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Abstract—Time series classification has been an active area of research in the data 

mining community for over a decade, and significant progress has been made in 

the tractability and accuracy of learning. However, virtually all work assumes a 

one-time training session in which labeled examples of all the concepts to be 

learned are provided. This assumption may be valid in a handful of situations, but 

it does not hold in most medical and scientific applications where we initially may 

have only the vaguest understanding of what concepts can be learned. Based on 

this observation, we propose a never-ending learning framework for time series in 

which an agent examines an unbounded stream of data and occasionally asks a 

teacher (which may be a human or an algorithm) for a label. We demonstrate the 

utility of our ideas with experiments that consider real-world problems in domains 

as diverse as medicine, entomology, wildlife monitoring, and human behavior 

analyses.   
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1 Introduction 

Virtually all work on time series classification assumes a one-time training session 

in which multiple labeled examples of all the concepts to be learned are provided. 

This assumption is sometimes valid, for example, when learning a set of gestures 

to control a game or novel HCI interface [63]. However, in many medical and 

scientific applications, we initially may have only the vaguest understanding of 

what concepts need to be learned. Given this observation, and inspired by the 

Never-Ending Language Learning (NELL) research project at CMU [11], we 

propose a time series learning framework in which we observe streams forever, 

and we continuously attempt to learn new (or drifting) concepts.   

Our ideas are best illustrated with a simple visual example. In Fig.1, we show a 

time series produced by a light sensor at Soda Hall in Berkeley. While the sensor 

will produce data forever, we can only keep a fixed amount of data in a buffer. 
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Here, the daily periodicity is obvious, and a more careful inspection reveals two 

very similar patterns, annotated A and B.  

 

Fig.1  The light sensors at Soda Hall produce a never-ending time series, of which we can cache 
only a small subset in the main memory 

As we can see in Fig.2a and Fig.2b, these patterns are even more similar after we 

z-normalize them [17]. Suppose that the appearance of these two similar patterns 

(or “motif”) causes an agent to query a teacher as to their meaning.  

 

Fig.2  a) A “motif” of two patterns annotated in Fig.1 aligned to highlight their similarity. b) We 
imagine asking a teacher for a label for the pattern. c) This allows us to detect and classify a new 
occurrence eleven days later 

This query could be implemented in a number of ways; moreover, the teacher 

need not necessarily be human. Let us assume in this example that an email is sent 

to the building supervisor with a picture of the patterns and any other useful 

metadata. If the teacher is willing to provide a label, in this case Weekday with no 

classes, we have learned a concept for this time series, and we can monitor for 

future occurrences of it.  

An important generalization of the above is that the time series may only be a 

proxy for another much higher-dimensional streaming data source, such as video 

or audio. For example, suppose the classrooms are equipped with surveillance 

cameras, and we had conducted our monitoring at a finer temporal resolution, say 

seconds. We could imagine that our algorithm might notice a novel pattern of 

short-lived but dramatic spikes in light intensity. In this case we could send the 

teacher not the time series data, but some short video clips that bracket the events. 

The teacher might label the pattern Camera use with flash. This idea, that the time 

series is only a (more tractable) proxy for the real stream of interest, greatly 

expands the generality of our ideas, as time series has been shown to be a useful 

proxy of audio, video, text, networks, and a host of other types of data [10]. 

2,000 minutes ago 1,500 minutes ago 1,000 minutes ago 500 minutes ago now

time
A

B

Light Sensor 39-Soda Hall

0 300

A

15,840 minutes later 16,340 minutes later0 300

B

What is this?
Weekday with no classes

Weekday with no classes was detected

(a) (b) (c)
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This example elucidates our aims, but suggests a wealth of questions. How can we 

detect repeated patterns, especially when the data arrives at a much faster rate, and 

the probability of two patterns from a rare concept appearing close together is very 

small? Assuming the teacher is a finite or expensive resource, how can we 

optimize the set of questions we might ask of it/him/her, and how do we act on 

this feedback? 

The rest of this paper is organized as follows. In Section 2, we briefly discuss 

related work before explaining our system architecture and algorithms in Section 3. 

We provide an empirical evaluation on a host of diverse domains in Section 4, and 

in Section 5, we offer conclusions and directions for future work. 

2 Related Work 

The task at hand requires contributions from, and an understanding of, many areas, 

including frequent item mining, time series classification [17], hierarchical 

clustering, crowdsourcing, active learning, and semi-supervised learning. 

Frequent item mining is one of the most heavily studied problems in data mining. 

The task is to find all items whose frequency exceeds a specified threshold in the 

data stream [14]. Significant effort has been dedicated to this research topic in the 

past few decades, and most of the research community seems to have converged 

on a counter-based approach [34] [39][41]. Counter-based algorithms use a buffer 

to store pairs of items and counters, and when an item is seen, its corresponding 

counter is incremented. The buffer has a fixed size and only frequent items will be 

stored in the buffer when the algorithm terminates. Although the counter-based 

methods have good approximation in finding the frequent items, they are designed 

for discrete items only, not for mining the real-value items which our system is 

aiming at. The literature has offered some other methods for frequent items, such 

as the sketch-based methods which use bit-maps of counters to estimate the 

frequency for each item in the data [12][20][31], and quantile-based algorithms 

which find the frequent items through the quantile algorithm [14][56]. However, 

all the algorithms assume the items are discrete and countable, and thus are not 

readily applicable to our system. 

