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Recent proteome-wide screening efforts have made available genome-wide, high-through-
put protein-protein interaction (PPI) maps for several model organisms. This has enabled
the systematic analysis of PPI networks, which has become one of the primary challenges
for the system biology community. Here we address the problem of predicting the func-
tional classes of proteins (i.e., GO annotations) based solely on the structure of the PPI
network. We present a maximum likelihood formulation of the problem and the cor-
responding learning and inference algorithms. The time complexity of both algorithms
is linear in the size of the PPI network and our experimental results show that their
accuracy in the functional prediction outperforms current existing methods.
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1. Introduction

High-throughput protein-protein interaction (PPI) networks with various levels of
proteome coverage are currently available for several model organisms, namely
S. cerevisiae20, D. melanogaster8,7, C.elegans13, H. sapiens16 and H. pylori15.
PPI data can be obtained through a variety of sophisticated assays, like co-
immunoprecipitation, yeast two hybrid, tandem affinity purification and mass spec-
trometry. A PPI network is usually represented by a node-labeled undirected graph
where vertices correspond to proteins and edges denote physical interactions.

Since the main mechanism by which cells are able to process information is
through protein-protein interactions, PPI data has been essential to obtain new
knowledge and insights in a wide spectrum of biological processes. In this paper,
we focus on the problem of predicting the functional category of proteins solely

∗A preliminary version of this work was presented at the 7th International Workshop on Data
Mining in Bioinformatics, San Jose CA, and included in its Proceedings (2007).
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based on the topological structure of the PPI network. The rationale of this ap-
proach is based on the observation that a protein is much more likely to interact
with another protein in the same functional class than with a protein with a dif-
ferent function11,22,19,14. The prediction of functional classes can be useful either
for proteins for which there is little or non-existing functional information (e.g., for
predicting the involvement of a protein in specific pathway), or to confirm existing
annotations provided by other methods. Motivated by the expectation that in the
near future massive PPI networks will be available, here we propose a computation-
ally efficient method that accurately determines the functional categories and will
be capable to scale gracefully with the size of the network.

A variety of algorithmic techniques have been proposed in the literature to solve
the problem of functional prediction with a wide range of computational complex-
ity. Perhaps the most computationally efficient algorithm is based on the majority
rule where the function of an unknown protein is simply determined by the most
common function among its interacting partners18. A slightly more sophisticated
majority-based method is the χ2-method9. At the other end of the computational
complexity spectrum, Vazquez et al.22,11 propose to assign proteins to functional
classes so that the number of protein interactions among different functional cat-
egories is minimized. The optimization problem, known as generalized multicut, is
NP complete14.

The functional flow algorithm14 lays somewhere in the middle of the complexity
spectrum. The idea is to treat proteins with known function as infinite sources
of (functional) flow. The flow is propagated through the network in a series of
discrete steps. At the end, the function of unknown proteins is assigned based on the
largest amount of flow received. Nabieva et al.14 show that functional flow algorithm
outperforms the generalized multicut algorithm, the majority rule-based algorithm
and also its generalization to more distant neighbors14. Chua et al.2 show that
functional flow also outperforms the χ2-method. Because of this, the performance
of functional flow is the reference for our algorithm. Experimental results will show
that our method achieves a better prediction accuracy than functional flow.

Perhaps the most similar method to the one we propose here is described in
Deng et al.’s work5,6, where the authors propose a probabilistic model based on
the theory of Markov random fields. In their follow-up papers 3, Deng et al. show
how to integrate in their Markov random field additional information, namely gene
expression data, protein complex information, domain structures to increase the
prediction accuracy. The relationship between this work and that of Deng et al.5,6

will be discussed in greater detail later. Here, however, we want to emphasize that
the method presented in this manuscript is computationally more efficient than
Deng et al. Unfortunately, the accuracy of their prediction cannot be directly com-
pared with ours because these methods predict multiple functional classes for each
protein. The approach proposed by Letovsky et al.12 is essentially similar to that
of Deng et al.6.

More recent papers tackle slightly different albeit related problems. Srinivasan
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et al.19 predict functional linkages between proteins based on the integration of four
kinds of evidence, namely gene co-expression, gene co-inheritance, gene co-location
and gene co-evolution. Jaimovich et al.10 predict protein interactions based on the
cellular localization of proteins.

