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Abstract—The discovery of repeated structure, i.e. motifs/near-

duplicates, is often the first step in exploratory data mining. As 

such, the last decade has seen extensive research efforts in 

motif discovery algorithms for text, DNA, time series, protein 

sequences, graphs, images, and video. Surprisingly, there has 

been less attention devoted to finding repeated patterns in 

audio sequences, in spite of their ubiquity in science and 

entertainment. While there is significant work for the special 

case of motifs in music, virtually all this work makes many 

assumptions about data (often to the point of being genre 

specific) and thus these algorithms do not generalize to audio 

sequences containing animal vocalizations, industrial 

processes, or a host of other domains that we may wish to 

explore. 

In this work we introduce a novel technique for finding 

audio motifs. Our method does not require any domain-

specific tuning and is essentially parameter-free. We 

demonstrate our algorithm on very diverse domains, finding 

audio motifs in laboratory mice vocalizations, wild animal 

sounds, music, and human speech. Our experiments 

demonstrate that our ideas are effective in discovering 

objectively correct or subjectively plausible motifs. Moreover, 

we show our novel probabilistic early abandoning approach is 

efficient, being two to three orders of magnitude faster than 

brute- force search, and thus faster than real-time for most 

problems.  
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I.  INTRODUCTION 

The first step in most exploratory data mining endeavors 
is the discovery and enumeration of repeated structure. This 
has been true even for data analysis that predates computers. 
For example, the decipherment of documents written in 
ancient unknown languages first requires the discovery of 
repeated elements in the scripts [7]. Given this, there has 
been significant research effort in the last decade focused on 
repeated pattern (motif/near-duplicate) discovery in text, 
DNA, graphs, time series, images, and video [20][25][27]. In 
contrast, the discovery of audio motifs, with the sole 
exception of music data, has not received much attention 
[21]. However, identifying structure in general audio 
sequences is an important and challenging task with 
applications in many diverse domains. Some representative 
examples include:  

 Acoustic wildlife monitoring has been shown to allow 

effective and non-invasive measurement of the health 

of ecosystems [36].  

 A powerful tool for investigating the role of genetics in 

human disorders modifies (“knocks out”) various genes 

in mice and examines their vocalizations for changes 

that may be linked to those genes, and hence the 

analogue genes in humans [35][40]. Figure 1 hints at 

the utility of this idea, which we revisit in Section V.D. 

In recent years this framework has emerged as an 

extremely promising tool for understanding human 

cognitive and memory disorders. 

 Audio content analysis has been shown to assist with 

video segmentation and summarization [20][25][33]. 
The above are in addition to the more obvious 

applications in the music domain, such as analysis, 
thumbnailing, retrieval, and summarization [3].  

 
Figure 1. top) Seven seconds of audio produced by a male mouse. middle) 

We searched the spectrogram of this data for repeated patterns of length 0.5 
seconds. bottom left, right) A zoom-in of the two repeated occurrences 

reveals their similarity. We will revisit this domain in Section 5.4. 

Thus far virtually all research efforts aimed at finding 
repeated patterns in audio sequences use feature extraction 
algorithms to produce low cardinality symbolic 
representations of the data and use suffix trees, hashing, or 
similar techniques to search these symbolic strings for 
approximately repeated elements [3]. The problem with this 
approach is that the feature extraction step must be highly 
tuned to the domain. For example, Zakaria et al. [40] 
demonstrate a technique to find motifs in vocalizations of a 
specific strain of lab mice called Fmr1-KO. However, it is 
not clear if this multi-stage algorithm (which requires 
significant human intervention) generalizes to other strains 
of mice, much less to other rodents.  

In contrast to these efforts, we propose an algorithm 
which is completely general, makes essentially zero 
assumptions about the data, and is essentially parameter-free. 
We achieve this by leveraging off the growing realization 
that for at least some audio similarity problems, we can best 
measure similarity when the data is transformed into the 
image space (i.e. spectrograms) [18][27]. Image processing 
algorithms themselves are not generally devoid of the need 
for feature extraction. However, we propose to use the CK 
distance measure [8], a recently introduced compression-
based measure that avoids explicitly extracting any features, 
thus remains parameter-free. We will show that the CK 
distance measure is so efficient that even a brute-force 
implementation can run in about real-time for a typical song. 



For longer audio sequences we introduce two ideas to 
mitigate the time complexity. First, we show that we can cast 
the search for audio motifs into an anytime framework [28]. 
Second, we can derive confidence bounds that allow 
searches to return the optimal audio motifs with some 
bounded probability of error. As we shall show, even if we 
allow a very conservative probability of error, we can 
achieve a massive speedup. 

The rest of the paper is organized as follows. In Section 
II we review related work. In Section III we introduce the 
necessary notation to formalize our algorithm in Section IV. 
Section V sees a detailed empirical evaluation of our ideas 
on diverse domains, and we offer conclusions and directions 
for future work in Section VI.  

II. RELATED WORK 

By far the most common approach to finding repeated 
patterns in audio is to “use string-matching techniques on a 
symbolic representation learned from the data” [3]. Given a 
high quality symbolic representation of the data, the problem 
becomes much simpler; we can just use an off-the-shelf 
symbolic repeated pattern discovery tool. This approach has 
been used in music [3] and in mice vocalizations [40]. 
However, it is obvious that the symbol extraction algorithms 
used for pop songs are unlikely to generalize to classical 
music, much less mice or insects [40]. Likewise, it is not 
clear that the symbol extraction method discussed in [40] 
will generalize to other strains of mice, much less other 
mammals. It is difficult to overstate how poorly existing 
audio motifs discovery algorithms can be expected to 
generalize. For example, [34] introduces an algorithm that is 
specialized for just Hindustani vocal music compositions. 