Active learning is well-motivated by applications where unlabeled data are 

abundant and cheap, but acquiring their labels is expensive. The goal is to learn an 

accurate classifier with less training data by actively choosing the most 
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informative unlabeled data to query [54]. Some of the active learning methods are 

pool-based, which assume that a large, static unlabeled dataset is available from 

the beginning and choose query data usually in a greedy fashion [58][55]. Other 

methods are stream-based, which acquire one item at a time, sequentially from the 

input, and make the decision of whether to query or discard the item on the fly. 

The stream-based methods are similar in spirit to our work since our system must 

also deal with data streams. In the literature, there are abundant stream-based 

active learning methods. The committee-based sampling method proposed in [15] 

constructs a ‘committee’ of classifiers and queries the items which are most 

disagreed upon by the committee members; In [62], the active learner queries the 

items that are most difficult to classify in order to revise the decision boundary; 

[22] proposes to query items which correctly disambiguate as much unseen data as 

possible. Although there are many active learning methods, most of them assume 

that all the classes to be learned are known before learning starts, and the goal is to 

find the query data that are “best” for improving the accuracy of the classifiers. In 

contrast, our system considers applications where we initially have only the 

vaguest understanding of the concepts to be learned (if any), and our goal is not 

only to learn accurate classifiers, but more importantly, to discover classes that 

might be amenable to being learned.  

It would be remiss of us not to mention the groundbreaking NELL project led by 

Tom Mitchell at Carnegie Mellon [11], which is a key inspiration for the current 

work. Since early 2010, the CMU team has been running NELL 24 hours a day, 

sifting through hundreds of millions of web pages looking for connections 

between the information it already knows and what it finds through its search 

process. Note, however, that the techniques used by NELL are informed by very 

different assumptions and goals. NELL is learning ontologies from discrete data 

that it can crawl through multiple times. In contrast, our system is learning 

prototypical time series templates from real-valued data that it can only see once.  

The work closest in spirit to ours in the time series domain is [8]. Here, the authors 

are interested in a human activity inference system with an application to 

psychiatric patient monitoring. They use time series streams from a wrist-worn 

sensor to detect dense motifs, which are used in a periodic (every few weeks) 

retrospective interview/assessment of the patient. However, this work is perhaps 

best described as a sequence of batch learning, rather than a true continuous 
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learning system. Moreover, the system requires at least seven parameters to be set 

and significant human intervention. In contrast, our system requires few (and 

relatively non-critical) parameters, and where humans are used as teachers, we 

limit our demands of them to providing labels only.     

3 Time Series Classification Algorithm 

The first decision facing us is which base classifier to use. Here, the choice is easy; 

there is near universal agreement that the special structure of time series lends 

itself particularly well to the nearest neighbor classifier [17][29][45]. This only 

leaves the question of which distance measure to use. There is increasing 

empirical evidence that the best distance measure for time series is either 

Euclidean Distance (ED), or its generalization to allow time misalignments, 

Dynamic Time Warping (DTW) [17]. DTW has been shown to be more accurate 

than ED on some problems; however, it requires a parameter, the warping window 

width, to be carefully set using training data, which we do not have. 

Because ED is parameter-free, computationally more tractable, allows several 

useful optimizations in our framework (triangular inequality, etc.), and works very 

well empirically [17][45], we use it in this work. However, nothing in our 

overarching architecture specifically precludes other distance measures. 

3.1 Overview of System Architecture 

We begin by stating our assumptions:   

 We assume we have a never-ending1 data stream S. 

S could be an audio stream, a video stream, a text document stream, multi-

dimensional time series telemetry, etc. Moreover, S could be a combination of any 

of the above. For example, all broadcast TV in the USA has simultaneous video, 

audio, and text. 

 Given S, we assume we can record or create a real-time proxy stream P that 

is “parallel” to S. 

P is simply a single time series that is a low-dimensional (and therefore easy to 

analyze in real time) proxy for the higher dimensional/higher arrival rate stream S 

that we are interested in. In some situations, P may be a companion to S. For 

                                                                  
1For our purposes, a “never-ending” stream may only last for days or hours. The salient point is the contrast with the batch 

learning algorithms that the vast majority of time series papers consider [17]. 
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example, in [9], which manually attempts some of the goals of this work, S is a 

night-vision camera recording sleeping postures and P is a time series stream from 

a sensor worn on the wrist of the sleeper. In other cases, P could be a transform or 

low-dimensional projection of S. In one example we consider in our experimental 

section, S is a stereo audio stream recorded at 44,100Hz, and P is a single-channel 

100Hz Mel-frequency cepstral coefficient (MFCC) transformation of it. Note that 

our framework includes the possibility of the special case where S = P, as in Fig.1. 

 We assume we have access to a teacher (or Oracle [54]), and the cost of 

querying the teacher is both fixed and known in advance.  

The space of possible teachers is large. The teacher may be strong, giving only 

correct labels to examples, or weak, giving a set of probabilities for the labels. The 

teacher may be synchronous, providing labels on demand, or asynchronous, 

providing labels after a significant delay, or at fixed intervals.  

