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ABSTRACT 
Monitoring animals by the sounds they produce is an 

important and challenging task, whether the application 

is outdoors in a natural habitat, or in the controlled 

environment of a laboratory setting.  

In the former case the density and diversity of animal 

sounds can act as a measure of biodiversity. In the 

latter case, researchers often create control and 

treatment groups of animals, expose them to different 

interventions, and test for different outcomes. One 

possible manifestation of different outcomes may be 

changes in the bioacoustics of the animals.  

With such a plethora of important applications, there 

have been significant efforts to build bioacoustic 

classification tools. However, we argue that most 

current tools are severely limited. They often require 

the careful tuning of many parameters (and thus huge 

amounts of training data), they are too computationally 

expensive for deployment in resource-limited sensors, 

they are specialized for a very small group of species, 

or they are simply not accurate enough to be useful.  

In this work we introduce a novel bioacoustic 

recognition/classification framework that mitigates or 

solves all of the above problems. We propose to 

classify animal sounds in the visual space, by treating 

the texture of their spectrograms as an acoustic 

fingerprint using a recently introduced parameter-free 

texture measure as a distance measure. We further 

show that by searching for the most representative 

acoustic fingerprint we can significantly outperform 

other techniques in terms of speed and accuracy.  
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1. INTRODUCTION 
Monitoring animals by the sounds they produce is an 

important and challenging task, whether the application 

is outdoors in a natural habitat [4], or in the controlled 

environment of a laboratory setting.  

In the former case the density and variety of animal 

sounds can act as a measure of biodiversity and of the 

health of the environment. Algorithms are needed here 

not only because they are (in the long term) cheaper 

than human observers, but also because in at least some 

cases algorithms can be more accurate than even the 

most skilled and motivated observers [21]. 

In addition to field work, researchers working in 

laboratory settings frequently create control and 

treatment groups of animals, expose them to different 

interventions, and test for different outcomes. One 

possible manifestation of different outcomes may be 

changes in the bioacoustics of the animals. To obtain 

statistically significant results researchers may have to 

monitor and hand-annotate the sounds of hundreds of 

animals for days or weeks, a formidable task that is 

typically outsourced to students [23].  

There are also several important commercial 

applications of acoustic animal detection. For example, 

the US imports tens of billions of dollars worth of 

timber each year. It has been estimated that the 

inadvertent introduction of the Asian Longhorn Beetle 

(Anoplophora glabripennis) with a shipment of lumber 

could cost the US lumber industry tens of billions of 

dollars [22]. It has been noted that different beetle 

species have subtlety distinctive chewing sounds, and 

ultra sensitive sensors that can detect these sounds are 

being produced [17]. As a very recent survey of 

acoustic insect detection noted, “The need for 

nondestructive, rapid, and inexpensive means of 

detecting hidden insect infestations is not likely to 

diminish in the near future” [22]. 

With such a plethora of important applications, there 

have been significant efforts to build bioacoustic 

classification tools [4]. However, we argue that current 

tools are severely limited. They often require the 

careful tuning of many parameters (as many as eighteen 

[8]) and thus huge amounts of training data, they are 

too computationally expensive for use with resource-

limited sensors that will be deployed in the field [7], 

they are specialized for a very small group of species, 

or they are simply not accurate enough to be useful.  

In this work we introduce a novel bioacoustic 

recognition/classification framework that mitigates or 

solves all of the above problems. We propose to 

classify animal sounds in the visual space, by treating 

the texture of their spectrograms as an acoustic 

“fingerprint” and using a recently introduced 

parameter-free texture measure as a distance measure. 

We further show that by searching for the smallest 

representative acoustic fingerprint (inspired by the 

shapelet concept in time series domain [28]) in the 

training set, we can significantly outperform other 

techniques in terms of both speed and accuracy.  



Note that monitoring of animal sounds in the wild 

opens up a host of interesting problems in sensor 

placement, wireless networks, resource-limited 

computation [7], etc. For simplicity, we gloss over such 

considerations, referring the interested reader to [4] 

and the references therein. In this work we assume all 

such problems have been addressed, and only the 

recognition/classification steps remain to be solved. 

2. RELATED WORK / BACKGROUND  

2.1 A Brief Review of Spectrograms 
As hinted at above, we intend to do 

recognition/classification in the visual space, by 

examining the spectrogram of the animal sounds. As 

shown in Figure 1, a spectrogram is a time-varying 

spectral representation that shows how the spectral 

density of a signal varies with time. 
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Common Virtuoso Katydid

(Amblycorypha longinicta)  

Figure 1: A spectrogram of the call of an insect. Note 
the highly repetitious nature of the call.  In this case, 
capturing just two “busts” may be sufficient to 
recognize the insect  

There is a huge amount of literature leveraging off 

manual inspection of such spectrograms; see [12] and 

the references therein for some examples. However, as 

we shall see, algorithmic analysis of spectrograms 

remains an open problem, and an area of active 

research. Beyond the problems that plague attempts to 

define a distance measure in any domain, including 

invariance to offset, scaling, uniform scaling, non-

uniform warping, etc., spectrograms almost always 

have significant noise artifacts, even when obtained in 

tightly controlled conditions in a laboratory setting. 

One avenue of research is to “clean” the spectrograms 

using various techniques [2], and then apply shape 

similarity measures to the cleaned shape primitives. 

Some types of specialized cleaning may be possible; 

for example, removing the 60Hz noise is commonly 

encountered
1
. However, algorithms to robustly clean 

general spectrograms seem likely to elude us for the 

foreseeable future.  

As we shall see in Section 3, our solution to this 

problem is to avoid any type of data cleaning or 

explicit feature extraction, and use the raw spectrogram 

directly.    

                                                                 

1 American domestic electricity is at 60Hz (most of the rest of the 

world is 50Hz) and inadequate filtering in power transformers 

often allows some 60Hz signal to bleed into the sound recording.   