There is, however, research work in the speech 
recognition community that is very close in spirit to our 
work. For example, in a recent but highly cited paper, the 
authors ask how well we can do in finding repeated speech 
elements with “zero resources” [23]. By zero resources they 
mean that they assume no “models or training data for the 
target language.” Note, however, that even here researchers 
assume human speech. We would like to remove even that 
assumption, and have a completely unsupervised, parameter-
free, and zero resource algorithm that can detect repeated 
sounds in sources as diverse as human speech, wildlife 
surveillance, music, and industrial applications. 

It is important to recognize that the framing of our 
problem precludes many apparent solutions. For example, 
there is significant work in very fast audio search for 
commercial music applications. Such work is often called 
audio thumbnailing or audio fingerprinting [9]. One might 
imagine that such techniques and representations could be 
adapted to the task at hand. However, most such methods 
assume that there is a “platonic ideal” sound snippet, say a 
master recording of a song. The instances matching this 
idealized template might not be bit-for-bit identical due to 
different encodings, or in the case of Shazam/SoundHound
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 Shazam/SoundHound are commercial mobile phone based music 

identification services. A cell phone’s built-in microphone is used to 

gather a brief sample of music being played. An acoustic fingerprint is 
created based on the sample, and is compared against a central database 

for a match. 

corruption by background noise as the user records the music 
with a mobile device. Nevertheless, the problem reduces to 
matching two objects that are essentially identical, except 
that one has minor noise/distortions. Most critically, the two 
snippets are assumed not to have time warping. 

In contrast, we consider the more general case where the 
two similar sounds are different physical (not digital) 
instantiations of a “process”. Here the process could be two 
bird calls, two belt slip screeches from an overloaded 
industrial machine [41], or two repetitions in a mouse’s song 
(cf. Figure 1). Thus, we are interested in finding repetitions 
in the face of a much broader set of noise and distortions, 
including time scaling (global shrinking/stretching), local 
time warping, pitch shifts, and echos, etc. 

The most important difference between our work and 
previous audio motif discovery approaches is that our 
algorithm finds repeated objects in audio sequences without 
making any assumptions about the intrinsic properties of the 
objects. For example, we did not need domain knowledge of 
rodent physiology to find the motifs discovered in the mice 
vocalizations shown in Figure 1 [40]. For the task of music 
motif discovery, researchers have considered a huge number 
of possible features, including static music information (key, 
beat, and tempo), acoustic information (loudness, duration, 
pitch, bandwidth, and brightness), thematic features 
(melodies, rhythms, and chords), and higher-level composite 
features (i.e. hierarchical rules, Markov models) [21]. These 
features may be helpful for motif discovery, but they require 
a huge amount of feature engineering and there is evidence 
that they do not generalize across music genres [34], much 
less generalize to the diverse domains we consider. 

Non human-produced sounds offer no fewer difficulties. 
For example, in [14], researchers attempt to find repeated 
patterns in bird songs. Their algorithm requires extracting 
features from syllables, and the authors bemoan the effort of 
human intervention: “Syllable templates were formed by 
aligning and averaging four to five manually chosen clips 
corresponding to each syllable…,” “…manually chosen 
based on visual inspection,” etc.  It is exactly this kind of 
manual tweaking that we wish to avoid. 

Our algorithm leverages off the idea of analyzing sounds 
directly in the image space (i.e. spectrograms). This idea has 
been increasing in popularity recently [27][40]. For example, 
[27] analyzes music data by computer vision techniques; 
however, current work is limited to query-by-content, not 
motif discovery, and is explicitly specialized to music data. 

III. NOTATION 

Before describing our audio motif discovery algorithm, 
we provide the necessary definitions.  

We are interested in mining audio sequences: 
Definition 1: An audio sequence A of length m > 0 is a 

sequence A = (A1, A2, …, Am) of m real-valued numbers 
corresponding to the amplitude at that time stamp. 

 Inspired by recent work [4][27], we plan to leverage off 
several advantages of analyzing audio sequences in a visual 
representation, called a spectrogram. 

Definition 2: A sound spectrogram S is an image of 
time-varying spectral representation, produced by applying 
the Short Fast Fourier Transform to successive overlapping 
frames of an audio sequence. The horizontal dimension 



corresponds to time and the vertical dimension corresponds 
to frequency. The relative spectral intensity of a sound at any 
specific time and frequency is indicated by the 
color/grayscale intensity of the image. 

We have already encountered an example of a 
spectrogram in Figure 1. A more detailed discussion of 
spectrograms is beyond the scope of this paper, so we refer 
the reader to [5] and the references therein. 

We are not interested in the global properties of a sound 
spectrogram, because any repeated patterns are typically 
only manifest in small local subsequences: 

Definition 3: An audio subsequence of length n of an 
audio sequence A = (A1, A2, …, Am)  is a time series Ai,n = 
(Ai, Ai+1,…, Ai+n-1) for all integers i, where 0<i<m-n+1. 

Informally, audio motifs are the most similar 
subsequences within a longer audio sequence. Thus, we must 
compute similarity with some measure of distance: 

Definition 4: The distance between a subset of S, 
comprised of Si,n and another subsequence Sj,n is the CK 
distance [8], denoted dist(Si,n, Sj,n). 