Given these definitions our problem can be defined as: 

Problem Definition: Given a stream P, which may be a proxy for a higher 

dimensional stream S that is recorded in parallel, and given access to a teacher, 

which may be a human or an algorithm, which can provide class labels for 

subsections of P (possibly by exploiting information available in the 

corresponding subsections of S), extract concepts from P and label them. The 

success at this task is measured by coverage, the number of concepts learned, 

and the average accuracy of each learned concept.      

Given the sparseness of our assumptions and especially the generality of our 

teaching model, we wish to produce a very general framework in order to address 

a wealth of domains. However, many of these domains come with unique domain-

specific requirements. Thus, we have created the framework outlined in Fig.3, 

which attempts to divorce the domain-dependent and domain-independent 

elements. 
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Fig.3  An overview of our system architecture. The time series P which is being processed may 
actually be a proxy for a more complex data source such as audio or video (top right) 

Recall that P itself may be the signal of interest, or it may just be a proxy for a 

higher-dimensional stream S, such as a video or audio stream, as shown in Fig.3 

top-right. 

Our framework is further explained at a high level in Table 1. We begin in Line 1 

by initializing the class dictionary, in most cases just to empty. The dictionary 

format is defined in Section 3.2. We then initialize a dendrogram of size w. We 

will explain the motivation for using a dendrogram in Section 3.5. This 

dendrogram is initialized with random data, but as we shall see, these random data 

are quickly replaced with subsequences from P as the algorithm runs. 

After these initialization steps, we enter an infinite loop in which we repeatedly 

extract the next available subsequence from the time series stream P (Line 4), and 

pass it to a module for subsequence processing. In this unit, domain-dependent 

normalization may take place (Line 5), and we will attempt to classify the 

subsequence using the class dictionary. If the subsequence is not classified and is 

regarded as valid (cf. Section 3.4), then it is passed to the frequent pattern 

maintenance algorithm in Line 6, which attempts to maintain an approximate 

history of all data seen thus far. If the new subsequence is similar to previously 

seen data, this module may signal this by returning a new ‘top’ motif. In Line 7, 

the active learning module decides if the current top motif warrants seeking a label. 

If the motif is labeled by a teacher, the current dictionary is updated to include this 

now known pattern.  
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Table 1  The Never-Ending Learning Algorithm 

Algorithm:Never_Ending_Learning(S,P,w) 

1 

2 

3 

4 

5 

6 

7 

8 

dict  initialize_class_dictionary 

global dendro = create_random_dendrogram_of_size(w)   

For ever 

      sub   get_subsequence_from_P(S,P) 

      sub   subsequence_processing(sub, dict) 

      top   frequent_pattern_maintenance(sub)  

      dict  active_learning_system(top, dict) 

End 

In the next six subsections, we expand our discussion of the class dictionary and 

the four major modules introduced above. Then we will be in a position to discuss 

about performance of the proposed framework. 

3.2 Class Dictionaries 

We limit our representation of a class concept i to a triple containing: a prototype 

time series, Ci; its associated threshold, Ti; and Counti, a counter to record how 

often we have seen sequences of this class. As shown in Fig.4b, a class dictionary 

is simply a set of such concepts, represented by M triples.  

Unlabeled objects that are within Ti of class Ci under the Euclidean distance are 

classified as belonging to that class. Fig.4a illustrates the representational 

expressiveness of our model. Note that because a single class could be represented 

by two or more templates with different thresholds (i.e. Weekend in Fig.4b), this 

representation can in principle approximate any decision boundary. It has been 

shown that for time series problems this simple model can be very completive with 

more complex models [29], at least in the case where both Ci and Ti are carefully 

set. 

 

Fig.4  An illustration of the expressiveness of our model 

Class Dictionary

C2 = W eekday no classes
T2 = 1.5

C3 = W eekend
T3 = 1.3

C4 = W eekend
T4 = 0.7

C1 = W eekday with classes
T1 = 3.7

(a) (b)
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It is possible that the volumes that define two different classes could overlap (as 

C1 and C2 slightly do above) and that an unlabeled object could fall into the 

intersection. In this case, we assign the unlabeled object to the nearest center.   

We reiterate that this model is adopted for simplicity; nothing in our overall 

framework precludes more complex models, using different distance measures 

[17], using logical connectives [45], etc.  

As shown in Table 1-Line 1, our algorithm begins by initializing the class 

dictionary. In most cases it will be set to empty; however, in some cases, we may 

have some domain knowledge we wish to “prime” the system with. For example, 

as shown in Fig.5, our experience in medical domains suggests that we should 

initialize our system to recognize and ignore the ubiquitous flatlines caused by 

battery/sensor failure, patient bed transfers, etc.   

Fig.5  a) Sections of constant “flatline” signals are so common in medical domains that it is worth 
initializing the medical dictionaries with an example (b), thus suppressing the need to waste a 
query asking a teacher for a label for it 

Whatever the size of the initial dictionary, it can only increase by being appended 

to by the active learning module, as suggested in Line 7 of Table 1 and explained 

in detail in Section 3.7.   