2.2 General Animal Sound Classification 
The literature on the classification of animal sounds is 

vast; we refer the interested reader to [20][1] for useful 

surveys. At the highest level, most research efforts 

advocate extracting sets of features from the data, and 

using these features as inputs to standard classification 

algorithms such as a decision tree, a Bayesian classifier 

or a neural network. As a concrete representative 

example, consider [24], which introduces a system to 

recognize Orthoptera (the order of insects that includes 

grasshoppers, crickets, katydids2 and locusts). This 

method requires that we extract multiple features from 

the signal, including distance-between-consecutive-

pulses, pulse-length, frequency-contour-of-pulses, 

energy-contour-of-pulses, time-encoded-signal-of-

pulses, etc. However, robustly extracting these features 

from noisy field recordings is non-trivial, and while 

these features seem to be defined for many Orthoptera, 

it is not clear that they generalize to other insects, much 

less to other animals. Moreover, a significant number 

of parameters need to be set, both for the feature 

extraction algorithms, and the classification algorithm.   

For more complex animal sounds (essentially all non-

insect animals), once again features are extracted from 

the raw data; however, because the temporal transitions 

between features are themselves a kind of meta-feature,  

techniques such as Hidden Markov Models are 

typically used to model these transitions [20][5][1]. 

This basic idea has been applied with varying degrees 

of success to birds [14], frogs and mammals [5]. 

One major limitation of Hidden Markov Model-based 

systems is that they require careful tuning of their many 

parameters. This in turn requires a huge amount of 

labeled training data, which may be difficult to obtain 

in many circumstances for some species. 

Many other approaches have been attempted in the last 

decade. For example, in a series of papers, Dietrich et 

al. introduce several classification methods for insect 

sounds, some of which require up to eighteen 

parameters, and which were trained on a dataset 

containing just 108 exemplars [8].  

It is important to note that our results 

are completely automatic.  Numerous papers report 

high accuracies for the classification of animal sounds, 

but upon careful reading it appears (or it is explicitly 

admitted) that human effort was required to extract the 

right data to give to the classifier. Many authors do not 

seem to fully appreciate that “extracting the right data” 

is at least as difficult as the classification step. 

For example, a recent paper on the acoustic 

classification of Australian anurans (frogs and toads) 

claims a technique that is “capable to identify the 

                                                                 

2 In British English, katydids are known as bush-crickets. 



species of the frogs with an average accuracy of 98%.” 

[10]. This technique requires extracting features from 

syllables, and the authors note, “Once the syllables 

have been properly segmented, a set of features can be 

calculated to represent each syllable” (our emphasis). 

However, the authors later make it clear that the 

segmentation is done by careful human intervention. 

In contrast, we do not make this unrealistic assumption 

that all the data has been perfectly segmented. We do 

require sound files that are labeled with the species 

name, but nothing else. For example, most of the sound 

files we consider contain human voiceover annotations 

such as “June 23
th

, South Carolina, Stagmomantis 

carolina, temperature is ...” and many contain spurious 

additional sounds such as distant bird calls, aircraft, the 

researcher tinkering with equipment, etc. The raw 

unedited sound file is the input to our algorithm; there 

is no need for costly and subjective human editing. 

2.3 Sound Classification in Visual Space 
A handful of other researchers have suggested using 

the visual space to classify sounds (see [19][18]). 

However, this work has mostly looked at the relatively 

simple task of recognizing musical instruments or 

musical genres [29], etc. More recent work has 

considered addressing problems in bioacoustics in the 

visual space. In [19] the authors consider the problem 

of recognizing whale songs using spectrograms. The 

classification of an observed acoustic signal is 

determined by the maximum cross-correlation 

coefficient between its spectrogram and the specified 

template spectrogram [19]. However, this method is 

rather complicated and indirect: a “correlation kernel” 

is extracted from the spectrogram, the image is divided 

into sections which are piecewise constant, and a cross-

correlation is computed from some subsets of these 

sections and thresholded to obtain a detection event. 

Moreover, at least ten parameters must be set, and it is 

not clear how best to set them, other than using a brute 

force search through the parameter space. This would 

require a huge amount of labeled training data. In [18] 

the authors propose similar ideas for bird calls. 

However, beyond the surfeit of parameters to be tuned, 

these methods have a weakness that we feel severely 

limits their applicability. Both these efforts (and most 

others we are aware of) use correlation as the 

fundamental tool to gauge similarity. By careful 

normalization, correlation can be made invariant to 

shifts of pitch and amplitude. However, because of its 

intrinsically linear nature, correlation cannot be made 

invariant to global or local differences in time (in a 

very slightly different context, these are called uniform 

scaling and time warping, respectively [9]). There is 

significant evidence that virtually all real biological 

signals have such distortions, and that unless it is 

explicitly addressed in the representation or 

classification algorithm, we are doomed to poor 

accuracy. As we shall show empirically in the 

experimental section below, our proposed method is 

largely invariant to uniform scaling and time warping. 

2.4 A Review of the Campana-Keogh (CK) 

distance Measure 
The CK distance measure is a recently introduced 

measure of texture similarity [6]. Virtually all other 

approaches in the vast literature of texture similarity 

measures work by explicitly extracting features from 

the images, and computing the distance between 

suitably represented feature vectors.  Many possibilities 

for features have been proposed, including several 

variants of wavelets, Fourier transforms, Gabor filters, 

etc. [3]. However, one drawback of such methods is 

that they all require the setting of many parameters. For 

example, at a minimum, Gabor filters require the 

setting of scale, orientation, and filter mask size 

parameters. This has led many researchers to bemoan 

the fact that “the values of (Gabor filters parameters) 

may significantly affect the outcome of the 

classification procedures...”[3]. 

In contrast, the CK distance measure does not require 

any parameters, and does not require the user to create 

features of any kind. Instead, the CK measure works in 

the spirit of Li and Vitanyi’s idea that two objects can 

be considered similar if information garnered from one 

can help compress the other [15][13]. The theoretical 

implications of this idea have been heavily explored 

over the last eight years, and numerous applications for 

discrete data (DNA, natural languages) have emerged.  

The CK measure expands the purview of the 

compression-based similarity measurements to real-

valued images by exploiting the compression technique 

used by MPEG video encoding [6]. In essence, MPEG 

attempts to compress a short video clip by taking the 

first frame as a template, and encoding only the 

differences of subsequent frames. Thus, if we create a 

trivial “video” consisting of just the two images we 

wish to compare, we would expect the video file size to 

be small if the two images are similar, and large if they 

are not. Assuming x and y are two equally-sized 

images; Table 1 shows the code to achieve this. 