The CK distance measure is a relatively new, 
compression-based similarity measure, which exploits 
MPEG video encoding to measure the similarity between 
real-valued images [8]. The distance between two equal-
sized images (denoted as x and y) is calculated as: 

dist(x,y)=((mpegSize(x,y)+mpegSize(y,x))/(mpegSize(x,x)+mpegSize(y,y)))-1 

In Section IV, we will explain and justify the choice of 
this particular distance function [8]. 

We are finally in a position to define audio motifs more 
formally. To find the audio motif pair of (a user given) 
length w in a long audio sequence, we consider the pair-wise 
distances between each subsequence and all others. The pair 
with the smallest distance is the audio motif: 

Definition 5: The audio motif of an audio sequence is the 
unordered pair of subsequences {Ai,n, Aj,n} of a long audio 
sequence A of length n that is the most similar. More 
formally, ∃i,j ∀a,b, the pair {Ai,n, Aj,n} is the audio motif iff 
dist(Ai,n, Aj,n) ≤ dist(Aa,n, Ab,n), |i-j|≥ w and |a-b|≥w (i≠j, 
a≠b)for w>0, where w is the audio motif length. 
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Note that we refer to audio motifs even though we are 
searching the image space (the spectrograms). In Figure 2, 
we illustrate an example of an audio motif pair (leftmost and 
rightmost boxes) together with the other concepts introduced 
in this section.  

Note that our audio motif definition excludes trivial 
matches of audio subsequences that match a part of a sound 
with itself, such that i=j or |i-j|< w. Thus the motif pair must 
be strictly non-overlapping. Our experience analyzing real 
world audio has shown us that sections of pure silence 
(which we denote as Sps, shown as pure black section in 
Figure 2) are quite common in scientific data [32]. These 
silent elements (not to be confused with simply quiet but 
non-zero time periods) may be caused by disconnected wires 

or data deliberately written with zero energy to denote the 
beginning/ending of an event. These sections can be 
problematic since all silences “sound” the same, and thus 
allow for perfect yet meaningless audio motifs. 

 
Figure 2. An illustration of our definitions.  

Another special case we have to consider is that of a 
constant background sound (denoted as Sbg, and illustrated in 
the area surrounded by the red box in Figure 2), which 
occurs everywhere in audio sequence. For example, if we are 
interested in finding audio motifs near a highway on a rainy 
day, then the entire background will have the sound of rain, 
which we would like to ignore. We exclude both pure silence 
and regions containing only the background sound if they 
last more than one motif length w. 

It is important to note that our definition of closest pair 
does not preclude other possible definitions. For example, for 
some applications it might be convenient to consider the K 
closest pairs, or all objects within a user-given radius R. As 
noted in [31] in the context of time series motifs, if one can 
solve the closest pair problem efficiently, then the K closest 
pairs and user-given radius variants can also be solved using 
the closest pair subroutine with some linear time post 
processing. In particular, we have explored finding the top K 
motifs (for K equals up to 10) in the birds dataset discussed 
in Section V.B; this required just a few minutes modifying 
the code, and took less than twice as long as finding the 
closest pair (or K = 2). Nevertheless for clarity of 
presentation and consistency we limit discussion and 
experiments to the closest pair case in this work. 

IV. FINDING AUDIO MOTIFS 

We outline a detailed formal explanation and statement 
of our audio motif discovery algorithm in Section IV.B. 
However, for simplicity and clarity, we give some simple 
intuitions behind our ideas in the next section. 

A. Intuition behind Audio Motif Discovery 

Our entire approach is predicated on the following 
assumption. Similar sounds will produce similar images 
when transformed into spectrograms, and we can efficiently 
and effectively compute the similarity in the visual space. 
The idea that audio patterns can be revealed and measured in 
the image space has been exploited in some specialized 
domains [4][27][40]. However, these works require domain-
specific feature extraction techniques to allow the similarity 
computation, a step we are anxious to avoid in order to create 
a universal and highly usable tool. 

To be clear, using the spectrogram representation is, by 
itself, not the solution to our problem. To see this, we 
performed a simple clustering experiment using Scale-



Invariant Transform Features (SIFT) [29][37] on a small 
dataset. SIFT is arguably the state-of-art for image matching, 
and the most obvious strawman to compare against [22]. 

In Figure 3, we show seven pairs of two-second audio 
snippets of diverse sounds produced by coyotes, crickets, 
squirrels, katydids, ravens, owls, and explosions. For all 
images we extract SIFT features to form a feature description 
using Lowe’s algorithm [29]. We use the number of matched 
keypoints/features points as a similarity measure between 
two images

2
.  Figure 3 shows the clustering of the seven 

pairs using SIFT; the results are only slightly better than 
random. 

 
Figure 3. A clustering of seven pairs of two-second audio recordings of 

various sounds using SIFT. Only one pair {13,14} is correctly clustered 

(katydids). 

These results are not promising. In contrast, we tested the 
same dataset shown in Figure 3 using CK distance measure, 
and the result is shown in Figure 4. 

 
Figure 4. A clustering of the dataset used in Figure 3 with CK distance 
measure. All pairs are correctly clustered, and the explosion sound is an 

outlier to animal sounds. No parameters were adjusted here. 

This result highly suggests that the CK distance measure 
on spectrogram images is measuring similarity in a way that 
maps to human notions of sound similarity.  

