
Checking states and transitions of a set of
communicating finite state machines

R.M. Hierons
Professor of Computing in Brunel University

Yousra Lembachar

University of California Riverside

December 9, 2010

1/12

What is a model consisting of communicating finite
state machines?

One FSM produces an output that is placed in the input queue of another
FSM

2

1

3

a/x
b/e

a/y

a/c

b/x

b/y

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

M = M1|M2

I Global state (M) = (s(M1), s(M2)), q(M1), q(M2))

I A local transition is (1, 2, a/x) and (1, 2, c/x)

I A global transition is ((3,3),(2,1),a/y)
I A stable state is when all the queues are empty
I (2,3) with b at the input queue of M2 is not a stable state

2/12

Why don’t we generate the product machine of these
FSMs and apply standard methods?

I If the model M has n CFSMs, each CFSM i having ni states,
I The number of the transitions of M is O(|X|Πi=n

i=1 (ni)

2

1

3 2

1

3

M1 M2

(1, 2)

(2, 1)

(1, 3)

(3, 1)

(1, 1)M

The potential states of M are ((1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3,1), (3,2), (3,3))

3/12

Why don’t we generate the product machine of these
FSMs and apply standard methods?

I If the model M has n CFSMs, each CFSM i having ni states,
I The number of the transitions of M is O(|X|Πi=n

i=1 (ni)

2

1

3 2

1

3

M1 M2

(1, 2)

(2, 1)

(1, 3)

(3, 1)

(1, 1)M

Checking only local transitions ⇒ O(Σi=n
i=1 |Xi|ni)

3/12

Outline

Assumptions

Avoiding fault masking while testing local and global
transitions

Checking local states

Checking global states

4/12

Assumptions

I M = M1|...|Mn

I No errors in communications and queueing
I Local transitions correct ⇒ Global transitions correct

I Mi has one initial state
I Mi is deterministic, minimal, strongly connected and completely

specified
I The input alphabets of the Mi are disjoint

I M is a deterministic model, deadlock and live-lock free
I Only stable states are considered
I M is equivalent to the product machine
I Only output errors and transfer errors are considered

5/12

Fault masking

I Masking an output fault

2

1

3

a/x

2

1

3

M1 M2

2

1

3

a/b

2

1

3

b/xM
′
1 M

′
2

(1, 1), (2, 1), a/x)

I Masking a state transfer fault

2

1

3

a/x

c/y

a/x

2

1

3

M1 M2

2

1

3

a/x c/y

a/b

c/x 2

1

3

b/cM
′
1 M

′
2

((1, 1), (1, 1), ac/xy) ((3, 1), (3, 1), a/x)

6/12

Avoiding fault masking

I Assumption: When testing a local transition t, all other transitions
executed are correct

I Finding a set of global transitions that contain t that allow any fault in t
to be revealed

2

1

3

a/x

2

1

3

b/x

b/y

M1 M2

2

1

3

a/b

2

1

3

b/x

b/y

M
′
1 M

′
2

I A test from (1,1) with a will not reveal the fault since the output = x

I A test from (1, 3) with a will reveal the fault since the output = y

7/12

Checking local states

I Finding the input sequence u that may check s for some set of
states of the other Mj ∈ M

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

I (1,_) a/x

I (3,_) a/c

I (1/2,_) c/x

I (3,_) c/y

a checks that M1 in state 1 iff M2 is in state 3.

⇒ Constrained identification sequence CIS

8/12

Checking global states

I Choose a CIS for each local state and execute the test sequence
... but, there are maybe some dependencies in the CIS!

Checking si ⇒ Mj in sj and sj correct
Checking sj ⇒ Mi in si and si correct

}
if si and sj are incorrect?

⇒ Dependency circularity

9/12

Dependency digraph

Directed graph GD = (VD, ED) where VD is (d1, ..., dn) and di representes
Mi.

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

d1

d2

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

CIS1: We can use a to check state 1
iff M2 is in state 3

CIS2: We can use c to check 3

⇒ Cycle free graph

⇒ We can use these CIS to test the final global state (1,3).

10/12

Dependency digraph

Directed graph GD = (VD, ED) where VD is (d1, ..., dn) and di representes
Mi.

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

d1

d2

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

CIS1: We can use a to check state 1
iff M2 is in state 3

CIS2: We can use c to check 3

⇒ Cycle free graph

(c/x, d/y, c/y), reset, (c/x, d/y, a/x)

10/12

Sequencing CIS

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

d1

d2

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

I The edges of the dependency graph impose an ordering that may
reduce the test effort.

d1

d2

d3

d3

O1

O2

O3

O4

These CISs cannot be sequenced since there is a cycle.
Partitioning the set of CIS ⇒ many cycle free order digraphs.

11/12

Sequencing CIS

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

d1

d2

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

I Edge from d1 to d2 ⇒ u1 depends on s(M2) ⇒ u1 before u2 since (u2

will change s(M2).)

d1

d2

d3

d3

O1

O2

O3

O4

These CISs cannot be sequenced since there is a cycle.
Partitioning the set of CIS ⇒ many cycle free order digraphs.

11/12

Sequencing CIS

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

d1

d2

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

(c/x, d/y, a/x, c/y) instead of (c/x, d/y, c/y), reset, (c/x, d/y, a/x)

d1

d2

d3

d3

O1

O2

O3

O4

These CISs cannot be sequenced since there is a cycle.
Partitioning the set of CIS ⇒ many cycle free order digraphs.

11/12

Conclusions

I An interesting approach when testing a model consisting of CFSMS.

I Testing transitions and checking states using constrained identification
sets

⇒ avoids generating the product machine.

I CIS ⇒ circuit of dependencies
⇒ finding a consistent set of CIS with a circuit free digraph.

+ sequencing is possible to reduce the test effort.

I No focus on how to generate the CIS or how to get a circuit free order
digraph.

12/12

	Assumptions
	Avoiding fault masking while testing local and global transitions
	Checking local states
	Checking global states