2. Problem definition and model formulation

We denote by G(V,E) the PPI network under analysis, where V represents the set
of vertices(proteins) and E is the set of edges (interactions). For reason that will be
clear later in the paper, we assume G to be directed (i.e., each undirected edge in the
original PPI is represented by two directed edges of opposite directions, except for
self-loops). We denote the set of k given functional classes as F = {C1, C2, . . . , Ck}.
Each functional class can be thought as one of k possible colors that can be used
to color the graph. Function f : V → F captures the notion of functional class
for all the proteins in V . When the function of a protein v ∈ V is known, say
Ci, then we will have f(v) = Ci. If the function of v is unknown, then f(v) = ∅.
We define W = {v ∈ V : f(v) ∈ F} to be the set of proteins whose function is
known and U = V \W to be the set of the proteins whose function is unknown.
The functional annotation problem can be informally stated as follows. Given a
PPI network G(W ∪ U,E) where W is annotated with functional classes, find the
correct functional classes for the vertices in U .

The model used here to tackle the problem is entirely probabilistic and it is
based on two simple observations. First, a simple statistical analysis on the avail-
able PPI data17 and the associated GO functional annotations1 reveals that the
distribution associated with the functional classes is highly skewed. For example,
in the S. cerevisiae network, the function “catalytic activity” is assigned to 1,514
proteins, whereas the function “protein tag” is only assigned to 5 proteins. This ob-
servation constitutes our prior knowledge on the probability of a randomly chosen
protein to perform a certain function and can be captured by the notion of prior
distribution. We denote the prior distribution by P : F → [0, 1], where P(Ci) is the
probability of a randomly chosen protein to have function Ci.

Second, our model has to incorporate the connectivity structure of the PPI
networks. As said, it is well-known that a protein is more likely to interact with
another protein performing the same function11,22,19,14. We model this preference
using conditional probability distributions. If protein t ∈W has function Ci and pro-
tein s ∈ U interacts with t, then the probability that s performs function Cj is given
by P(Cj |Ci). We expect P(Ci|Ci) to be higher than P(Cj |Ci), ∀j 6= i, because s is
more likely to perform the same function as t. This can be easily generalized to mul-
tiple interacting partners. Suppose we want to predict the function of protein s ∈ U
and that we know that t1, t2, t3, . . . , tm ∈ W interact with s, as well as their func-
tions f(t1), f(t2), f(t3), . . . , f(tm). If we assume that f(t1), f(t2), f(t3), . . . , f(tm)
are independent and distributed according to the conditional multinomial distri-
bution [P(C1|f(s)),P(C2|f(s)),P(C3|f(s)), . . . ,P(CK |f(s))], then the most likely
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function for s is the one that maximizes

L(s) = P(f(s))
∏

t∈{t1,t2,...,tm}
P(f(t)|f(s)) = P(f(s))

∏

t∈V :(s,t)∈E
P(f(t)|f(s)).

We call L(s) the local likelihood of protein s.
Note that a necessary condition to predict the functional class for s ∈ U is to

know the functional classes of the neighbors of s. Very often, however, the functions
of the neighbors turn out to be unknown. Clearly, the assignment of a function
to protein s may affect the prediction of the functions for the neighbors of s, and
vice versa. Because of this, a purely local strategy is insufficient. To address this
problem, we need to introduce the concept of global likelihood of a PPI Network as
L(G) =

∏
v∈V L(v).

The free variables in the global likelihood function L(·) are f(ui), for all proteins
ui ∈ U with unknown function. We seek the assignment to f(ui) such that the global
likelihood L(G) is maximized, which is equivalent to maximizing

l(G) =
∑

v∈V
log(P(f(v))) +

∑

w∈V :(v,w)∈E
log[P(f(w)|f(v))]

Now we are ready to give a formal summary of the optimization problem associ-
ated with our model. We are given a directed PPI network G(W ∪U,E) where U is
the set of proteins with unknown functions and W is the set of proteins with known
functions, a set of functions F , a prior distribution P with

∑
Ci∈F P(Ci) = 1, and

the conditional distributions P(Ci|Cj) such that
∑
Ci∈F P(Ci|Cj) = 1, ∀Cj ∈ F .

The problem is to predict the functional class f(u) for each protein in set U , such
that the global log likelihood l(G) is maximized.