Surprisingly, the CK distance measure can be very 
effective even on human speech, which is obviously the most 
studied audio source [9][17][23]. To see this, in Figure 5, we 
show a reading of A Dream within a Dream by Edgar Allan 
Poe. We naturally expect repeated structure in most poetry 
[13], and although this short poem only has 24 lines in two 
stanzas, we do find two obvious repetitions as the audio 
motif (the last line of both verses). 
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 This (carefully annotated) code, along with all code and data used in this 

work is archived at [19]. 

 
Figure 5. top) A performance of A Dream Within A Dream has a motif of 

length seven seconds. bottom left, right) A zoom-in of the two occurrences 
and the corresponding sentences.  The reader can go to [19] to hear the 

original sound file and the discovered motifs. 

As the audio motif shown in Figure 5 demonstrates, the 
CK distance measure can accurately find the only repeated 
pattern (“…see or seem (is) but a dream within a dream”) of 
this audio recording. Note that the distance measure was 
exactly the same as used in Figure 4, no tuning or 
adjustments were necessary to go from (mostly) animals to 
poetry.  

In this example, generating and testing all possible motifs 
to find the best one (cf. Definition 5) requires about 15 
minutes, although the audio clip is barely a minute long. 
Such languor may be tenable for music and other relatively 
short audio files; however, in scientific domains we need to 
be able to find motifs in datasets that are orders of magnitude 
longer. In the next section, we will outline our strategy for 
making motif discovery tenable even in such massive 
datasets. 

B. A Formal Description of our Algorithm 

Given a spectrogram S transformed from a long audio 
sequence A, and a user specified length w, our goal is to find 
audio motifs as described in Definition 5. 

For ease of exposition we will begin by explaining the 
generic search algorithm, and then we will then introduce our 
novel modifications that make it more tractable. 

In TABLE I. Line 1, our algorithm begins by initializing 
the best-so-far CK distance corresponding to the audio motif 
pair to infinity. In Line 2 we generate all N subsections D. 
This consists of all subsections except those excluded 
because they are Sps or Sbg (cf. Section III). One pair (with 
indices differing by at least w) from this set will eventually 
become the motif pair. 

In Line 4 we are finally in a position to test the N(N-1)/2 
possible pairings of subsections for the pair that minimizes 
the CK distance, our audio motif. However, in what order 
should we search? Clearly, if we search exhaustively then the 
order makes no difference. However, there are two reasons 
why we may want to avoid exhaustive search and terminate 
early. The first is to respond to a user request to stop, so the 
user can treat the algorithm as an Anytime search algorithm 
[1]. The other reason is that we may wish to frame the search 
probabilistically, supporting a user request of the type “stop 
searching when there is only a one in a thousand chance that 
the current best-so-far is not the true motif.”  

As we will shortly show, we can support these useful 
variants by using different heuristic functions as defined in 
Sections 4.3, 4.4, 4.5 and 4.6.  
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TABLE I.  GENERIC AUDIO MOTIF DISCOVERY 

Procedure AudioMotif_Discovery(S, w, p) 

Input: spectrogram S transformed from original audio archive A; 

           Audio motif length w; 

           Early abandoning probability threshold p; 

Output: Audio motif pair D; 
1 

2 
 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

best-so-far ← Inf 
Discard Sps and Sbg area from S and generate only meaningful 
subsections into D. (i.e. no silence and no constant background sounds) 
N ← |D| 
for loopCt ← 1 to  N(N-1)/2 do 

[i, j, stopFlag] ← heuristicFunction(loopCt, type, p, best-so-far)  
 distance ← dist(Di, Dj) 

     if distance < best-so-far and |i-j|≥ w then 
          best-so-far ← distance 
          Pos1← i 

                Pos2← j 
     end if    

     if  stopFlag == True then 
          Break out of the loop 
     end if         

end for 

Return DPos1, DPos2 

Returning for a moment to the generic version of our 
algorithm, in Line 6 we measure the CK distance between 
the two candidate subsections and in Line 7 we check to see 
if this pair of audio subsequences has a smaller distance than 
the current best-so-far distance.  If that is the case, we update 
the best-so-far distance, and record the relevant locations 
(Lines 8 to 10). 

Having seen the generic algorithm we now consider four 
variants produced by using different heuristic functions and 
stopping criteria. 

C. Brute-force Algorithm 

The brute-force heuristic is outlined in TABLE II. This 
heuristic simply lists every possible combination of pairs of 
audio subsequences {Pos1, Pos2} in lexical order and allows 
search to exhaustion.  Note the last two arguments are just 
place-keeping dummy variables. 

TABLE II.  BRUTE-FORCE SEARCH 

Procedure  heuristicFunction(index, bruteForce, dummy, dummy) 

1 

 

2 
 

Generate testing candidates in a lexical order, which is from left 
to right with the sliding window 

[idxi, idxj, False] ← Return an array containing the candidates’ 

positions 

Run to completion this heuristic clearly lists the pair of 
audio subsequences {(DPos1, DPos2)} that are optimal. 

Note that for many real world problems there may be 
many motifs that are of high quality, and finding any pair 
may be sufficient. For example, if a full day’s recording in a 
forest in Kenya has dozens of the stereotypical calls of the 
Common Scimitarbill (cf. Section V.B) then reporting any 
pair as a motif will suffice for many applications. However, 
if the recording started at midnight, and the bird is most 
vocal just before dusk, then the linear-ordered brute-force 
search will not produce a good motif (i.e. have a low best-so-
far value) until very late in the search process. As we show 
in the next section, we can mitigate this with a random 
ordered search. 