Table 1: The CK Distance Measure 

function dist = CK(x, y) 

dist = ((mpegSize(x,y) + mpegSize(y,x)) /( mpegSize(x,x) + mpegSize(y,y))) - 1; 

It is worth explicitly stating that this is not pseudo 

code, but the entire actual Matlab code needed to 

calculate the CK measure. 

The CK measure has been shown to be very effective 

on images as diverse as moths, nematodes, wood 



grains, tire tracks, etc. [6]. However, this is the first 

work to consider its utility on spectrograms. 

2.5 Notation  
In this section we define the necessary notation for our 

sound fingerprint finding algorithm. We begin by 

defining the data type of interest, a sound sequence: 

Definition 1: A sound sequence is a continuous 

sequence S = (S1, S2, …, St) of t real-valued data 

points, where St is the most recent value. The data 

points are typically generated in temporal order and 

spaced at uniform time intervals.  

As with other researchers [19][18], we are interested in 

the sound sequence representation in the visual space, 

which is called the spectrogram.  

Definition 2: A spectrogram is a visual spectral 

representation of an acoustic signal that shows the 

relationship between spectral density and the 

corresponding time.  

A more detailed discussion of spectrograms is beyond 

the scope of this paper, so we refer the reader to [1] 

and the references therein. 

We are typically interested in the local properties of 

the sound sequence rather than the global properties, 

because the entire sound sequence may be 

contaminated with extraneous sounds (human voice 

annotations, passing aircraft, etc.). Moreover, as we 

shall see, our ultimate aim is to find the smallest 

possible sound snippet to represent a species. A local 

subsection of a spectrogram can be extracted with a 

sliding window: 

Definition 3: A sliding window (W) contains the 

latest w data points (St-w+1, St-w+2,…, St) in the sound 

sequence S.  

Within a sliding window, a local subsection of the 

sound sequence we are interested in is termed as a 

subsequence.  

Definition 4: A subsequence (s) of length m of a 

sound sequence s = (s1, s2, …, st)  is a time series si,m 

= (si, si+1,…, si+m-1),  where 1 ≤ i ≤ t-m+1. 

Since our algorithm attempts to find the prototype of a 

sound sequence S, ultimately, a local sound 

subsequence s should be located with a distance 

comparison between S and s, which may be of vastly 

different lengths. Recall that the CK distance is only 

defined for two images of the same size. 

Definition 5: The distance d between a subsequence 

s and a longer sound sequence S is the minimum 

distance between s and all possible subsequences in S 

that are the same length as s.  

Our algorithm needs some evaluation mechanism for 

splitting datasets into two groups (target class, denoted 

as P, everything else, denoted as U). We use the classic 

machine learning idea of information gain to evaluate 

candidate splitting rules.  To allow discussion of 

information gain, we must first review entropy: 

Definition 6: The entropy for a given sound 

sequence dataset D is E(D) = -p(X)log(p(X))-

p(Y)log(p(Y)), where X and Y are two classes in D, 

p(X) is the proportion of objects in class X and p(Y) is 

the proportion of objects in class Y.  

The information gain is for a given splitting strategy 

and is just the difference in entropy before and after 

splitting. More formally: 

Definition 7: The information gain of a partitioning 

of dataset D is: 

     Gain = E(D) – E’(D), 

where E(D)  and E’(D) are the entropy before and 

after partitioning D into D1 and D2, respectively.   

E’(D) = f(D1)E(D1) + f(D2)E(D2), 

where f(D1) is the fraction of objects in D1, and f(D2) 

is the fraction of objects in D2.   

As noted above, we wish to find a sound fingerprint 

such that most or all of the objects in P of the dataset 

have a subsequence that is similar to the fingerprint, 

whereas most of the sound sequences in U do not. To 

find such a fingerprint from all possible candidates, we 

compute the distance between each candidate and 

every subsequence of the same size in the dataset, and 

use this information to sort the objects on a number 

line, as shown in Figure 2. Given such a linear 

ordering, we can define the best splitting point for a 

given sound fingerprint: 

Definition 8: Given an annotated (by one of two 

classes, P and U) linear ordering of the objects in D, 

there exists at most3 |D|-1 distinct splitting points 

which divide the number line into two distinct sets. 

The splitting point which produces the largest 

information gain is denoted as the best splitting point. 

In Figure 2 we illustrate the best splitting point with a 

bold/yellow vertical line.  

We are finally in a position to define the sound 

fingerprint using the above definitions: 

Definition 9: The sound fingerprint for a species is 

the subsequence from P, together with its 

corresponding best splitting point, which produces 

the largest information gain when measured against 

the universe set U.  

Note that we may expect ties, which must be broken by 

some policy. We defer a discussion of tie-breaking 

policies to later in this section. 

                                                                 

3 Note that there can be duplicate values in the ordering. 
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Figure 2: A candidate sound fingerprint, the boxed 
region in spectrogram 1, is evaluated by finding its 
nearest neighbor subsequence within both P and the 
four representatives of U and then sorting all objects 
on a number line 

We can concretely illustrate the definition of a sound 

fingerprint using the example shown in Figure 2. Note 

that there are a total of nine objects, five from P, and 

four from U. This gives us the entropy for the unsorted 

data of:  

   [-(5/9)log(5/9)-(4/9)log(4/9)] = 0.991 

If we used the split point shown by the yellow/bold 

vertical bar in Figure 2, then four objects from P are 

the only four objects on the left side of the split point. 

Of the five objects to the right of the split point we 

have four objects from U and just one from P. This 

gives us an entropy of: 

   (4/9)[-(4/4)log(4/4)]+(5/9)[-(4/5)log(4/5)-(1/5)log(1/5)] = 0.401 

Thus, we have an information gain of 0.590 = 0.991-

0.401. Note that our algorithm will calculate the 

information gain many times as it searches through the 

candidate space, and ties are very likely. Thus, we must 

define a tie-breaking policy.  Here we have several 

options. The intuition is that we want to produce the 

maximum separation (“margin”) between the two 

classes. We could measure this margin by the absolute 

distance between the rightmost positive and the 

leftmost universe distances. However, this measure 

would be very brittle to a single mislabeled example. 