3. Relation to previous works

Our model implicitly defines a Markov random field (MRF), a probabilistic model
which is also used in Deng et al.’s works5,6. In Deng et al.’s works5,6, a distinct MRF
is built for each functional class in F . Each protein in the PPI network is associated
to an indicator random variable for that function of interest. More specifically,
each protein is associated with a unary potential eφ(Xi), which has value eφ(1) if
the protein has that function and eφ(0) otherwise. Each edge of the PPI graph is
associated with a binary potential eψ(Xi,Xj), which can take three possible values,
namely eψ(1,1) if both of the proteins have the function, eψ(0,1) if one of the proteins
has the function, and eψ(0,0) if neither of the proteins has the function. Given the
parameters θ = {φ(0), φ(1), ψ(1, 1), ψ(0, 1), ψ(0, 0)}, the global Gibbs distribution
of the entire network is simply the product of the unary potentials and the binary
potentials normalized by a constant factor depending on the parameters, as follows.

P{X1, X2, X3, . . . , Xn|θ} = e
Pn

i=1 φ(Xi)+
P

(i,j)∈E ψ(Xi,Xj)/Z(θ)

Note that in our model, the prior probability P(f(vi)) corresponds to the unary
potential in Deng’s model, whereas the product P(f(vi)|f(vj))P(f(vj)|f(vi)) cor-
responds to the binary potential.
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Despite the similarities, there are significant differences between Deng et al.’s
model and ours. First, instead of building a distinct MRF for each function, we only
have one unified probabilistic model for all the functions in F which allows us to
capture the correlations between the functions. Second, the use of conditional dis-
tributions dramatically simplifies the process of estimating the parameters, which
boils down to a simple count of relevant statistics (details to be explained in Sec-
tion 4). The semantics of the conditional distributions also naturally give rise to the
efficient iterative algorithm that we will develop later. Finally, since we are model-
ing from the conditional distributions, the normalization factor of the global Gibbs
distribution in our model is always one irrespective of the parameters we use.

A less obvious connection can be established between our model and the gen-
eralized multicut approach by Vazquez et al.22. Recall that in this latter approach,
the objective is to assign functional annotations to unknown proteins in such a
way that one minimizes the number of times neighboring proteins have different
annotations. A formal description of the generalized multicut problem follows. Let
I be the standard indicator function which is equal to 1 if the boolean expression
is true and 0 otherwise. Given a PPI network G(U ∪W,E) we seek annotations to
the proteins in U such that

∑
(u,v)∈E I(f(u) 6= f(v)) is minimized.

Fact 1. The generalized multicut problem is a special case of our optimization prob-
lem when the prior distribution is uniform and most of the mass of the conditional
probabilities is concentrated around P(Ci|Ci).

Proof. Let us consider the following prior distribution and conditional distribu-
tions.

P(Ci) = 1/|F| ∀Ci ∈ F
P(Cj |Ci) = ε ∀Ci, Cj ∈ F , Ci 6= Cj

P(Ci|Ci) = 1− (|F| − 1)ε ∀Ci ∈ F
where 0 < ε < 1 is an arbitrarily small number.

Then, the global log likelihood for the graph can be written as

l(G(V,E)) =
∑

v∈V
log(P(f(v))) +

∑

(v,w)∈E
log(P(f(w)|f(v)))

=
∑

v∈V
log(1/|F|) +

∑

(v,w)∈E,f(w)6=f(v)
log(P(f(w)|f(v)))

+
∑

(v,w)∈E,f(w)=f(v)

log(P(f(w)|f(v)))

= |V | log(1/|F|) +
∑

(v,w)∈E,f(w)6=f(v)
log(ε)

+
∑

(v,w)∈E,f(w)=f(v)

log(1− (|F| − 1)ε)
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= |V | log(1/|F|) + |E| log(1− (|F| − 1)ε)

+(log(ε)− log(1− (|F| − 1)ε))
∑

(v,w)∈E
I(f(v) 6= f(w)) (1)

Note that the first two terms of (1) are constants and that the third term
increases as the quantity

∑
(v,w)∈E I(f(v) 6= f(w)) decreases because log(ε)−log(1−

(|F|−1)ε) is negative for a sufficiently small ε. Therefore, under this particular prior
distribution and conditional distributions, maximizing the global log likelihood in
our problem is equivalent to minimizing the objective function in the generalized
multicut problem.

