment. In order to make a comparison test, we im-
plemented the exemplar algorithm [17] and extended it into a tool for ortholog
assignment as described in [5], called the iterated exemplar algorithm. The simu-
lated data is generated as follows. Start from a genome G with n distinct symbols
whose signs are generated randomly. Each symbol defines a single gene family.
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Then randomly combine two gene families into a new family until r singletons
are left in the genome G. Perform k reversals on G to obtain a genome H as in
the previous experiments. Finally, randomly insert c inparalogs (each is a copy of
some gene randomly selected) into the two genomes. Note that some singletons
may be duplicated during this step so that more non-trivial gene families could
be generated. The quadruple (n, r, k, c) specifies the parameters for generating
two genomes as test data.

We run the iterated exemplar algorithm [17][5] and our heuristic algorithm
on 20 random instances for each combination of parameters. The average per-
formance of both algorithms is shown in Figure 7, in terms of the number of
incorrectly assigned orthologs (i.e., genes in a genome that are not assigned or-
thology to their positional counterparts in the other genome) and inparalogs. As
we can see, our heuristic algorithm is quite reliable in assigning orthologs and
identifying inparalogs. On average, the number of incorrect assignments gen-
erally increases as the number of reversals k increases. While both algorithms
perform equally well for inparalogous gene identification, our heuristic algorithm
produces fewer incorrect ortholog assignments than the iterated exemplar algo-
rithm, especially for the instances generated using parameters n = 100, r = 80,
and c = 5 (see Figure 7).
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4.2 Real Data

We consider two model genomes: Human (Homo sapiens) and Mouse (Mus mus-
culus). Gene positions, transcripts and translations were downloaded from the
UCSC Genome Browser [9] web site (http://genome.ucsc.edu). We used the
canonical splice variants from the Build 35 human genome assembly (UCSC
hg17, May 2004) and the Build 34 assembly of the mouse genome (UCSC mm6,
March 2005). There are 20181 protein sequences in human genome assembly
hg17 and 17858 sequences in mouse genome assembly mm6. Due to assembly
errors and other reasons, 220 human and 114 mouse genes were mapped to more
than one location in the respective genomes. For such a gene, we kept the first
transcription start position which is closest to the 5

′
end as its start coordinate.

A homology search was then performed and a hit graph between human and
mouse built as described in Section 3.1.
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As shown in Table 1, before removing “noise” gene pairs, MSOAR assigned
13395 main orthologs pairs between human and mouse. Then MSOAR removed
177 “noise”gene pairs and output 13218 main orthologs pairs. The distribu-
tion of the number of orthologs assigned by MSOAR between human chro-
mosomes and mouse chromosomes is illustrated in Fig 8. It shows that the
top 3 chromosome pairs between human and mouse with the largest num-
bers of orthologs are human chromosome 17 vs. mouse chromosome 11, hu-
man chromosome 1 vs. mouse chromosome 4, and human chromosome X vs.
mouse chromosome X, which are consistent with the Mouse Human synteny
alignments. (http://www.sanger.ac.uk/Projects/M musculus/publications/
fpcmap-2002/mouse-s.shtml).

We validate our assignments by using gene annotation, in particular, gene
names. To obtain the most accurate list of gene names, we have cross-linked
database tables from the UCSC Genome Browser with gene names extracted
from UniProt [2] release 6.0 (September 2005). The official name of a gene is
usually given to convey the character or function of the gene [24]. Genes with
identical names are most likely to be an orthologous pair, although we should
keep in mind that many names were given mostly based on sequence similarity
and erroneous/inconsistent names are known to exist in the annotation. Some
genes have names beginning with “LOC” or ending with “Rik” or even have no
names, implying that these genes have not yet been assigned official names or
their functions have not been validated. If a pair of genes output by MSOAR
have completely identical gene symbol, we count them as a true positive pair; if
they have different names without substring “LOC”or “Rik”, it is a false positive
pair; otherwise, it is counted as an unknown pair. We also calculate the total
number of assignable pairs of orthologs, i.e. the total number of pairs of genes

Fig. 8. Distribution of the number of ortholog pairs assigned by MSOAR across all
pairs of the human and mouse chromosomes. The chromosome pairs with more than
250 main ortholog pairs are labeled. E.g., the highest bar is human chromosome 17 vs.
mouse chromosome 11, between which 825 main ortholog pairs were assigned.
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with identical names. For example, there are 9891 assignable orthologous gene
pairs between human and mouse. Before removing “noise” gene pairs, MSOAR
predicted 13395 ortholog pairs, among which 9263 are true positives, 2171 are
unknown pairs and 1961 are false positives, resulting in a sensitivity of 93.65%
and a specificity of 81.01%. After removing “noise” gene pairs, MSOAR predicted
13218 ortholog pairs, among which 9214 are true positives, 2126 are unknown
pairs and 1878 are false positives, resulting in a sensitivity of 93.16% and a
specificity of 81.25%. It is interesting to note that the last step of MSOAR
identified 177 “noise” gene pairs, among which 72.32% were false positives. This
result shows that the identification of “noise” gene pairs effectively detects false
positives and could provide more reliable ortholog assignment.

The comparison result between MSOAR and INPARANOID [16] is shown
in Table 1. MSOAR was able to identify 99 more true ortholog pairs than IN-
PARANOID, although it also reported more false positives.

Table 1. Comparison of ortholog assignments between MSOAR and INPARANOID

assignable assigned true positive unkown
MSOAR (before removing “noise” pairs) 9891 13395 9263 2171
MSOAR (after removing “noise” pairs) 9891 13218 9214 2126

INPARANOID 9891 12758 9115 2034

5 Concluding Remarks

Although we anticipate that the system MSOAR will be a very useful tool for
ortholog assignment, more systematics tests will be needed to reveal the true
potential of this parsimony approach. Our immediate future work includes the
incorporation of transpositions into the system and consideration of weighing
the evolutionary events.