3.3 Get Subsequence from Data Stream 

All subsequences extracted from a stream are of the same length. In some cases 

where the starting and ending positions of each subsequence are known, we 

extract subsequences item by item. For example, the activity dataset in section 4.1 

has the interesting property that every action takes exactly eight-seconds and one 

action starts immediately after another. Thus, we partition the stream at eight-

second intervals, and taking each interval as a subsequence. In this case, each 

subsequence corresponds to a complete action.  

In other cases where the starting and ending positions of the subsequences are 

unknown, we consider every possible subsequence (that is, we move the sliding 

window a single data point forward at a time), but skip those that may cause trivial 

matches [13]. Specifically, we begin by extracting the first available subsequence. 

Challenge 2010: 101a: ECG V 

“Flatline” 

Class Dictionary

C1 = Flat line
T1 = 0.001

seconds0 10

(a) (b)
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Then, given the next incoming subsequence, we compute its distance to the 

previously extracted subsequence. If the distance is smaller than a threshold, we 

discard the subsequence and move on to consider the next subsequence. This 

process continues until the incoming subsequence has a distance to the previously 

extracted subsequence larger than the threshold, in which case, we extract the 

incoming subsequence and pass it to the next module. A reasonable distance 

threshold is to discard approximately two thirds of all subsequences. The expected 

height of subtrees of size three learned from the “patternless data” that will be 

explained in section 3.5 turns out to be quite close to the reasonable threshold, and 

thus, is used for all experiments in this work. 

3.4 Subsequence Processing 

Subsequence processing refers to any domain-specific preprocessing that must be 

done to prepare the data for the next stage (frequent pattern mining). We have 

already seen in Fig.1 and Fig.2 that z-normalization may be necessary [17]. More 

generally, this step could include downsampling, smoothing, wandering baseline 

removal, taking the derivative of the signal, filling in missing values, etc. In some 

domains, very specialized processing may take place. For example, for ECG 

datasets, robust beat extraction algorithms exist that can detect and extract full 

individual heartbeats, and as we show in Section 4.2, converting from the time to 

the frequency domain may be required [6]. 

As shown in Table 2-Line 3, after processing, we attempt to classify the 

subsequence by comparing it to each time series in our dictionary and assigning its 

class label to its nearest neighbor, if and only if it is within the appropriate 

threshold. If that is the case, we increment the class counter and the subsequence 

is simply discarded without passing it to the next stage.  

Table 2  The Subsequence Processing Algorithm 

Algorithm:sub = subsequence_processing(sub,dict) 

1 

2 

3 

4 

5 

6 

7 

sub  domain_dependent_processing(sub) 

[dist,index]  nearest_neighbor_in_dictionary(sub,dict) 

if  dist < Tindex       // Item can be classified 

    disp(‘An instance of class’ index ‘ was detected!’) 

    countindex  countindex + 1 

    sub  null;          // Return null to signal that no  

end                        // further processing is needed 
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Assuming the algorithm processes the subsequence and finds it is unknown, it 

passes it on to the next step of frequent pattern maintenance, which is completely 

domain independent.   

3.5 Frequent Pattern Maintenance 

As we discuss in more detail in the next section, any attempt to garner a label must 

have some cost, even if only CPU time. Thus, as hinted at in Fig.1/Fig.2, we plan 

to only ask for labels for patterns which appear to be repeated with some minimal 

fidelity. This reflects the intuition that a repeated pattern probably reflects some 

conserved concept that could be learned.  

The need to detect repeated time series patterns opens a host of problems. Note 

that the problem of maintaining discrete frequent items from unbounded streams 

in bounded space is known to be unsolvable in general, and thus has opened up an 

active area of research in approximation algorithms for this task [14]. However, 

we have the more difficult task of maintaining real-valued and high-dimensional 

frequent items. The change from discrete to real-valued causes two significant 

difficulties.  

 Meaningfulness: We never expect two real-valued items to be equal, so how 

can we define a frequent time series? 

 Tractability: The high dimensionality of the data objects, combined with the 

inability to avail of common techniques and representations for discrete 

frequent pattern mining (hashing, graphs, trees, and lattices [14]) seems to 

bode ill for our hopes to produce a highly tractable algorithm. 

Fortunately, these issues are not as problematic as they may seem. Frequent item 

mining algorithms for discrete data must handle million-plus Hertz arrival rates 

[14]. However, most medical/human behavior domains have arrival rates that are 

rarely more than a few hundred Hertz [8][9][23][38][42][46]. Likewise, for 

meaningfulness, a small Euclidean distance between two or more time series tells 

us that a pattern has been (approximately) repeated.  

We begin with the intuition of our solution to these problems. For the moment, 

imagine we can relax the space and time limitations, and that we could buffer all 

the data seen thus far. Further imagine, as shown in Fig.6, that we could build a 

dendrogram for all the data. Under this assumption, frequent patterns would show 

up as dense subtrees in the dendrogram. 
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Given this intuition, we have just two problems to solve. The first is to produce a 

concrete definition of “unusually dense subtree.” The second problem is to 

efficiently maintain a dendrogram in constant space with unbounded streaming 

data. 

While our constant space dendrogram can only approximate the results of the 

idealized ever-growing dendrogram, we have good reason to suspect this will be a 

good approximation. Consider the dense subtree shown in Fig.6; even if our 

constant space algorithm discards any two of the four sequences in this clade, we 

would still have a dense subtree of size two that would be sufficient to report the 

existence of a repeated pattern. We will revisit this intuition with more rigor below. 