The generalized multicut problem is NP complete14 because it is a generalization
of the multi-way cut problem21, which is known to be NP complete. Since our
problem is a generalization of the generalized multicut problem, it is NP complete
as well.

4. Parameter learning

The prior distribution and the conditional distributions are multinomial distribu-
tions whose parameters can be learned from the structure of the give PPI and
the functional annotations on W . We need to determine k − 1 parameters for the
prior and k(k − 1) parameters for the k conditional distributions. We obtain these
parameters using the maximum likelihood estimation method.

Let F (W,E′) be the subgraph of G(V,E) induced by the set W of known pro-
teins, where E′ = {(u, v)|(u, v) ∈ E, u ∈ W, v ∈ W}. The global likelihood for the
subgraph F (W,E′) is defined as follows.

L(F (W,E′))=
∏

v∈W
P(f(v))

∏

(u,v)∈E′
P(f(u)|f(v))

=
∏

Ci∈F
P(Ci)

P
v∈W I(f(v)=Ci)

·
∏

Ci∈F

∏

Cj∈F
P(Cj |Ci)

P
(vi,vj)∈E′ I(f(vi)=Ci,f(vj)=Cj) (2)

The first term in (2) is maximized when P(Ci) =
∑
v∈W I(f(v) = Ci)/|W |

for all Ci ∈ F . The second term in (2) is maximized when P(Cj |Ci) =P
(vi,vj)∈E′ I(f(vi)=Ci,f(vj)=Cj)P

(vi,vj)∈E′ I(f(vi)=Ci)
for all Cj ∈ F . Therefore, the maximum likelihood

estimates for the parameters are

P(Ci) =
∑

v∈W
I(f(v) = Ci)/|W | Ci ∈ F

P(Cj |Ci) =

∑
(vi,vj)∈E′ I(f(vi) = Ci, f(vj) = Cj)∑

(vi,vj)∈E′ I(f(vi) = Ci)
Ci, Cj ∈ F
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As a common practice in Bayesian statistics, we apply (uniform) Dirichlet priors
to our estimators. This prevents the problem of handling zero probabilities. The time
complexity of the learning phase is O(|E|+ |W |), whereas the space complexity is
O(k2).

5. Inference of functional classes

Since we determined that our problem is NP complete, it is rather unlikely that we
will find a polynomial time algorithm that can solve the problem optimally. To this
end, we designed a statistically based iterative algorithm (SBIA for short), which
turns out to perform well in practice. Our algorithm consists of two phases, namely
the initialization phase and the iterative phase. The initialization phase consists of
two steps. In the first step, we estimate the parameters for the prior distribution
and the conditional distributions as described in Section 4. In the second step, we
assign an initial functional class to each protein in V , as follows.

For each unknown protein v ∈ U , we assign

f0(v) = argmaxCi∈F P(Ci)
∏

(v,t)∈E,t∈W
P(f0(t)|Ci).

wherein argmax is an operator that returns the optimal argument that maximizes
the objective function that follows. In other words, we predict the initial function
for v to be the one that maximizes the local likelihood of v (ignoring neighbors with
unknown functions). If v ∈ W , then we set f0(v) to be the function corresponding
to its annotation in the original data.

In the second phase, we iteratively re-evaluate our predictions. For clarity of
exposition we use superscripts to denote the iteration number, i.e., fn(v) denotes
the predicted functional class for v made in the nth iteration. For each unknown
protein v ∈ U , we set

fn(v) = argmaxCi∈F P(Ci)
∏

(v,t)∈E
P(fn−1(t)|Ci).

That is, we adjust our prediction for protein v to be the function that maximizes
the local likelihood with respect to the functions predicted for its neighbors in the
previous step. Again, if v ∈W , then fn(v) = fn−1(v).

We stop the iterative process as soon as the difference between the values of
the global likelihood in two consecutive steps drops below a given threshold. The
pseudo-code in Figure 1 summarizes the algorithm. The time complexity of the
algorithm is O(d|E|), where d represents the number of iterations (usually d ≤ 5 in
our experiments).

6. Experimental results

The dataset used in our experimental studies consists of the two largest PPI net-
works available at the time of writing, namely the network for S. cerevisiae and the
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Protein function predictor(G,F , f)
Input

The PPI graph G(U ∪W, E) where W is the set of known proteins and U is the
set of proteins whose functions are to be determined.
The set of functional classes F .
The functional annotations on the known proteins f : W → F .