To be more robust to this possibility (which frequently 

occurs in our data) we define the margin as the 

absolute distance between the medians of two classes. 

Figure 3 illustrates this idea. 
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Figure 3: Two order lines that have the same 
information gain. Our tie-breaking policy reflects the 
intuition that the top line achieves less separation than 
the bottom line   

Even though these two fingerprints have the same 

information gain of 0.590 as the example shown in 

Figure 2, the bottom one is preferable, because it 

achieves a larger margin between P and U.  

Before moving on, we preempt a possible question 

from the reader. Why optimize the information gain, 

rather than just optimizing the tie-breaking function 

itself? The answer is twofold. Just optimizing the tie- 

breaking function allows pathological solutions that do 

not generalize well. More critically, as we shall see 

later, optimizing the information gain will allow 

admissible pruning techniques that can make our 

algorithm two orders of magnitude faster.    

3. SOUND FINGERPRINTS 
As the dendrogram we will later show in Figure 5 hints 

at, the CK measure can be very accurate in matching 

(carefully extracted) examples of animal sounds. 

However, our task at hand is much more difficult than 

this. We do not have carefully extracted prototypes for 

each class, and we do not have a classification problem 

where every sound must correspond to some animal we 

have previously observed.  

Rather, for each species we have a collection of sound 

files which contain within them one or more 

occurrences of a sound produced by the target. We do 

not know how long the animal call is, or how many 

occurrences of it appear in each file. Moreover, since 

most of the recordings are made in the wild, we must 

live with the possibility that some of the sound files are 

“contaminated” with other sounds. For example, a 

twenty-second recording of a frog we examined also 

contains a few seconds of Strigiform (owl) calls and 

several cricket chirps.  

In addition, as we later use our sound fingerprints to 

monitor audio streams we must generally expect that 

the vast majority of sounds are not created by any of 

the target species, and thus we have a large amount of 

data that could produce false positives.  

3.1 The Intuition of Sound Fingerprints 
We begin by xpanding on the intuition behind sound 

fingerprints. For ease of exposition we will give 

examples using discrete text strings, but the reader will 

appreciate that we are really interested in streams of 

real-valued sounds. Assume we are giving a set of three 

observations that correspond to a particular species, let 

us say Maua affinis (a cicada from South West Asia): 
   Ma = {rrbbcxcfbb, rrbbfcxc, rrbbrrbbcxcbcxcf} 

We are also given access to the universe of sounds that 

are known not to contain examples of a Maua affinis.  
  ¬Ma = {rfcbc, crrbbrcb, rcbbxc, rbcxrf,..,rcc} 

In practice, the universe set may be so large that we 

will just examine a small fraction of it, perhaps just 

sounds that are likely to be encountered and could be 

confused for the target insect. Our task is to monitor an 

audio stream (or examine a large offline archive) and 

flag any occurrences of the insect of interest.  

Clearly it would be quite naive to examine the data for 

exact occurrences of the three positive examples we 



have been shown, even under a suitably flexible 

measure such as edit distance. Our positively labeled 

data is only guaranteed to have one or more samples of 

the insect call, and it may have additional sections of 

sounds from other animals or anthropogenic sounds 

before and/or after it.  

Instead, we can examine the strings for shorter 

substrings that seem diagnostic of the insect. The first 

candidate template that appears promising is T1 = 

rrbb, which appears in every Ma insect example. 

However, this substring also appears in the second 

example in ¬Ma, in crrbbrcb, and thus this pattern 

is not unique to Maua affinis. 

We could try to specialize the substring by making it 

longer; if we use T2 = rrbbc, this does not appear in 

¬Ma, removing that false positive. However, rrbbc 

only appears in two out of three examples in Ma, so 

using it would incur a risk of false negatives.  As it 

happens, the substring template T3 =   cxc does appear 

in all examples in MA at least once, and never in ¬Ma, 

and is thus the best candidate for a prototypical 

template for the class.  

As the reader may appreciate, the problem at hand is 

significantly more difficult that this toy example. First, 

because we are dealing with real-value data we cannot 

do simple tests for equality; rather, we must also learn 

an accept/reject threshold for the template. Moreover, 

we generally cannot be sure that every example in the 

positive class really has one true high-quality example 

call from the target animal. Some examples could be 

mislabeled, of very low quality, or simply atypical of 

the species for some reason. Furthermore, we cannot be 

completely sure that U does not contain any example 

from P. Finally, because strings are discrete, we only 

have to test all possible substrings of length one, then 

of length two, etc, up to the length of the shortest string 

in the target class. However, in the real-valued domain 

in which we must work, the search space is immensely 

larger. We may have recordings that are minutes in 

length, sampled at 44,100Hz. 

Thus far we have considered this problem abstractly: is 

it really the case that small amounts of spurious sounds 

can dwarf the similarity of related sounds? To see this 

we took six pairs of recording of various Orthoptera 

and visually determined and extracted one-second 

similar regions. The group average hierarchical 

clustering of the twelve snippets is shown in Figure 4. 

The results are very disappointing, given that only one 

pair of sounds is correctly grouped together, in spite of 

the fact that human observers can do much better. 

We believe this result is exactly analogous to the 

situation elucidated above with strings. Just as 

rrbbcxcfbb must be stripped of its spurious prefix 

and suffix to reveal cxc, the pattern that is actually 

indicative of the class, so too must we crop the 

irrelevant left and right edges of the spectrograms. 

3 4 2 1 8 10 11 5 12 9 6 7

One Second  
Figure 4: A clustering of six pairs of one-second 
recordings of various katydids and crickets using the 
CK texture measure. Only one species pair {3,4} is 
correctly grouped. Ideally the pairs {1,2}, {5,6}, {7,8}, 
{9,10} and {11,12} should also be grouped together 

For the moment, let us do this by hand. As the resulting 

images may be of different lengths, we have to slightly 

redefine the distance measure. To compute the distance 

between two images of different lengths, we slide the 

shorter one along the longer one (i.e. definition 5), and 

report the minimal distance.  Figure 5 shows the 

resulting clustering. 