Fig.6  A visual intuition of our solution to the frequent time series subsequence problem. The 
elements in a dense subtree (or clade) can be seen as a frequent pattern 

We will maintain a dendrogram of size w in a buffer, where w is as large as 

possible given the space or (more likely) time limitations imposed by the domain. 

At most once per time step2, the Subsequence Processing Module will hand over a 

subsequence for consideration. After this happens a subsequence from the 

dendrogram will be randomly chosen to be discarded in order to maintain constant 

space. At all times, our algorithm will maintain the top most significant patterns in 

the dendrogram, and it is only this top-1 motif that will be visible to the active 

learning module discussed below. 

In order to define most significant motif more concretely, we must first define one 

parameter, MaxSubtreeSize. The dense subtree shown in Fig.6 has four elements; 

a dense subtree may have fewer elements, as few as two. However, what should be 

the maximum allowed number of elements? If we allow the maximum to be a 

                                                                  

2 Recall from Section 3.3 that the Subsequence Processing Module may choose to discard a subsequence rather than pass it 
to Frequent Pattern Maintenance. 

Unusually dense subtree

Most of the dendrogram truncated for clarity
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significant fraction of w, the size of the dendrogram, we can permit pathological 

solutions, as a subtree is only dense relative to the rest of the tree. Thus, we define 

MaxSubtreeSize to be a small constant. Empirically, the exact value does not 

matter, so we simply use six throughout this work. 

We calculate the significance of the top motif in the following way. Offline, we 

take a sample time series from the domain in question and remove existing 

patterns by permuting the data. We use this “patternless” data to create multiple 

dendrograms with the same parameters we intend to monitor P under. We examine 

these dendrograms for all possible sizes of subtrees from two to MaxSubtreeSize, 

and as shown in Fig.7, we record the mean and standard deviation of the heights 

of these subtrees.  

 

Fig.7  a) The (partial) dendrogram shown in Fig.6 has its subtrees of size four ranked by density. 
b) The observed heights of the subtrees are compared to the expected heights given the assumption 
of no patterns in the data 

These distributions tell us what we should expect to see if there are no frequent 

patterns in the new data stream P, as clusters of frequent patterns will show up as 

unusually dense subtrees. These distributions allow us to examine the subtrees of 

the currently maintained dendrogram and rank them according to their 

significance, which is simply defined as the number of standard deviations less 

than the mean of the height of the ancestor node. Thus, the significance of subtreei, 

which is of sizej is:  	

ሻ݁݁ݎݐܾݑሺ݂ܵ݁ܿ݊ܽܿ݅݅݊݃݅ݏ ൌ
݉݁ܽ݊൫ݖ݅ܵ݁݁ݎݐܾݑ݈݈ܵܣ ݁. ൯ݐ݄݄݃݅݁ െ .ݐ݁݁ݎݐܾݑܵ ݐ݄݄݃݅݁

ݖ݅ܵ݁݁ݎݐܾݑ݈݈ܵܣሺܦܶܵ ݁. ሻݐ݄݄݃݅݁
 

For example, in Fig.7b, we see that Subtree1 has a score of 3.42, suggesting it is 

much denser than expected. Note that this measure makes differently-sized 

subtrees commensurate. 

There are two issues we need to address to prevent pathological solutions. 

0 6 12

Mean = 7.9

STD = 2.1

0 6 12

Subtree1

Subtree2

significance = (Mean – ObservedSubtreeHeight) / STD

significance(Subtree1) = (7.9 – 0.7) / 2.1 =  3.42

significance(Subtree2) = (7.9 – 7.2) / 2.1 =  0.33 
0.7 7.2

SubtreeSize4
(distribution of heights
of subtrees of size four, 
when no obvious 
repeated patterns are 
observed)

(a) (b)
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 Redundancy: Consider Fig.7a. If we report Subtree1 as the most significant 

pattern, it would be fruitless to report a contained subtree of size two as the 

next most significant pattern. Thus, once we find the ith most significant 

subtree, all its descendant and ancestor nodes are excluded from consideration 

for the ith+1 to K most significant subtrees. 

 Overflow: Suppose we are monitoring an accelerometer on an individual’s leg. 

If she goes on a long walk, we might expect that single gait cycles might flood 

the dendrogram, and diminish our ability to detect other behaviors. Thus, we 

allow any subtree in the current list of the top K to grow up to MaxSubtreeSize. 

After that point, if a new instance is inserted into this subtree, we test to see 

which of the MaxSubtreeSize + 1 items can be discarded to create the tightest 

subtree of size MaxSubtreeSize, and the outlying object is discarded.  

In Table 3, we illustrate a high level overview of the algorithm. 