Output
The predicted annotations on all the proteins in the graph f : V → F
Estimate P(Ci),P(Ci|Cj) for all Ci, Cj ∈ F as described in Section 4.
for all v ∈ V do

if (v ∈ U) then f(v) = argmaxf(v)∈FP(f(v))
Q

(v,t)∈E,t∈W P(f(t)|f(v))

repeat
for all v ∈ W do f ′(v) = f(v)
for all v ∈ U do f ′(v) = argmaxf ′(v)∈FP(f ′(v))

Q
(v,t)∈E P(f(t)|f ′(v))

L(G) =
Q
v∈V P(f(v))

Q
(v,w)∈E P(f(w)|f(v))

L′(G) =
Q
v∈V P(f ′(v))

Q
(v,w)∈E P(f ′(w)|f ′(v))

for all v in V do f(v) = f ′(v)
until |L′(G)− L(G)| < ε
return f

Fig. 1. A sketch of our inference algorithm.

Table 1. The statistics of the PPI networks used in the experiments. |V | is the number of proteins
in the network, |E| is the number of interactions, |W | is the number of known proteins, and
naive expected is the expected prediction accuracy of the naive approach (see text).

17 functional classes 190 functional classes
organism |V | |E| |W | naive expected |W | naive expected

yeast 4,959 17,511 3,022 0.5010 2930 0.1939
yeast high confidence 1,735 2,354 1,325 0.4286 1278 0.1979

fly 7,451 22,818 3,858 0.6016 3796 0.2832

one for D. melanogaster. The networks were obtained from the DIP database17. The
yeast PPI network is composed of 4,959 proteins and 17,511 interactions, whereas
the fly network consists of 7,451 proteins and 22,819 interactions. We also extracted
a high confidence yeast PPI network, which is a subset of the yeast PPI network
in which interactions that are confirmed by only a single experiment have been re-
moved. This latter network has 1,735 proteins and 2354 interactions. The functional
annotations were obtained from the Gene Ontology (GO) hierarchy1.

We used cross validation to quantitatively evaluate the prediction accuracy of
our algorithm and to compare its performance with other methods. In each ex-
periment, we randomly removed the functional annotation from a percentage p of
known proteins, where p ranges from 5% to 95%. This new set of “unknown” pro-
teins served as the test set, called hereafter T . We use W \ T to denote the set
of known proteins after p% of them have been “un-labelled” and U to denote the
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Fig. 2. Prediction accuracies on the yeast PPI network with respect to the 17 functional classes
at the first level of the GO hierarchy (top) and 190 functional classes at the second level of the
GO hierarchy (bottom). The x-axis represents the percentage of known proteins on which the
algorithms are tested. The “naive expected” line indicates the expected prediction accuracy of
the naive approach. “SBIA initial” refers to the accuracy of SBIA after the initialization phase,
whereas “SBIA final” shows the final accuracy of SBIA. “Functional flow” denotes the prediction
accuracy of the functional flow algorithm

set of the remaining unknown proteins. Clearly, the SBIA’s learning phase (i.e., the
computation of the prior and the conditional probabilities) is carried out only on
the proteins in W \T . Learning on the original set W would constitute “cheating”.

So far, in our model we assumed that each protein can perform only one function.
This is, however, not true for many proteins. A protein may participate in multiple
biological processes and as a result, it will carry out multiple functions. In the
yeast network, 488 proteins out of 3,022 are annotated with two or more top level
functions. In the fly network, 1,961 proteins out of 3,858 are annotated with multiple
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functions. To handle this issue, the nodes in W that are associated with multiple
functions are replicated, so that each copy carries out exactly one of the annotated
functions. Each copy has the same interaction partners of the original protein.

As said, the goal is to predict a function for each of the proteins in set T∪U , based
on the functional classes in W \ T and the topology of the graph. For each protein
in T , we declare a prediction to be correct if the predicted function is one of the
functions the protein was originally assigned. The prediction accuracy is calculated
as the ratio between the number of correct predictions and the total number of
proteins in the set T . Since the prediction accuracy varies slightly every time we
randomly select T , we replicate the same experiments ten times and compute the
average accuracy. We also record the standard deviation, represented by the error
bars in the figures.