D. Random Search Algorithm 

In contrast to lexical-ordered search discussed in the 
previous section, we can consider random ordered search, 
which has long been used to guard against pathological 
situations where an iterative improvement algorithm (i.e. 
best-so-far linear search) does not improve much until the 
last few iterations [26]. 

The rate at which the best-so-far decreases does not 
matter if we run to completion.  But if we allow users to 
interrupt the search and peek at the best current motif, we 
expect that random search as shown in TABLE III. to do 
better, as its best-so-far value will converge faster. 

TABLE III.  RANDOMIZED SEARCH 

Procedure     heuristicFunction(index, Random, dummy, dummy) 

1 

 

2 
 

Generate testing candidate in a random order, which produced 
by random permutation 

[idxi, idxj, False] ← Return an array containing the candidates’ 

positions 

The idea of supporting interruptions (possibly followed 
by continuations) of an algorithm is known as creating an 
anytime algorithm, and anytime algorithms have seen a 
recent surge of interest in the data mining community 
[1][28]. As we shall empirically show in Section V, random 
ordering does greatly improve the “early returns” property of 
our search. However, in the next section we show that we 
can do even better. 

E. Euclidean Distance Ordering Algorithm 

Anytime algorithms for searching tend to work best if 
they can test promising solutions early. This seems to open a 
chicken-and-egg type paradox, since we do not know if a 
pair of subsequences will make a good motif until after we 
test them. However, if we had an approximate test of quality 
that was much faster than the CK distance itself, then we 
could sort by that measure and increase our chances of 
seeing good solutions early on. In the most general case, CK 
distance measure has resisted attempts at fast approximation 
[22]. However, it has been shown that in the special case of 
spectrograms, the Euclidean distance between the images is a 
reasonable approximation of CK distance measure [18], but 
can be computed at least three orders of magnitude faster. 
Moreover, the Euclidean distance computations are 
amenable to many tried-and-tested speedup techniques 
including early abandoning, triangular inequality, and 
indexing. 

Given a spectrogram image S with size M×N, S can be 
written as S = {S

1
, S

2
,…, S

MN
} according to the gray levels 

of each pixel. The Euclidean distance distE (S1, S2) between 
two images S1 and S2 is defined as: 
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Thus, as shown in TABLE IV.  we propose to sort the 
pairs returned by the heuristic in ascending order (denoted as 
Z) of their Euclidean distance. 



TABLE IV.  EUCLIDEAN DISTANCE MEASURE ORDER SEARCH 

Procedure        heuristicFunction(index, ED, dummy, dummy) 

1 

 

2 

3 
 

sortOrder 𝜏 ← Sort all the subsection pairs by the Euclidean 
distance between them in an ascending order 
stopFlag  ← DidUserRequestAnInterruption();   

[idxi, idxj, stopFlag] ← Return an array containing the candidates’ 

positions based on 𝜏 and stopFlag 

The high degree of correlation between the Euclidean 
distance and CK distance is hinted at in Figure 6.left. 

Before moving on, it is critical to note that while the 
Euclidean distance and the CK distance are correlated, we 
cannot simply use the Euclidean distance to directly find 
motifs. For example, it does not produce the correct answers 
for the examples shown in Figure 4 and Figure 5 (we shown 
this in [19]). Nevertheless, as we show in the next section, 
we can use the Euclidean distance as a heuristic to both 
guide the search order, and to tell us when we can abandon 
the search with a small, user-defined probability of missing 
the optimal answer. 

F. Probabilistic Motif Discovery Algorithm 

As noted above, the anytime algorithm framework is 
gaining increasing acceptance by both the data mining 
community and domain practitioners. However, at least some 
of the latter may be reluctant to use anytime algorithms as 
intended. Nevertheless, most biologists are much more 
comfortable with the idea of statistical significance, the idea 
of considering if a result could be explained by a chance at a 
given probability cutoff (i.e. the significance level). We can 
support this type of worldview by allowing the user to 
specify the probability of returning a non optimal motif pair. 
In essence, we propose to allow queries of the form “stop 
searching when there is only a one in a million chance that 
the current best-so-far is not the true motif.” 

By exploiting the Euclidean distance ordering heuristic, 
introduced in the previous section, we can support such 
queries. As we shall see later in our experimental section, we 
can trade a small probability of a slightly suboptimal result 
for several orders of magnitude speedup. 

The intuition behind the Probabilistic Early Abandoning 
Audio Motif Discovery (PEAMD) algorithm is to internally 
estimate the likelihood that the current best-so-far motif is 
optimal, and signal to abandon the search once this 
likelihood exceeds the user’s tolerance for a sub-optimal 
result.  This signal is passed into the generic search 
algorithm in Line 5 of TABLE I. How can we estimate this 
probability? Figure 6 gives a visual intuition. In Figure 6.left 
we show the relationship between the Euclidean distance and 
CK (estimated from the dataset shown in Figure 5).  

Let Pd(best-so-far) be the probability that the remaining 
pairs of subsequences in the Euclidean searching order Z (the 
y-axis ordering of Figure 6.left) contains a better match than 
the match represented by the current best-so-far. Given that 
the two measures are highly correlated, we can estimate 
Pd(best-so-far), which is monotonically non-decreasing as 
we search because the best-so-far can only decrease by 
definition (i.e. the red bsf_dist bar shown in Figure 6.right 
can only move leftwards), and the positive correlation means 

that the mean of the distribution of estimated values of 
untested pairs can only move rightwards. 