Table 3  Frequent Pattern Maintenance Algorithm 

Algorithm:top = frequent_pattern_maintenance(sub) 

1 

2 

3 

4 

5 

6 

7 

if sub == null                      // If null was passed in, 

    top  null; return;            // do nothing, return null 

else 

    dendro  insert(dendro,sub)   // |dendro| is now w + 1 

    top  find_most_significant_subtree(dendro) 

    dendro  discard_a_leaf_node(dendro) // back to size w 

end 

Our frequent pattern mining algorithm has only a single value, w the number of 

objects we can keep in the buffer, which affects its performance. This is not really 

a free parameter, as w should be set as large as possible, given the more restrictive 

of the time or space constraints. However, it is interesting to ask how large w 

needs to be to allow successful learning. A detailed analysis is perhaps worthy of 

its own paper, so we will content ourselves here with a brief intuition. Imagine a 

version of our problem, simplified by the following assumptions. One in one 

hundred subsequences in the data stream belong to the same pattern; everything 

else is random data. Moreover, assume that we can unambiguously recognize the 

pattern the moment we see any two examples of it. Under these assumptions, how 

does the size of w affect how long we expect to wait to discover the pattern?  
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To see this, we can calculate the probability of discovering the pattern within a 

certain number of steps for different values of w. The probability is calculated 

using the equation below, where n is the number of steps.  
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The equation is derived using the Markov Chain model [48]. We relegate a 

detailed derivation of the equation to Appendix A, as it may not be of direct 

interest to the readers interested only in the practical applications of our ideas. To 

visualize how the buffer size w affects the mean time it takes to discover the 

pattern, we plot the results for selected values of w in Fig.8.   

Fig.8  The average number of time steps required to find a repeated pattern with a desired 
probability for various values of w. All curves end when they reach 99.5% 

If w is set to ten, we must wait about 5,935 time steps to have at least a 99.5% 

chance of finding the pattern. If we increase w by a factor of ten our wait time 

does decrease, but only by a factor of 3.6. In other words, there are rapidly 

diminishing returns for larger and larger values of w. These results are borne out 

by experiments on real datasets (cf. Section 4). A pathologically small value for w, 

say w = 2, will almost never stumble on a repeated pattern. However, once we 

make w large enough, we can easily find repeated patterns, and making w larger 

again makes no perceptible difference. The good news is that “large enough” 

seems to be a surprisingly small number, of the order of a few hundred for the 

many diverse domains we consider. Such values are easily supported by off-the-

shelf hardware or even smartphones. In particular, all experiments in this paper are 

performed in real time on cheap commodity hardware. 

Finally, we note that there clearly exist real-world problems with extraordinarily 

rare patterns that would push the limits of our current naive implementation. For 

example, the “loss” or “gain” of an hour due to daylight savings time has long 
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been known to produce strange patterns in many time series, including electrical 

demand streams [27]. Such rare patterns would clearly be difficult to discover.  

However, it is important to note that our description was optimized for clarity of 

presentation and brevity, not efficiency. We can take advantage of recent research 

in online [1] and incremental [47] hierarchical clustering to bring the cost per time 

step down to O(w), and as we shall show pragmatically in our experimental 

section, our ideas are already scalable enough to apply to patterns that occur just a 

few times a day (c.f. Section 4.2).  

3.6 Exploiting Temporal Locality for Frequent Pattern Maintenance  

In the previous section, we proposed an algorithm to detect repeated time series 

patterns in an unbounded stream, even when the patterns are rare and far apart. 

The simple visual analysis in Fig.8 suggests that we will eventually stumble on the 

pattern, and will do so more quickly if we can afford the space/computational 

requirements of a larger cache.   

However, the algorithm proposed in Table 3 assumes the worst case, that the 

patterns are distributed more or less randomly over time. More realistically, we 

may expect in many cases that repeated patterns have significant temporal locality. 

For example, a Chuck-will's-widow (Antrostomus carolinensis) is a nocturnal bird 

of the nightjar family Caprimulgidae [28]. Virtually all the male bird’s 

vocalizations take place in a short period just after dusk (we consider never-ending 

learning of bird vocalizations in section 4.4). Similarly, consider Fig.9 which 

shows the result of an experiment we performed to measure temporal locality in 

the behavior of a particular species of mosquito. We kept an optical flight sensor 

on for twenty-four hours and recorded every time a Culex quinquefasciatus 

mosquito flew past. We used this data to plot the daily flight activity (diel rhythm) 

of the mosquito. Again, note that there is extraordinary temporal locality in this 

stream, with a burst of activity just before dusk, and a secondary smaller burst that 

anticipates dawn.     
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Fig.9  Daily activity plot for Culex quinquefasciatus mosquito. The probability of observing the 
mosquito flying is proportional to the height of the curve at that time. The curve is computed based 
on 12,782 observations of mosquito flight sounds.   

We will further consider never-ending learning in the context of insect flight 

sounds in Section 4.2.  

Finally, the temporal locality in human behaviors is almost too obvious to state 

[42]. Consider that most people spend only a tiny fraction of their lives shaking 

hands, but when they do it, they are very likely to do it again soon -- for example, 

as they are introduced to a group of people or as they socialize at a gathering, etc. 

Indeed, as Wu and colleagues recently noted, “Recent evidence from various 

deliberate human activity patterns has shown that human activities (have) bursts 

of frequent actions separated by long periods of inactivity” [61].  

Given that the temporal locality of patterns is observed in many real-world 

problems [61], we are motivated to design an algorithm that exploits the temporal 

locality to maintain the frequent patterns. Our motivation is simply to produce an 

algorithm that can learn faster in some domains; however, for clarity, note that we 

are not changing the space of concepts we can learn. 

