CHECKING STATES AND TRANSITIONS OF A SET OF COMMUNICATING FINITE STATE MACHINES R.M. HIERONS Professor of Computing in Brunel University

Yousra Lembachar

University of California Riverside

December 9, 2010

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ - のへで

WHAT IS A MODEL CONSISTING OF COMMUNICATING FINITE STATE MACHINES?

One FSM produces an output that is placed in the input queue of another FSM

- Global state $(M) = (s(M_1), s(M_2)), q(M_1), q(M_2))$
- A local transition is (1, 2, a/x) and (1, 2, c/x)
- ► A global transition is ((3,3),(2,1),a/y)
- ▶ A stable state is when all the queues are empty
- (2,3) with b at the input queue of M_2 is not a stable state

- 34

Why don't we generate the product machine of these FSMs and apply standard methods?

• If the model M has n CFSMs, each CFSM i having n_i states,

• The number of the transitions of M is $O(|X|\prod_{i=1}^{i=n}(ni))$

The potential states of M are ((1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3))

Why don't we generate the product machine of these FSMs and apply standard methods?

• If the model M has n CFSMs, each CFSM i having n_i states,

• The number of the transitions of M is $O(|X|\prod_{i=1}^{i=n}(ni))$

Checking only local transitions $\Rightarrow O(\sum_{i=1}^{i=n} |X_i| n_i)$

Assumptions

Avoiding fault masking while testing local and global transitions

CHECKING LOCAL STATES

CHECKING GLOBAL STATES

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ - のへで

ASSUMPTIONS

- $\blacktriangleright M = M_1 | ... | M_n$
- ▶ No errors in communications and queueing
 - ▶ Local transitions correct \Rightarrow Global transitions correct
- M_i has one initial state
- $\blacktriangleright\ M_i$ is deterministic, minimal, strongly connected and completely specified

- ▶ The input alphabets of the M_i are disjoint
- ▶ M is a deterministic model, deadlock and live-lock free
- Only stable states are considered
- ▶ M is equivalent to the product machine
- ▶ Only output errors and transfer errors are considered

FAULT MASKING

▶ Masking an output fault

▶ Masking a state transfer fault

AVOIDING FAULT MASKING

- \blacktriangleright Assumption: When testing a local transition t, all other transitions executed are correct
 - Finding a set of global transitions that contain t that allow any fault in t to be revealed

A test from (1,1) with a will not reveal the fault since the output = x
A test from (1,3) with a will reveal the fault since the output = y

CHECKING LOCAL STATES

Finding the input sequence u that may check s for some set of states of the other $M_j \in M$

a checks that M_1 in state 1 iff M_2 is in state 3.

 \Rightarrow Constrained identification sequence CIS

CHECKING GLOBAL STATES

• Choose a CIS for each local state and execute the test sequence ... but, there are maybe some dependencies in the CIS!

Checking $s_i \Rightarrow M_j$ in s_j and s_j correct Checking $s_j \Rightarrow M_i$ in s_i and s_i correct $if s_i$ and s_j are incorrect?

 \Rightarrow Dependency circularity

DEPENDENCY DIGRAPH

Directed graph $G_D = (V_D, E_D)$ where V_D is $(d_1, ..., d_n)$ and d_i representes M_i .

CIS₁: We can use *a* to check state 1 iff M_2 is in state 3 CIS₂: We can use *c* to check 3 \Rightarrow Cycle free graph

 \Rightarrow We can use these CIS to test the final global state (1,3).

DEPENDENCY DIGRAPH

Directed graph $G_D = (V_D, E_D)$ where V_D is $(d_1, ..., d_n)$ and d_i representes M_i .

CIS₁: We can use *a* to check state 1 iff M_2 is in state 3 CIS₂: We can use *c* to check 3 \Rightarrow Cycle free graph

(c/x, d/y, c/y), reset, (c/x, d/y, a/x)

SEQUENCING CIS

▶ The edges of the dependency graph impose an ordering that may reduce the test effort.

These CISs cannot be sequenced since there is a cycle. Partitioning the set of CIS \Rightarrow many cycle free order digraphs.

э

SEQUENCING CIS

▶ Edge from d_1 to $d_2 \Rightarrow u_1$ depends on $s(M_2) \Rightarrow u_1$ before u_2 since $(u_2$ will change $s(M_2)$.)

$d_1 \longleftarrow d_3$	$O_1 \leftarrow O_3$
\setminus \uparrow	\uparrow
\searrow	Z
$d_3 \longleftarrow d_2$	$O_4 \leftarrow O_2$

These CISs cannot be sequenced since there is a cycle. Partitioning the set of CIS \Rightarrow many cycle free order digraphs.

SEQUENCING CIS

(c/x,d/y,a/x,c/y) instead of (c/x,d/y,c/y), reset, (c/x,d/y,a/x)

These CISs cannot be sequenced since there is a cycle. Partitioning the set of CIS \Rightarrow many cycle free order digraphs.

CONCLUSIONS

- ▶ An interesting approach when testing a model consisting of CFSMS.
- Testing transitions and checking states using constrained identification sets

 \Rightarrow avoids generating the product machine.

- ▶ CIS \Rightarrow circuit of dependencies
 - $\Rightarrow finding a consistent set of CIS with a circuit free digraph.$ + sequencing is possible to reduce the test effort.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シペペ

▶ No focus on how to generate the CIS or how to get a circuit free order digraph.