GrylloideaTettigonioidea

11 12 7 8 9 10 1 2 3 4 5 6

One Second

 
Figure 5: A clustering of the same data used in Figure 
4, after trimming irrelevant prefix and suffix data. All 
pairs are correctly grouped, and at a higher level the 
dendrogram separates katydids and crickets    

The trimming of spurious data produces a dramatic 

improvement. However, it required careful human 

inspection. In the next section we will show our novel 

algorithm which can do this automatically.  

3.2 Formal Problem Statement and Assumptions 
Informally, we wish to find a snippet of sound that is 

most representative of a species, on the assumption that 

we can use this snippet as a template to recognize 

future occurrences of that species. Since we cannot 

know the exact nature of the future data we must 

monitor, we will create a dataset which contains 

representatives of U, non-target species sounds. 

Given this heterogeneous dataset U, and dataset P 

which contains only examples from the “positive” 

species class, our task reduces to finding a subsequence 

of one of the objects in P which is close to at least one 

subsequence in each element of P, but far from all 

subsequences in every element of U. Recall that Figure 

2 shows a visual intuition of this.  



This definition requires searching over a large space of 

possibilities. How large of a space? Suppose the 

dataset P contains a total of k sound sequences. Users 

have the option to define the minimum and maximum 

(Lmin, Lmax) length of sound fingerprint candidates. If 

they decline to do so we default to Lmax= infinity and to 

Lmin= 16, given that 16 by 16 is the smallest size video 

MPEG-1 is defined for [6]. Assume for the moment 

that the following relationship is true: 

Lmax ≤ min(Mi) 

That is to say, the longest sound fingerprint is no 

longer than the shortest object in P, where Mi is the 

length of Si from P, 1≤ i ≤ k. 

The total number of sound fingerprint candidates of all 

possible lengths is then: 
max

min { }

( 1)
i

L

i

l L S P

M l
 

   , 

where l is a fixed length of a candidate. It may appear 

that we must test every integer pixel size from Lmin to 

Lmax; however, we know that the “block size” of 

MPEG-1 [6] in a CK measure is eight-by-eight pixels, 

and pixels remaining after tiling the image with eight-

by-eight blocks are essentially ignored. Thus, there is 

no point in testing non-multiples of eight image sizes. 

As a result, the above expression can be modified to 

the one below: 
max

min

max min

8( 1) { }

( 1), 1,2,..., ( ) / 8
i

L

i

l L i S P

M l i L L
   

        

While this observation means we can reduce the search 

space by a factor of eight, there is still a huge search 

space that will require careful optimization to allow 

exploration in reasonable time.  

For concreteness, let us consider the following small 

dataset, which we will also use as a running example to 

explain our search algorithms in the following sections. 

We created a small dataset with P containing ten two-

second sound files from Atlanticus dorsalis (Gray 

shieldback), and U containing ten two-second sound 

files from other random insects. If we just consider 

fingerprints of length 16 (i.e. Lmin= Lmax = 16), then 

even in this tiny dataset there are 830 candidate 

fingerprints to be tested, requiring 1,377,800 calls to 

the CK distance function.  

3.3 A Brute-Force Algorithm   
For ease of exposition, we begin by describing the 

brute force algorithm for finding the sound fingerprint 

for a given species and later consider some techniques 

to speed this algorithm up.  

The brute force algorithm is described in Table 2. We 

are given a dataset D, in which each sound sequence is 

labeled either class P or class U, and a user defined 

length Lmin to Lmax (optional: we default to the range 

sixteen to infinity). 

The algorithm begins by initializing bsf_Gain, a 

variable to track the best candidate encountered thus 

far, to zero in line 1. Then all possible sound 

fingerprint candidates Sk,l for all legal subsequence 

lengths are generated in the nested loops in lines 2, 4, 

and 5 of the algorithm. 

As each candidate is generated, the algorithm checks 

how well each candidate Sk,l can be used to separate 

objects into class P and class U (lines 2 to 9), as 

illustrated in Figure 2. To achieve this, in line 6 the 

algorithm calls the subroutine CheckCandidates() to 

compute the information gain for each possible 

candidate. If the information gain is larger than the 

current value of bsf_Gain, the algorithm updates the 

bsf_Gain and the corresponding sound fingerprint in 

lines 7 to 9. The candidate checking subroutine is 

outlined in the algorithm shown in Table 3.  

Table 2: Brute-Force Sound Fingerprint Discovery 
SoundFP_Discovery(D, Lmin, Lmax) 

Require: A dataset D (P and U) of sound sequence’s spectrogram, 
user defined minimum length and maximum length of sound 
fingerprint 

Ensure: Return the sound fingerprint  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

bsf_Gain ← 0  
For i ← 1 to |P| do {every spectrogram in P} 
     S ← Pi 

     For l ← Lmin to Lmax do {every possible length} 

          For k ← 1 to |S| - l + 1 do {every start position} 
               gain ← CheckCandidates(D, Sk,l) 
               If gain > bsf_Gain 
                   bsf_Gain ← gain 
                   bsfFingerprint ← Sk,l 

               EndIf 

           EndFor 

     EndFor 

EndFor 

Return bsfFingerprint 

In the subroutine CheckCandidates(), shown in Table 

3, we compute the order line L according to the 

distance from the sound sequence to the candidate 

computed in minCKdist() procedure, which is shown in 

Table 4. In essence, this is the procedure illustrated in 

Figure 2. Given L, we can find the optimal split point 

(definition 8) in lines 10 to 15 by calculating all 

possible splitting points and recording the best.  

While the splitting point can be any point on the 

positive real number line, we note that the information 

gain cannot change in the region between any two 

adjacent points. Thus, we can exploit this fact to 

produce a finite set of possible split positions. In 

particular, we need only test |D|-1 locations.  

In the subroutine CheckCandidates() this is achieved 

by only checking the mean value (the “halfway point”) 

of each pair of adjacent points in the distance ordering 

as the possible positions for the split point. In 

CheckCandidates(), we call the subroutine minCKdist() 

to find the best matching subsequence for a given 

candidate under consideration. 