 
Figure 6. left) The empirical relationship between Euclidean and CK 

distance. right) As we search in Euclidean order (the y-axis order), from 

bottom to top. The best-so-far distance moves leftwards and the mean of 

the Gaussian distribution moves rightwards. 

 Concretely, we compute d, the CK distance for the ε 
items below the lowest dash-line in Figure 6.left to form the 
histogram shown at the bottom right of Figure 6. Here 𝜀 is a 
small number, enough to learn a Gaussian (we use 𝜀 = 50). 


(( 1) 1: ,1) (( 1) 1: ,2)( , )k k k k kd dist Z Z           

This property of the distance distribution can be realized 
by a Gaussian process (GP). The probability vector {φk} is 
drawn from a GP as φk ~ N(𝜇k, 𝜎k

2
), where μk is the mean of 

and variance 𝜎k
2
, shown as the gray “bell” curve. For 

example, the best-so-far distance decreases from 0.453 to 
0.413 and the corresponding Pd(best-so-far) of the distance 
distribution changes from 0.048 to 0.002 as shown in Figure 
6.right. The area below the gray curve, left of the best-so-far 
marker, is the probability that there exists an untested pair of 
subsections with distance less than the best-so-far distance. 
If Pd(best-so-far) is less than the user threshold (denoted as 
p) then we simply set the stopFlag to be true, and the 
invoking generic search algorithm will terminate. The formal 
algorithm of PEAMD is outlined in TABLE V.  

TABLE V.  PROBABILISTIC EARLY ABANDONING SEARCH 

Procedure  heuristicFunction(index, PEAMD, p, best-so-far) 

1 

 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Call the procedure Euclidean Distance Measure Order Search in 
TABLE IV 
Z ←  heuristicFunction (index, ED) 
for k ←  1 to |Z| do 
     for j ← 1 to 𝜀  do 
          dk ← Compute CK distance of pair k+j-1 based on Z 
     end for 

     dk ~ N(𝜇, 𝜎2) // Build Gaussian distribution of dk 

     prob ← Pd(best-so-far) // CDF of the current best-so-far distance  

     if prob < p then 
          stopFlag ← True 
     end if 

end for  

[idxi, idxj, stopFlag] ←Return an array containing the candidates’ 
positions and stopFlag 

Our probabilistic framework makes some assumptions 
that are strongly empirically warranted (i.e., that “slices” of 
the cloud of data points in Figure 6.left are approximately 
Gaussian), and some that are less realistic (i.e. the 
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independence of the “slices”). However, all such 
assumptions tend to make our algorithm err only on the 
conservative side. 

V. EXPERIMENTS 

We have designed all our experiments to ensure that they 
are very easy to reproduce. A supporting webpage [19] 
contains all the code, datasets, and raw data spreadsheets 
used in this work. Moreover, although this work is 
completely self-contained, the webpage contains additional 
experiments and video/sound files to allow an interested 
reader to directly see and hear the motifs discovered and the 
original source sounds. 

A. Motif Discovery in Human Speech 

Human speech is surely the most studied sound source 
[10]. Recurrences in human speech have implications for 
studying linguistics, cognitive disorders, and pragmatic 
applications in indexing speech [24], etc. Thus, we will test 
our algorithm with a familiar audio book in section V.A.1) 
and show a comparison with a state-of-the-art speech 
processing tool in section V.A.2). 

1) Motif Discovery in an Audio Book 
A famous example of reoccurring text can be found in 

the book The Cat in the Hat by Dr. Seuss [12]. It is an 
impressive feat of wordplay that this 1629 word book 
contains only 236 distinct words, and this is suggestive of 
significant repetition. The experiment shown in Figure 7 
demonstrates that our algorithm finds a meaningful motif 
pair (three seconds long) from an audio performance of story 
(professional male actor). Note that our algorithm is robust to 
the fact that one occurrence contains an additional word 
(“ball”). 

 
Figure 7. top) A performance of The Cat in the Hat has a motif three 

seconds long. bottom) A zoom-in of the two occurrences and corresponding 
sentences [12]. 

2) Comparison with state-of-the-art Work 

The utility of “black-box” CK distance on human speech 
may be surprising, given that most human speech processing 
algorithms are highly optimized with domain knowledge of 
linguistics, phonetics, etc. To further explore this, we 
attempted to reproduce a result in a recent state-of-the-art 
work [24]. Here the data is a nine-second snippet of 
telephone quality audio. We take the same spoken query of 
word “California” as [24], and build the same type of dot-
plot, but use the CK distance measure as shown in Figure 8. 

 
Figure 8. top) A screenshot from [24] of a state-of-the-art human speech 
recognition algorithm correctly matching two utterances of “California” 

(red box). bottom) Our re-creation of the experiment using only the CK 

distance measure.  

While the interpretation of the results is somewhat 
subjective, our simple approach does seem at least 
competitive with current human speech processing methods 
without the need for tuning the nine parameters used in [24]. 
Note that we are only comparing on effectiveness here; [24] 
does not make claims on efficiency. 