We compared the accuracy of our method against that of functional flow14 and
against that of the naive approach. We chose to compare SBIA against the func-
tional flow method because Chua et al.2,14 report that functional flow outperforms
both majority-rule based methods18,9 as well as methods based on the generalized
multicut22,11. As said, a direct comparison between our method and MRF-based
methods5,6,12 is not feasible because these latter approaches predict more than one
functional class for each protein. The naive method simply predicts the function
of a protein to be the most probable functional class according to the prior, i.e.,
argmaxCi∈FP(Ci). Clearly, the expected prediction accuracy of the naive approach
is equal to the ratio between the number of proteins annotated with the most prob-
able function and the total number |W | of known proteins.

We carried out two sets of experiments. In the first set, we considered the sev-
enteen top level molecular functions defined in GO. In the yeast PPI network,
3,022 proteins out of 4,959 are annotated with one or more top level functions.
The most frequent function is “catalytic activity”, which occurs 1,514 times. Thus,
the expected prediction accuracy for the naive approach is 0.501 or 50%. In the
high confidence yeast PPI network 1,325 proteins are annotated. The most frequent
function in this network is again “catalytic activity”, which is assigned to 568 pro-
teins. In the fly PPI network, 3,858 protein out of 7,451 are annotated with one or
more functions. The most prevalent function in this network is “binding”, which ap-
pears 2,321 times. Hence, the expected prediction accuracy for the naive approach
is 0.6016. The statistics of the networks constituting the dataset are summarized in
Table 1.

Figure 2-top, 3-top, and 4-top summarize the results of the first set of exper-
iments on the seventeen functional classes in the top level of the GO hierarchy.
The figures show that SBIA always outperforms functional flow, especially when
p is large. In the yeast network, the prediction accuracies of the functional flow
algorithm even falls below that of the naive approach when p is greater than 55%.
SBIA, however, still retains good prediction accuracy until p becomes higher than
70%, and then asymptotically converges to that of the naive approach. Notice that
the initialization phase of SBIA already achieves a good prediction accuracy. When
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Fig. 3. Prediction accuracy on the yeast high confidence PPI network (see caption of Figure 2 for
more details). TOP: 17 functional classes, BOTTOm: 190 functional classes.

p is less than 80%, the iterative phase improves the prediction accuracy even more,
along with the global likelihood of the graph. The number of iterations executed
is usually rather small, less than 5. When p is greater than 80%, the information
left in the network is highly incomplete, and as expected the performance of our
algorithm falls back to that of the naive approach.

Due to the higher quality of the data in the yeast high confidence network,
the improvement in accuracy of our algorithm and functional flow relative to the
naive approach is almost doubled. Rather surprisingly, in the fly network the naive
approach performs the best. Our algorithm performs slightly inferior to the naive
approach, but they are very close. The data in Table 2 shows that the information
content in terms of functional association for the fly network is only about 1/33 of
that of the yeast network and 1/86 of that of the high confidence yeast network. In
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other words, in the fly network the knowledge of the functions of the neighbors of a
protein does not help the prediction because the random variables associated with
those functions are almost independent. The only reliable information we have is
the prior distribution, whereas the structure and the annotations on the network
do not provide significant additional information. This explains why our algorithm
does not perform better than the naive approach. We postulate that the lack of
the functional association in the fly network is due to the fact that this network
was obtained mainly by high-throughput yeast-two-hybrid experiments8,7, which
are highly prone to false positive and false negative23,4.

In the second set of experiments, we considered all the 190 molecular functions
comprising the second level of the GO hierarchy. In the yeast network, 2,930 proteins
out of 4,959 yeast proteins are annotated with one or more second level molecular
functions. The most prevalent function is “hydrolase activity”, which appears 568
times. Hence the expected prediction accuracy for the naive approach is 0.1939. In
the high confidence yeast network, 1,278 out of 1,735 proteins are annotated. The
most prevalent function is “protein binding”, which is annotated to 253 proteins.
In the fly network, 3,796 out of 7,451 proteins have been annotated with one or
more second level functions. The most prevalent function is “nucleic acid binding”,
which appears 1075 times. Therefore, the expected prediction accuracy for the naive
approach is 0.2832. The statistics are summarized in Table 1.