Note that this temporal locality exploiting framework can be seamlessly “plugged” 

into the framework outlined in Table 1. Recall that the topology of the global 

dendrogram is not important; it just provides a way to think about dense patterns 

(observed sub-trees), relative to expectations (sub-trees observed in the training 

data). Here we will limit our consideration of dense patterns to pairs that occur in 

a relatively short time window, and again normalize our expectations based on 

training data.     

To exploit temporal locality, we use the online discovery and maintenance of time 

series motifs algorithm of Mueen and Keogh [46] to detect the repeated patterns, 

and we refer the interested reader to that paper for full details. A circular buffer of 

size w is maintained. At each time step, a new subsequence arrives and the oldest 

subsequence in the buffer is discarded to maintain constant space, so the buffer 

12AM 6AM 12PM 6PM 12AM

dawn dusknighttime daytime
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always keeps the most recent data. At each time step, the algorithm maintains the 

closest pair of subsequences in the buffer, and only this motif pair will be made 

visible to the active learning module discussed below.  

We must calculate the significance of this motif pair to see if it is worth polling a 

teacher. The way we do this is similar to the case discussed in the previous section. 

Offline, we take a sample of time series from the domain in question and remove 

existing patterns to create a “patternless” data. We run the algorithm in [46] on 

this data with the same parameters we intend to monitor P under, and as shown in 

Fig.10b, we record the mean and standard deviation of the distances of all the 

motif pairs we discover.  

 

Fig.10  a) Two motif pairs discovered in the bird song data (c.f. Section 4.4). b) The observed 
distances of the motifs are compared to the expected distances given the assumption of no patterns 
in the data. 

The distribution tells what we should expect to see if there is no frequent pattern in 

P, as frequent patterns will show up with an unusually small distance relative to 

this distribution. In order to be consistent with the significance definition in the 

previous section, we define the significance of a motif pair as the number of 

standard deviations less than the mean is the distance of the closest motif. Thus, 

the significance of a motif pair ݉݅ݐ ݂ is: 

݅ݐሺ݂݉݁ܿ݊ܽܿ݅݅݊݃݅ݏ ݂ሻ ൌ
݉݁ܽ݊ െ݉݅ݐ ݂. ݁ܿ݊ܽݐݏ݅݀

ܦܶܵ
 

In Table 4, we illustrate a high level overview of the algorithm. 

Table 4  Frequent Pattern Maintenance that Exploits Temporal Locality Algorithm 

Algorithm:top = frequent_pattern_maintenance_TemporalLocality(sub) 

1 

2 

if sub == null                   // If null was passed in, 

    top  null; return;        // do nothing, return null 

Closest Motif1

Closest Motif2
15 20 25 30

Mean = 21.26

STD = 1.80

(distribution of distances of the 
closest motifs, when no obvious 
repeated patterns are observed)

significance = (Mean – ObservedMotifDistance) / STD

significance(Motif1) = (21.26 – 10.65) / 1.80 =  5.89

significance(Motif2) = (21.26 – 20.59) / 1.80 =  0.37 

(a) (b)
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3 

4 

5 

6 

7 

else 

buffer  insert(buffer,sub) // |buffer| is now w + 1 

buffer  delete_the_oldest_item(buffer)// back to size w 

    top  find_most_significant_motif(buffer) 

end 

As before, this frequent pattern mining algorithm has two parameters, the buffer 

size w and the motif length l. The larger value w is, the better we expected it to be 

at mining frequent patterns. Empirically we have found that the value of w offers 

diminishing returns. A small w is incapable of discovering patterns unless we are 

lucky enough to encounter two adjoining instances. Making w just twice as large 

offers a significant improvement, but making w massively larger often makes no 

perceptible improvement. Identifying the exact motif length l is usually difficult. 

Fortunately, the performance of the algorithm is insensitive to the motif length as 

long as it is within a reasonable range of the ideal motif length (c.f. Section 4.4).  

3.7 Active Learning System 

The active learning system which exploits the frequent patterns we discovered 

must be domain dependent. Nevertheless, we can classify two broad approaches 

depending on the teacher (oracle) available. Teachers may be: 

 Strong Teachers, which are assumed to give correct and unambiguous class 

labels. Most, but not all, strong teachers are humans. Strong teachers are 

assumed to have a significant cost. 

 Weak Teachers, which are assumed to provide more tentative labels. Most, 

but not all, weak teachers are assumed to be algorithms; however, they could 

be the inputs of a crowdsourcing algorithm or a classification algorithm that 

makes errors but performs above the default rate. 

The ability of our frequent pattern maintenance algorithms to maintain frequently 

occurring time series opens a plethora of possibilities for active learning. Two 

common frameworks for active learning are Pool-Based sampling and Stream-

Based sampling [54]. In Pool-Based sampling, we assume there is a pool of 

unlabeled data available, and we may (at some cost) request a label for some 

instances. In Stream-Based sampling, we are presented with unlabeled examples 

one at a time and the learner must decide whether or not it is worth the cost to 

request its label. Our framework provides opportunities that can take advantage of 

both scenarios; we are both maintaining a pool of instances in the dendrogram 
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(Table 3) or buffer (Table 4), and we also see a continuous never-ending stream 

of unlabeled data.  