B. Motif Discovery in Bird Songs 

Complex songs produced by animals (bats, whales, mice, 
birds) have been receiving increasing attention because 
summaries of these sounds can be a measure of the health of 
the ecosystem and its biodiversity. For example, The Long 
Island Sound Study, a six-year research project, is a notable 
effort devoted to protecting the environment [38].  Birds, 
though still a common sight even in cities, are facing threats 
from habitat reduction. While bird songs have been explored 
in several research efforts [2][5], like  human sound 
processing, the algorithms tend to be very specialized and 
parameter-laden. How well can we do with no parameters? 
We tested our algorithm on audio sequences of the Common 
Scimitarbill from xeno-canto [39]. One representative 
experiment is shown in Figure 9. We obtained similarly 
intuitive results for many other diverse species. We 
encourage the interested reader to hear/see them at [19]. 

 
Figure 9. top) A 31-second excerpt of a two-minute audio performance of a 

Common Scimitarbill.  bottom) A zoom-in of the two one-second long 

audio motif occurrences. 

C. Motif Discovery in Music Data 

Algorithms for automatic discovery of repeated patterns 
in music data can be very useful; they have a number of 
applications for content-based retrieval, indexing, and audio-
thumbnailing (summarization) [3][21][27]. In the absence of 
formal benchmarks for music motif discovery, we will 
reproduce an experiment in a highly cited paper [3]. 

We attempted to find motifs in André Bourvil’s song 
C'était bien [6]. As with [3], we set the motif length to three 
seconds and as shown in Figure 10 we discover a motif 
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phase Et c'était bien, the song title itself. In contrast to the 
string-matching techniques on a derived symbolic 
representation used by [6] and almost all music motif efforts, 
we do not need to extract explicit features or tune any 
parameters. As before, the same algorithm works on mice 
and men, on birds and whales, with no human intervention. 

 
Figure 10. top) A performance of Bourvil’s song C'était bien has a three-

second motif. bottom) A zoom-in of the two motif occurrences and 
corresponding lyrics. 

As a sanity check, we tested to see if music motif 
algorithms could be made to work for our bird/mice/whale 
data (to be fair, no one has claimed they might). After all, 
biologists do speak of mice courtship songs [15], bird 
choruses, and whale melodies, etc. However, in spite of 
significant effort, we could not make the music motif 
algorithms work for any biological datasets [19].  

D. Motif Discovery in Mice Vocalization 

Mice have been extensively used as genetic models of 
human disease for almost four decades. They can produce 
ultrasonic vocalizations, inaudible to humans. These 
vocalizations are important to researchers who study human 
pathologies by testing the effects of manipulating homologue 
genes in mice [40]. Analyzing vocal behaviors of mice 
models in this manner has lead to the discovery of the 
genetic cause of Autism [16], and has shown great promise 
for the study of Alzheimer’s disease [30]. 

We applied our audio motif discovery algorithm to 
various subsets of the mice vocalization dataset studied in 
[40]. One such result is shown in Figure 1. We find that we 
can obtain similar results to [40] (and [15]) but without the 
need for explicitly extracting syllables, a painstaking and 
time consuming step. This experiment speaks volumes to the 
generalizability of our algorithm. 

We show the actionability of audio motif discovery by 
showing that motifs, once discovered, can be used to test for 
changes in vocal repertoire that may be attributable to genes 
that were deliberately deleted (in genetics parlance “knocked 
out” or “KO”) from the mouse genome.  

We obtained six hours of vocalizations recorded during 
courtship/mating of various pairs of mice (only males 
vocalize). These sessions were annotated by the mice 
behaviors, from the set: {Defensive (D), Ejaculate (E), 
Grooming (G), Intromission (I), Mounting (M), No Contact 
(N), Rooting (R) and Sniffing (S)}. Neuroscience 
researchers at University of California, Riverside want to 
know if vocal repertoire or frequency during these behaviors 
differ for different mice genomes. Below we hint at the 
answer to this question. 

We applied our algorithm to the data and found many 
instances of motif shown in Figure 11.top. Having 
discovered this motif, we used a sliding window to calculate 
its density over time. As shown in Figure 11.middle, this 
particular motif occurs about 4.1 times more frequently 
during Sniffing than during Rooting for this particular 
strain of KO mice.  Moreover, because we are able to 
automate this process (most similar research efforts resort to 
manual counting [15][30][40]) we can automatically search 

through a large space of motifs  behaviors  genomes, 
scoring the frequency differences by significant tests. 

 
Figure 11. top) Sample instances of a motif discovered from mice 
vocalizations by applying our algorithm (middle) Comparing the number of 

motifs during S and R behaviors for a sample recording of KO mice 

vocalization. bottom) Comparing the number of motifs during S and G 
behaviors for a sample recording of WT mice vocalization. 

In Figure 11.bottom, we show another example of a 
similarly significant contrasting pattern, this time in WT 
(wild type) mice. In this case we noted a dearth of the motif 

during Grooming. Note in [19] we show that the same 
algorithm that finds motifs in mice, expressed in about the 40 
to 110 kHz range, also works for whales, expressed in a 
completely disjoint range of about 20 Hz to 24 kHz. The 
only difference in the two experiments was the suggested 
length of the motif was increased for the much larger whales, 
as suggested by allometry of vocal production [11]. 

E. Scalability of Audio Motif Discovery 

After demonstrating the utility of our algorithm, we now 
show the scalability of finding audio motifs with an example 
of human speech data, a ten-minute performance of “The 
Raven” as shown in Figure 12. 

 
Figure 12. top) “The Raven” has a motif of length seven seconds. bottom) 

A zoom-in of the two occurrences and the corresponding text. 