Table 3: Check the Utility of Single Candidate 
CheckCandidates (D or Dist, candidate Sk,l) 
Require: A dataset D of spectrogram (or distance ordering), sound 
fingerprint candidate Sk,l 

Ensure: Information Gain gain 

1 
2 
3 
 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

L ← ∅ 
If first input is D 
 For j ← 1 to |D| do {compute distance of every    
spectrogram to the candidate sound fingerprint Sk,l} 
     dist ← minCKdist(Dj, Sk,l )  
     insert Dj into L by the key dist 
 EndFor 
Else  

dist ← Dist 
EndIf 

    I(D) ← new information gain after split computed by def’ 7 

     For split ← 1 to |D|-1do 
         Count N1, N2 for both the partitions 
         I’(D).split ← new information gain after split computed by def’ 7 
         gain(D) = max(I(D) – I’(D).split) 
     EndFor 

Return gain(D) 

We do this for every spectrogram in D, including the 

one from which the candidate was culled.  This 

explains why in each order line at least one 

subsequence is at zero (c.f. Figure 2 and Figure 7). 

In minCKdist() (Table 4), we use the CK measure [6] 

as the distance measurement between a candidate 

fingerprint and a generally much longer spectrogram.  

Table 4: Compute Minimum Subsequence CK Distance 
minCKdist (Dj, candidate Sk,l) 
Require: A sound sequence’s spectrogram Dj, sound fingerprint 
candidate Sk,l 
Ensure: Return the minimum distance computed by CK 
1 
2 
3 
4 
5 
6 
7 
8 

minDist ← Infinity 
 For i ← 1 to | Dj, i | - |Sk,l| + 1 do {every start position} 
     CKdist ← CK(Dj,i ,Sk,l) 
     If CKdist < minDist 
          minDist ← CKdist 
     EndIf 

 EndFor 

Return minDist 

In Figure 6 we show a trace of the brute force 

algorithm on the Atlanticus dorsalis problem. 
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Figure 6: A trace of value of the bsf_Gain variable 
during brute force search on the Atlanticus dorsalis 
dataset. Only sound fingerprints of length 16 are 
considered here for simplicity  

Note that the search continues even after an 

information gain of one is achieved in order to break 

ties. The 1,377,800 calls to the CK function dominate 

the overall cost of the search algorithm (99% of the 

CPU time is spent on this) and require approximately 8 

hours.  This is not an unreasonable amount of time, 

considering the several days of effort needed for an 

entomologist to collect the data in the field. However, 

this is a tiny dataset. We wish to examine datasets that 

are orders of magnitude larger. Thus, in the next 

section we consider speedup techniques.   

3.4 Admissible Entropy Pruning   
The most expensive computation in the brute force 

search algorithm is obtaining the distances between the 

candidates and their nearest matching subsequences in 

each of the objects in the dataset. The information gain 

computations (including the tie breaking computations) 

are inconsequential in comparison. Therefore, our 

intuition in speeding up the brute force algorithm is to 

eliminate as many distance computations as possible.  

Recall that in our algorithm, we have to obtain the 

annotated linear ordering of all the candidates in P. As 

we are incrementally doing this, we may notice that a 

particular candidate looks very unpromising. Perhaps 

when we are measuring the distance from the current 

candidate to the first object in U we find that it is a 

small number (recall that we want the distances to P to 

be small and to U large), and when we measure the 

distance to the next object in U we again find it to be 

small. Must we continue to keep testing this 

unpromising candidate? Fortunately, the answer may 

be “no”. Under some circumstances we can admissibly 

prune unpromising fingerprints; without having to 

check all the objects in the universe U.   

The key observation is that we can cheaply compute 

the upper bound of the current partially computed 

linear ordering at any time. If the upper bound we 

obtain is less than the best-so-far information gain (i.e. 

the bsf_Gain of Table 2), we can simply eliminate the 

remaining distance computations in U and prune this 

particular fingerprint candidate from consideration.   

To illustrate this pruning policy, we consider a 

concrete example. Suppose that during a search the 

best-so-far information gain is currently 0.590, and we 

are incrementally beginning to compute the sound 

fingerprint shown in Figure 2. Assume that the partially 

computed linear ordering is shown in Figure 7.  We 

have computed the distances to all five objects in P, 

and to the first two objects in U. 

0 1
 

Figure 7: The order line of all the objects in P and just 

the first two objects in U  

Is it possible that this candidate will yield a score better 

than our best-so-far? It is easy to see that the most 

optimistic case (i.e., the upper bound) occurs if all of 

the remaining objects in U map to the far right, as we 

illustrate in Figure 8. 

0 1
 Figure 8: The logically best possible order line based 

on the distances that have been calculated in Figure 7. 
The best split point is shown by the yellow/heavy line  



Note that of the three objects on the left side of the 

split point, all three are from P. Of the six objects on 

the right side, two are from P and four are from U.  

Given this, the entropy of the hypothetical order line 

shown in Figure 8 is:  

  (3/9)[-(3/3)log(3/3)]+(6/9)[-(4/6)log(4/6)-(2/6)log(2/6)] = 0.612 

Therefore, the best possible information gain we could 

obtain from the example shown in Figure 7 is just 

0.612, which is lower than the best-so-far information 

gain. In this case, we do not have to consider the 

ordering of the remaining objects in U. In this toy 

example we have only pruned two invocations of the 

CheckCandidates() subroutine shown in Table 3. 

However, as we shall see, this simple idea can prune 

more than 95% of the calculations for more realistic 

problems.  

The formal algorithm of admissible entropy pruning is 

shown in Table 5. After the very first sound fingerprint 

candidate check, for all the remaining candidates, we 

can simply insert EntropyUBPrune() in line 4 of Table 

3, and eliminate the remaining CK distance and 

information gain computation if the current candidate 

satisfies the pruning condition, as we discussed in this 

section. EntropyUBPrune() takes the best-so-far 

information gain, current distance ordering from class 

P and class U, and  remaining objects in U, and returns 

the fraction of the distance measurements computed to 

see how much elimination we achieved.  