Figure 2-bottom, 3-bottom and 4-bottom summarize the second set of experi-
mental results. In Figure 3-bottom the functional flow algorithm outperforms SBIA
by 2-3% on average. We suspect that this is due to the relatively small size of the
network (containing about 1,300 characterized proteins) under consideration and
the large number of functions (k = 190). Recall that the number of parameters of
our model is Θ(k2). In this case, we believe that there is not enough data for the
accurate estimation of the parameters for the prior distribution and the conditional
distributions. For the two other PPI network, the results are similar to that in the
previous set of experiments. On the yeast PPI Network, SBIA still outperforms
functional flow, but the difference between the two approaches is not as strong as
in the previous case. On the fly network, the functional association is still very low
as reflected in Table 2 and not surprisingly the best predictor is again the naive
approach.

7. A discussion on the functional association in PPI networks

The main assumption behind our probabilistic model is that directly interacting
proteins are likely to share the same function. Following Chua et al.2 we refer to this
property of PPI networks as direct functional association. Clearly, the performance
of our algorithm depends crucially on the degree of direct functional association.
Functional association can be negatively affected by noise or incompleteness in the
process of collecting PPI data and by potential inconsistencies or inaccuracies in
the annotations of known proteins.
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Fig. 4. Prediction accuracy on the fly PPI network (see caption of Figure 2 for more details). TOP:
17 functional classes, BOTTOM: 190 functional classes.

To quantify the degree of direct functional association, we propose a metric based
on the notion of graph entropy. Graph entropy is a metric that is routinely employed
to characterize the randomness of a graph24. Let (u, v) be an edge of the network
under study. Let X be the discrete random variable associated with the functional
class of u, and Y be the random variable associated with the functional class of
v. The domain of X and Y is clearly the set F . The mutual information I(X,Y )
between X and Y is defined as I(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X),
where H(X), H(Y ), H(Y |X) and H(X|Y ) are respectively entropies and condi-
tional entropies of the corresponding random variables. The mutual information
measures the reduction of uncertainty in one variable when we known the other.
This reduction of uncertainty matches our intuitive notion of direct functional as-
sociation between proteins u and v. Thus, we define a new metric Q that measures
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the functional association of a PPI network as Q = I(X,Y )/H(X).
The value for Q ranges from zero to one depending on the degree of functional

association between the two proteins. If one variable is independent from the other
then Q is equal to zero. If one variable is completely determined once we are given
the other, then Q is equal to one. We believe that Q relates directly to the ability
of accurate prediction of any approach solely based on functional association. For
example, when Q is close to zero, i.e., there is almost no mutual information between
X and Y , the best predictor one can use is the naive approach based only on the
prior.

Table 2 summarizes the value of Q for the three networks under study for the
two levels of GO annotations. Note that the value of the functional association Q

for the fly network is only 0.0018, which is about 33 smaller than that of the yeast
network. Note also that Q is much higher in the high confidence yeast network,
as one would expect. It is well-known that the quality of PPI data, in particular
the one obtained in high-throughput systems (like the case of Drosophila) is rather
low23,4.

8. Conclusions

We developed an efficient algorithm to assign functional GO terms to uncharacter-
ized proteins on a PPI network based solely on the topology of the graph and the
functional labels of known proteins. The statistical model proposed in this paper is
a generalization of the GenMultiCut model and resemble the MRF-based model by
Deng et.al. The similarity with the work of Deng et.al. is, however, superficial as we
discussed in details in the paper. In particular, the structure of our model allows one
to obtain easily and efficiently the maximum likelihood estimation of the underlying
parameters, which is tipically not possible for a general MRF. Based on our statis-
tical model, we presented efficient learning and inference algorithms. Our inference
algorithm is an iterative algorithm, where each iteration runs in time linear in the
size of the input. According to our experimental results, our algorithm converges
very quickly. More importantly, our method gives consistently better predictions
when compared with previous known algorithms.

Table 2. A measure of functional association in the yeast and the fly PPI network. H(X) is
the entropy of X, H(X|Y ) is the conditional entropy of X given Y , I(X, Y ) is the mutual
information between X and Y , and Q is our measure of the direct functional association.

17 functional classes 190 functional classes
organism H(X) H(X|Y ) I(X, Y ) Q H(X) H(X|Y ) I(X, Y ) Q

yeast 1.692 1.589 0.103 0.0609 3.072 2.789 0.283 0.0921
yeast high confidence 1.725 1.458 0.267 0.1548 2.950 2.236 0.714 0.2505

fly 1.694 1.691 0.003 0.0018 3.211 3.153 0.058 0.0181
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