 We compared the four algorithms (brute-force, random, 
Euclidean distance reordering heuristic, and PEAMD search) 
shown in Figure 13. The brute-force search takes twenty-
two hours. Random search takes the same time, but 
converges more quickly, so if “anytime” interrupted after 
just fourteen minutes it would have already converged on 
the correct result [1][28]. 
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Figure 13. A comparison of efficiency of four algorithms normalized to the 

100% time taken for brute-force search.  

Euclidean ordered search converges to the optimal motif 
in a few minutes, and about a minute later PEAMD 
(allowing a 1 in 10,000 chance of a non-optimal answer) is 
confident enough to abandon the search and return the 
correct answer. Thus, using the PEAMD we can search audio 
files that are on the order of hours in real time. Examining 
day-long audio recordings does require more than a day 
(unless there are large time periods of silence, cf. Section 
III). 

We have informally shown the accuracy of our algorithm 
in an intuitive fashion. For example in the ability to find the 
chorus of a poem/song (cf. Figure 7, Figure 10 and Figure 
12). However, to formally evaluate the accuracy of the 
PEAMD algorithm, we compute the ratio of the motif 
distance returned by the brute-force linear search algorithm 
over the motif distance algorithm returned by our algorithm. 
Numbers approaching one indicate that there is little 
difference in the two algorithms output. As we can see in the 
second column in TABLE VI. this is strongly the case. 

In addition, we compute the speedup of the PEAMD 
algorithm compared to the brute-force algorithm for all the 
datasets we tested. The results are shown in the third column 
of TABLE VI.  

TABLE VI.  COMPARISON BETWEEN PEAMD AND BRUTE-FORCE 

 

Dataset (Figure Number) 
       

          
 

       

          
 

A Dream within a Dream (5) 0.94 4,100 

Mice vocalization (1,11) 0.92 179 

The Cat in the Hat (7) 1.00 6,591 

Scimitarbill (9) 1.00 267 

C'était bien (10) 1.00 605 

The Raven (12) 1.00 525 

The results show a significant speedup for our PEAMD 
algorithm across diverse audio archives. Moreover, in four 
out of six cases the results returned are identical to the brute-
force algorithm. 

It is worth considering the two cases where our algorithm 
failed to return the optimal answer; in particular we can ask 
how badly did we fail? The answer can be seen directly in 
Figure 5. Here the two motifs are very slightly misaligned. 
One begins with “See or seem...” and the other begins “ee or 
seem...”. Thus the answer is semantically correct. Similar 
remarks can be made for the mice vocalization dataset. Due 
to the page limitations, we refer to [19] for more scalability 
analyses and experiments. 

F. Sensitivity of User-Choice(Motif Length) 

The results shown in previous sections demonstrate the 
efficiency and effectiveness of our algorithm in finding 
motifs for a given user-defined length. However, the reader 
may wonder how critical this user choice is. Clearly, motifs 
can exist on different scales, for example repeated words, 
and repeated phrases in speech. However, it would be very 
undesirable if the results returned were very sensitive to tiny 
changes in this user choice. 

It is hard to make any strong claims about this issue, as 
one could construct an artificial dataset for which the motifs 
of length w-ɛ, w, and w+ɛ are disjoint. However, on real data 
we generally find that our algorithm will report the same 
essential concept when the motif length is within [w-σ, w+σ] 
for values of σ which are a significant fraction of w. 

For example, let us revisit the The Cat in the Hat dataset. 
The motif length used in Section V.A was three seconds; 
however, we found that our algorithm allows us to set σ 
anywhere in the range of [1.7 sec, 3.9 sec] (-43%~ 30%) to 
obtain motifs that correspond to the same basic phrase. This 
result suggests a simple way to explore a dataset for which 
one poor intuition about possible motif lengths. We can 
simply set w to be a small number and find motifs of length 
w, 2w, 4w, 8w, etc. The efficiency of the PEAMD algorithm 
makes such iterative doubling search tenable. 

VI. CONCLUSION AND FUTURE WORK 

In this work we introduced a scalable and extremely 
general framework for finding audio motifs. We have 
demonstrated the utility of audio motifs analysis in diverse 
domains including music, human speech, mice vocalizations, 
and bird songs. By comparisons to existing work (Figure 8, 
Figure 10) we have shown that the representative power of 
our general purpose distance measure is typically 
competitive with domain specialized measures. While there 
is no obvious rival strawman to compare to in terms of 
efficiency, we have shown that by using probabilistic early 
abandoning we can examine most realistic length scientific 
recordings in much less than real time. 

For brevity we have hinted at the utility of audio motifs 
only in the mice genetics domain; however, in data types as 
diverse as text, DNA, time series, and video, motif discovery 
is often leveraged for diverse types of analyses [20][25][27]. 
We believe this work has the potential to enable analogous 
analyses for audio. 

We have claimed that our method is essentially 
parameter free. The reader might object to this claim, noting 
for example that the algorithm that converts audio to a 
spectrogram representation requires several parameters to be 
set. This is true, but in most cases the best parameters have 
been determined by the community decades ago. For 
example, virtually all mouse researchers truncate below 20 
Hz and above 100 kHz [14][30][40]. The best parameters for 
human vocalization research are even better understood [23].  

In future work, we hope to leverage off the Minimum 
Description Length principle to automatically find the 
natural length for motifs, thus removing the need for this 
user input, the only true parameter we need to set. However 
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we note that even here, as we showed in Section V.F, our 
algorithm is not particularly sensitive to this setting. 

Finally, we note that we have made all code and data 
freely available in perpetuity so others can confirm, use, and 
extend our work [19].  
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