Table 5: Entropy Upper Bound Pruning 
EntropyUBPrune (Um, currentDist, Sk,l, bsf_Gain) 
Require: A sound sequence’s spectrogram Um, current distance 
ordering, sound fingerprint candidate Sk,l, best-so-far information gain 
Ensure: Return fraction of distance computations in U 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

fraction ← 0 
counter ← 0 
rightmostDist ← largest distance value in currentDist + 1  
bestDist ← Add rightmostDist for Um to currentDist 
gain ← CheckCandidates(bestDist, Sk,l) 
 If gain >bsf_Gain 

Return False and increment counter 
 Else 

Return True 
 EndIf 

Return fraction ← counter/|U|, gain 

We can get a hint as to the utility of this optimization 

by revisiting the Atlanticus dorsalis problem we 

considered above. Figure 9 shows the difference 

entropy pruning makes in this problem.  

0 8000.2

0.4

0.6

0.8

1

Brute-force search 

terminates
Entropy pruning 

search terminates

Number of calls to the CK distance measure

In
fo

rm
a
ti
o
n
 G

a
in

 
Figure 9: A trace of the bsf_Gain variable during 
brute force and entropy pruning search on the 
Atlanticus dorsalis dataset 

Note that not only does the algorithm terminate earlier 

(with the exact same answer), but it converges faster, a 

useful property if we wish to consider the algorithm in 

an anytime framework [27].  

3.5 Euclidean Distance Ordering Heuristic   
In both the brute force algorithm and the entropy-based 

pruning extension introduced in the last section, we 

generate and test candidates; from left to right; and top 

to bottom based on the given lexical order of the 

objects’ label (i.e., the file names used by the 

entomologist).  

There are clearly other possible orders we could use to 

search, and it is equally clear that for entropy-based 

pruning, some orders are better than others. In 

particular, if we find a candidate which has a relatively 

high information gain early in the search, our pruning 

strategy can prune much more effectively.  

However, this idea appears to open a “chicken and 

egg” paradox. How can we know the best order; until 

we have finished the search? Clearly, we cannot. 

However, we do not need to find the optimal ordering; 

we just need to encounter a relatively good candidate 

relatively early in the search. Table 6 outlines our idea 

to achieve this. We simply run the entire brute force 

search using the Euclidean distance as a proxy for the 

CK distance, and sort the candidates based on the 

information gain achieved using the Euclidean 

distance. 

Concretely, we can insert EuclideanOrder() between 

lines 4 and 5 in Table 2 to obtain a better ordering to 

check all the candidates.  

Table 6: Euclidean Distance Measure Order Pruning 
EuclideanOrder (D, minLen, maxLen) 
Require: A dataset D (P and U) of sound sequence’s spectrogram, 
user defined minimum/maximum length of sound fingerprint 
Ensure: Return the new order of candidates 
1 
2 
3 
4 

Replace CK measure with Euclidean distance measure  
newGain ← CheckCandidates (D or Dist, candidate Sk,l) 
newOrder ← sort the candidates by decreasing newGain  
Return newOrder 

Running this preprocessing step adds some overhead; 

however, it is inconsequential because the Euclidean 

distance is at least two orders of magnitude faster than 

the CK distance calculation. For this idea to work well, 

the Euclidean distance must be a good proxy for the 

CK distance calculation. To see if this is the case, we 

randomly extracted 1,225 pairs of insect sounds and 

measured the distance between them under both 

measures, using the two values to plot points in a 2D 

scatter plot, as shown in Figure 10. The results suggest 

that Euclidean distance is a very good surrogate for CK 

distance.  

To measure the effect of this reordering heuristic we 

revisited our running example shown in Figure 6/ 

Figure 9. 
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Figure 10: The relationship between Euclidean and 
CK distance for 1,225 pairs of spectrograms 

The Euclidean distance reordering heuristic is shown in 

Figure 11. 
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Figure 11: A trace of value of the bsf_Gain variable 

during brute force, entropy pruning, and reordering 

optimized search on the Atlanticus dorsalis dataset 

As we can see, our heuristic has two positive effects. 

First, the absolute time to finish (with the identical 

answer as a brute force search) has significantly 

decreased. Secondly, we converge on high quality 

solution faster. This is a significant advantage if we 

wanted to cast the search problem as an anytime 

algorithm [27]. As impressive as the speedup results 

are, as we shall show in the next section, they are 

pessimistic due to the small size of our toy problem.  

4. EXPERIMENTAL EVALUATION 
We have created a supporting webpage [11], which 

contains all code/data used in this work. Moreover, the 

webpage contains addition experiments, along with 

videos and sounds files that allow the interested reader 

to get a better appreciation of the scale and complexity 

of the data we are working with. 

4.1 CK as a Tool for Taxonomy  
We begin by noting that beyond the utility of our ideas 

for monitoring wildlife, the CK measure may be useful 

as a taxonomic tool. Consider the insect shown in 

Figure 12. As noted in a National Geographic article, 

“the sand field cricket (Gryllus firmus) and the 

southeastern field cricket (Gryllus rubens) look nearly 

identical and inhabit the same geographical areas” 

[25]. Thus, even if handling a living specimen, most 

entomologists could not tell them apart without 

resorting to DNA analysis.  

We suspected that we might be able to tell them apart 

by sound
4
. While we do not have enough data to do 

forceful and statistically significant experiments, we 

                                                                 
4 In brief, it is well known that the acoustic behavior of insects is 

important in insect speciation, especially for sympatric speciation, 

where new species evolve from a single ancestral species while 

inhabiting the same geographic region [26].     

can do two tentative tests. As shown in Figure 12, we 

projected twenty-four examples from the two species 

into two-dimensional space using multi-dimensional 

scaling, and we also clustered eight random examples, 

four from each class. 

Gryllus rubens Gryllus

firmus

Gryllidae

-0.4 0 0.4
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Figure 12: top left) An insect found in Florida: is it a 
G. rubens or G. firmus?  top right) Projecting one-
second snippets of songs from both insects into 2D 
space suggests they are almost linearly separable, a 
possibility reflected by their clusterability (bottom) 

The results suggest that these congeneric
5
 species are 

almost linearly separable in two-dimensional space 

(they are linearly separable in three-dimensional 

space). 

