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What is a model consisting of communicating finite
state machines?

One FSM produces an output that is placed in the input queue of another
FSM
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M = M1|M2

I Global state (M) = (s(M1), s(M2)), q(M1), q(M2))

I A local transition is (1, 2, a/x) and (1, 2, c/x)

I A global transition is ((3,3),(2,1),a/y)
I A stable state is when all the queues are empty
I (2,3) with b at the input queue of M2 is not a stable state
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Why don’t we generate the product machine of these
FSMs and apply standard methods?

I If the model M has n CFSMs, each CFSM i having ni states,
I The number of the transitions of M is O(|X|Πi=n

i=1 (ni)
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The potential states of M are ((1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3,1), (3,2), (3,3))
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Why don’t we generate the product machine of these
FSMs and apply standard methods?

I If the model M has n CFSMs, each CFSM i having ni states,
I The number of the transitions of M is O(|X|Πi=n
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Checking only local transitions ⇒ O(Σi=n
i=1 |Xi|ni)
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Outline

Assumptions

Avoiding fault masking while testing local and global
transitions

Checking local states

Checking global states
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Assumptions

I M = M1|...|Mn

I No errors in communications and queueing
I Local transitions correct ⇒ Global transitions correct

I Mi has one initial state
I Mi is deterministic, minimal, strongly connected and completely

specified
I The input alphabets of the Mi are disjoint

I M is a deterministic model, deadlock and live-lock free
I Only stable states are considered
I M is equivalent to the product machine
I Only output errors and transfer errors are considered
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Fault masking

I Masking an output fault
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I Masking a state transfer fault
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Avoiding fault masking

I Assumption: When testing a local transition t, all other transitions
executed are correct

I Finding a set of global transitions that contain t that allow any fault in t
to be revealed

2

1

3

a/x

2

1

3

b/x

b/y

M1 M2

2

1

3

a/b

2

1

3

b/x

b/y

M
′
1 M

′
2

I A test from (1,1) with a will not reveal the fault since the output = x

I A test from (1, 3) with a will reveal the fault since the output = y
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Checking local states

I Finding the input sequence u that may check s for some set of
states of the other Mj ∈ M
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I (1,_) a/x

I (3,_) a/c

I (1/2,_) c/x

I (3,_) c/y

a checks that M1 in state 1 iff M2 is in state 3.

⇒ Constrained identification sequence CIS
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Checking global states

I Choose a CIS for each local state and execute the test sequence
... but, there are maybe some dependencies in the CIS!

Checking si ⇒ Mj in sj and sj correct
Checking sj ⇒ Mi in si and si correct

}
if si and sj are incorrect?

⇒ Dependency circularity
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Dependency digraph

Directed graph GD = (VD, ED) where VD is (d1, ..., dn) and di representes
Mi.
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CIS1: We can use a to check state 1
iff M2 is in state 3

CIS2: We can use c to check 3

⇒ Cycle free graph

⇒ We can use these CIS to test the final global state (1,3).
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Dependency digraph

Directed graph GD = (VD, ED) where VD is (d1, ..., dn) and di representes
Mi.
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CIS1: We can use a to check state 1
iff M2 is in state 3

CIS2: We can use c to check 3

⇒ Cycle free graph

(c/x, d/y, c/y), reset, (c/x, d/y, a/x)
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Sequencing CIS
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I The edges of the dependency graph impose an ordering that may
reduce the test effort.
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These CISs cannot be sequenced since there is a cycle.
Partitioning the set of CIS ⇒ many cycle free order digraphs.
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Sequencing CIS

2

1

3

a/x
b/e

a/y

a/c

b/x
b/y

d1

d2

2

1

3

c/x
c/x

d/y

d/f

d/x

c/y

M1 M2

I Edge from d1 to d2 ⇒ u1 depends on s(M2) ⇒ u1 before u2 since (u2

will change s(M2).)
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Sequencing CIS
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(c/x, d/y, a/x, c/y) instead of (c/x, d/y, c/y), reset, (c/x, d/y, a/x)
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These CISs cannot be sequenced since there is a cycle.
Partitioning the set of CIS ⇒ many cycle free order digraphs.
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Conclusions

I An interesting approach when testing a model consisting of CFSMS.

I Testing transitions and checking states using constrained identification
sets

⇒ avoids generating the product machine.

I CIS ⇒ circuit of dependencies
⇒ finding a consistent set of CIS with a circuit free digraph.

+ sequencing is possible to reduce the test effort.

I No focus on how to generate the CIS or how to get a circuit free order
digraph.
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