Acknowledgment

This project is supported in part by NSF grant CCR-0309902, a DoE GtL sub-
contract, National Key Project for Basic Research (973) grant 2002CB512801,
NSFC grant 60528001, and a fellowship from the Center for Advanced Study,
Tsinghua University. Also, the authors wish it to be known that the first two
authors should be regarded as joint First Authors of this paper. The contact
email addresses are {zfu,jiang}@cs.ucr.edu

References

1. S. Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of protein
database searchprograms.NucleicAcidsResearch, vol. 25, no. 17,pp3389-3402, 1997.

2. A. Bairoch et al. The Universal Protein Resource (UniProt). Nuc. Acids Res.
33:D154-D159, 2005.



A Parsimony Approach to Genome-Wide Ortholog Assignment 593

3. S.B. Cannon and N.D. Young. OrthoParaMap: distinguishing orthologs from par-
alogs by integrating comparative genome data and gene phylogenies. BMC Bioin-
formatics 4(1):35, 2003.

4. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Computing
the assignment of orthologous genes via genome rearrangement. In Proc. 3rd Asia
Pacific Bioinformatics Conf. (APBC’05), pp. 363-378, 2005.

5. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang The assign-
ment of orthologous genes via genome rearrangement. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 2, no. 4, pp. 302-315, 2005.

6. W.M. Fitch. Distinguishing homologous from analogous proteins. Syst. Zool. 19:
99-113, 1970.

7. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). Proc. 27th Ann. ACM
Symp. Theory of Comput. (STOC’95), pp. 178-189, 1995.

8. S. Hannenhalli, P. Pevzner. Transforming men into mice (polynomial algorithm for
genomic distance problem). Proc. IEEE 36th Symp. Found. of Comp. Sci., 581-592,
1995.

9. D. Karolchik, K.M. Roskin, M. Schwartz, C.W. Sugnet, D.J. Thomas, R.J. Weber,
D. Haussler and W.J. Kent. The UCSC Genome Browser Database. Nucleic Acids
Res., vol. 31, no. 1, pp. 51-54, 2003.

10. E. Koonin. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet.,
2005.

11. Y. Lee et al. Cross-referencing eukaryotic genomes: TIGR orthologous gene align-
ments (TOGA). Genome Res., vol. 12, pp. 493-502, 2002.

12. L. Li, C. Stoeckert, D. Roos. OrthoMCL: identification of ortholog groups for
eukaryotic genomes. Genome Res., vol. 13, pp. 2178-2189, 2003.

13. M. Marron, K. Swenson, and B. Moret. Genomic distances under deletions and
insertions. Theoretic Computer Science, vol. 325, no. 3, pp. 347-360, 2004.

14. N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments du-
plications and reversals. Journal of Computer and System Sciences, vol. 65, pp.
442-464, 2002.

15. M. Ozery-Flato and Ron Shamir. Two notes on genome rearragnements. Journal
of Bioinformatics and Computational Biology, Vol. 1, No. 1, pp. 71-94, 2003.

16. M. Remm, C. Storm, and E. Sonnhammer. Automatic clustering of orthologs and
in-paralogs from pairwise species comparisons. J. Mol. Biol. 314, 1041-1052, 2001.

17. D. Sankoff. Genome rearrangement with gene families. Bioinformatics 15(11):
909-917, 1999.

18. K. Swenson, M. Marron, J. Earnest-DeYoung, and B. Moret. Approximating the
true evolutionary distance between two genomes. Proc. 7th SIA Workshop on Al-
gorithm Engineering & Experiments, pp. 121-125, 2005.

19. K. Swenson, N. Pattengale, and B. Moret. A framework for orthology assignment
from gene rearrangement data. Proc. 3rd RECOMB Workshop on Comparative
Genomics, Dublin, Ireland, LNCS 3678, pp. 153-166, 2005.

20. C. Storm and E. Sonnhammer. Automated ortholog inference from phylogenetic
trees and calculation of orthology reliability. Bioinformatics, vol. 18, no. 1, 2002.

21. R.L. Tatusov, M.Y. Galperin, D.A. Natale, and E. Koonin. The COG database:
A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids
Res. 28:33-36, 2000.

22. G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. Jour-
nal of Computer and System Sciences, vol. 65, no. 3, pp. 587-609, 2002.



594 Z. Fu et al.

23. R.L. Tatusov, E. Koonin, and D.J. Lipman. A genomic perspective on protein
families. Science, vol. 278, pp. 631-637, 1997.

24. H.M. Wain, E.A. Bruford, R.C. Lovering, M.J. Lush, M.W. Wright and S. Povey.
Guidelines for human gene nomenclature. Genomics 79(4), 464-470, 2002.

25. Y.P. Yuan, O. Eulenstein, M. Vingron, and P. Bork. Towards detection of ortho-
logues in sequence databases. Bioinformatics, vol. 14, no. 3, pp. 285-289, 1998.

26. X. Zheng et al. Using shared genomic synteny and shared protein functions
to enhance the identification of orthologous gene pairs. Bioinformatics 21(6):
703-710, 2005.


	Introduction
	Assigning Orthologs Under Maximum Parsimony
	The MSOAR System
	Homology Search and Gene Family Construction
	(Sub)Optimal Assignment Rules
	Minimum Common Partition
	Maximum Graph Decomposition
	 ``Noise'' Gene Pairs Detection

	Experiments
	Simulated Data
	Real Data

	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