4.2 Insect Classification  
There are currently no benchmark problems for insect 

classification. Existing datasets are either too small to 

make robust claims about accuracy, or were created by 

authors unwilling to share their data. To redress this we 

created and placed into the public domain a large 

classification dataset [11]. The data consists of twenty 

species of insects, eight of which are Gryllidae 

(crickets) and twelve of which are Tettigoniidae 

(katydids)6. Thus, we can treat the problem as either a 

twenty-class species level problem, or two-class genus 

level problem. For each class we have ten training and 

ten testing examples. It is important to note that we 

assembled these datasets before attempting 

classification, explicitly to avoid cherry-picking. Note 

that because of convergent evolution, mimicry and the 

significant amounts of noise in the data (which were 

collected in the field) we should not expect perfect 

accuracy here. Moreover, this group of insects requires 

some very subtle distinctions to be made; for example, 

Neoconocephalus bivocatus, Neoconocephalus 

retusus, and Neoconocephalus maxillosus are 

obviously in the same genus, and are visually 

indistinguishable at least to our untrained eye.  

                                                                 
5  Species belonging to the same genus are congeneric. 
6 A full description of the data is at [11]. 



Likewise, we have multiple representatives from both 

the Belocephalus and Atlanticus genera. 

We learned twenty sound fingerprints using the 

algorithm in Section 3. We then predicted the testing 

exemplars class label by sliding each fingerprint across 

it and recording the fingerprint that produced the 

minimum value as the exemplar’s nearest neighbor. 

The classification accuracies are shown in Table 7. 

Table 7: Insect Classification Accuracy 

 
species-level problem genus-level problem 

default rate fingerprint default rate fingerprint 

10 species 0.10 0.70 0.70 0.93 

20 species 0.05 0.44 0.60 0.77 

The results are generally impressive. For example, in 

the ten-class species-level problem the default accuracy 

rate is only 10%, but we can achieve 70%. It is worth 

recalling the following when considering these results. 

 The testing data does not consist of carefully 

extracted single utterances of an insect’s call. Rather, 

it consists of one or two-minute sound files known to 

contain at least one call, together with human voice 

annotations and miscellaneous environmental sounds 

that can confuse the classification algorithm. 

 As noted above, our dataset has multiple congeneric 

species; that, at least to our eyes and ears, look and 

sound identical. This is an intrinsically hard problem.  

 The reader can be assured that the results are not due 

to overfitting, because we did not fit any parameters 

in this experiment7. These are “black box” results.  

 We can do a little better by weighting the nearest 

neighbor information with the threshold information 

(which we ignore in the above). Since this does 

introduce a (weighting) parameter to be tuned, in the 

interest of brevity, given page limits and our already 

excellent results, we defer such discussions to future 

work. 

4.3 Monitoring with Sound Fingerprints 
To test our ability to monitor an audio stream in real 

time for the presence of a particular species of insects, 

we learned the sound fingerprints for three insect 

species of insects native to Florida. In each case we 

learned from training sets consisting of ten insects.   

To allow visual appreciation of our method, as shown 

in Figure 13 we produced an eight-second sequence of 

audio by concatenating snippets of four different 

species, including holdout (i.e. not seen in the training 

set) examples from our three species of interest.  While 

each fingerprint has a different threshold, for simplicity 

and visual clarity we show just the averaged threshold. 

                                                                 
7
 The minimum fingerprint length is set to 16, a hard limit due to the 

way MPEG is coded. The maximum length is set to infinity.  

As we can see in Figure 13, this method achieves three 

true positives, and more remarkably, no false positives. 
Recall that the CK distance measure exploits the 

compression technique used by MPEG video encoding, 

which is among the most highly optimized computer 

code available. Thus, we can do this monitoring 

experiment in real time, even on an inexpensive laptop. 
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Figure 13: (Image best viewed in color)  far left) Three 
insect sound fingerprints are used to monitor an eight- 
second  audio clip. In each case, the fingerprint 
distance to the sliding window of audio dips below the 
threshold as the correct species sings, but not when a 
different species is singing  

4.4 Scalability of Fingerprint Discovery 
Recall the experiments shown in Section 3, when our 

toy example had only ten objects in both P and U. We 

showed a speedup of about a factor of five, although 

we claimed this is pessimistic because we expect to be 

able to prune more aggressively with larger datasets. 

To test this, we reran these experiments with a more 

realistically-sized U, containing 200 objects from other 

insects, birds, trains, helicopters, etc. As shown in 

Figure 14, the speedup achieved by our reordering 

optimization algorithm is a factor of 93 in this case.  
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Figure 14: A trace of value of the bsf_Gain variable 
during brute force, entropy pruning, and reordering 
optimized search on the Atlanticus dorsalis dataset 
with the 200-object universe 

4.5 Archived Experiments  
Page limitations make it difficult to show all our 

extensive empirical work. We urge the interested 

reader to visit [11], where we have more than one-

hundred additional experiments. Among the questions 

we consider are: Do sound fingerprints work for other 

vocal animals such as frogs/birds? (yes); is our method 

robust to mislabeled training data? (so long as the 

majority of data in P is correctly labeled, yes); are we 

robust to noisy environments, such as aircraft noise in 

the background as a monitored cricket chirps? (so long 

as the target signal is a significant fraction of the 

overall signal, yes). 



Moreover, at [11] we have embedded sound and video 

files to allow a more direct appreciation of the subtlety 

of the distinctions our system can make.  

5. CONCLUSION AND FUTURE WORK 
In this work we have introduced a novel bioacoustic 

recognition/classification framework. We feel that 

unlike other work in this area, our ideas have a real 

chance to be adopted by domain practitioners, because 

our algorithm is essentially a “black box”, requiring 

only that the expert can label some data. We have 

shown through extensive experiments that our method 

is accurate, robust and efficient enough to be used in 

real time in the field.  

In future work we will explore expanding the 

representational power of sound fingerprints with 

logical operators, such as classifying a sound as feline 

if we hear a “hiss” OR a “mew”. We are also beginning 

to explore the spatiotemporal data mining problems 

inherent in monitoring large sites with multiple sensors.    
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