Because this step is necessarily domain dependent, we will content ourselves here 

with giving real-world examples and defer creating a more general framework to 

future works.   

Given our dictionary-based model, the only questions that remain are when we 

should trigger a query to the teacher, and what action we should take given the 

teacher’s feedback.  

3.7.1 When to Trigger Queries 

Different assumptions about the teacher model and its associated costs can lead to 

different triggering mechanisms [54]. However, most frameworks can reduce to 

questions of how frequently we should ask questions. A conservative questioner 

that rarely asks questions may miss opportunities to learn new concepts, whereas 

an aggressive questioning policy will accumulate large costs and will frequently 

ask questions about data that are unlikely to represent any concept.  

For any given domain, we assume that the teacher will tell us how many queries 

on average they are willing to answer in a given time period. For example, our 

cardiologist (c.f. Section 4.2) is willing to answer two queries per day from a 

system recording a healthy adult patient undergoing a routine sleep study, but 

twenty queries per day from a system monitoring a child in an ICU who has had a 

recent increase in her SOFA score [21]. Alternatively, for a weak learner, we may 

have a budget which we can use to help decide when to query. For example, 

several machine learning projects are built on top of Google’s prediction API. At 

the time of writing a system could only get 100 free predictions per day [25].     

Let SR be the sampling rate of P, and QR be the mean number of seconds between 

queries that the teacher is willing to tolerate. For the temporal locality case, QR is 

the mean number of seconds between queries of false motifs that the teacher is 

willing to tolerate. We can then calculate the trigger threshold as: 

	݈݄݀ݏ݁ݎ݄ݐ	ݎ݁݃݃݅ݎݐ            ൌ െ	ݐܾ݅ݎሺ1/ሺܴܵ ∗ ܴܳሻሻ 

where probit is the standard statistical function. We defer a detailed derivation to 

[64]. This equation assumes that the distributions of heights of subtrees (e.g., 

Fig.7b) and the distributions of distances of the closest motifs (e.g., Fig.10b) are 
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approximately Gaussian, a reasonable assumption in most domains, as can be seen 

from the relevant figures. 

3.7.2 Learning a Concept: Strong Teacher Case 

In Table 5, the active learning system begins by comparing the significance (c.f. 

Section 3.5) of the top motif to this user supplied trigger threshold. If the motif 

warrants bothering the teacher, the get_labels function is invoked. The exact 

implementation of this is domain dependent, requiring the teacher to examine 

images, short audio or video snippets, or in one instantiation we discuss below, the 

physical bodies of insects, and provide labels for these objects. Once the labels 

have been obtained, then in Line 5 the dictionary is updated.  

We have two tasks when updating the dictionary. First, we must create the concept 

Ci; we can do this by either averaging the objects in the motif or choosing one 

randomly. Empirically, both perform about the same, which is unsurprising since 

the variance of the motif must be very low to pass the trigger threshold. The 

second thing we must do is decide on a value for threshold Ti. Here we could 

leverage off a wealth of recent advances in One-Class Classification [19]; however, 

for simplicity we simply set the threshold Ti to three times the top subtree’s 

height. As we shall see, this simple idea works so well that more sophisticated 

ideas are not warranted, at least for the domains we investigated.  

Table 5  The Active Learning Algorithm 

Algorithm:dict = active_learning_system(top,dict) 

1 

2 

3 

4 

5 

6 

7 

8 

if (significance(top) < trigger threshold) // The subtree 

     dict  dict; return;    // is not worth investigating 
elseif  in_strong_teacher_mode 

    labels  get_labels(top)  

    dict  update_dictionary(dict,top,labels) 
else 
    spawn_weak_learner_agent(top,dict) 
end 

 

3.7.3 Learning a Concept: The Weak Teacher Case 

A weak teacher can leverage off “side” information to label the discovered 

patterns. It assumes a query will be answered with a set of probabilities for the 

label, and thus differs from the strong teacher case where the pattern’s label is a 

determined value. An example of a weak teacher’s label is shown in Fig.11c right, 
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where P(Ci = labelj) denotes the probability that concept i should be labeled as 

labelj. 

Table 6 outlines the algorithm to label a frequent pattern with a weak teacher. 

When a significant pattern is first discovered, the pattern is saved into the 

dictionary without a label (Line 1). The weak teacher waits for future occurrences 

of the pattern to be observed, and then labels the pattern. The label of a pattern is 

computed based on the votes for each class. A class gets one vote if it is associated 

with an observed occurrence. By associated we simply mean that the relevant flag 

is “on” at the same time as the pattern is observed. An observed occurrence may 

have multiple classes associated with it, and thus have multiple classes get one 

vote each (Line 7-9). The number of votes a class gets equals the cumulative 

number of observations with which it is associated. The probability that a pattern 

belongs to a certain class, and thus should be labeled with the class label, is simply 

the fraction of votes the class gets over all the votes (Line 10-12). 

Table 6  The Weak Teacher Algorithm 

Algorithm:spawn_weak_learner_agent(top,dict) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

[dict,index]  update_dictionary(dict,top,[]) 

votes = zeros(number of classes,1);     

class_prob = zeros(number of classes,1); 

For ever 

   if(countindex increases)             // an occurrence detected 

      subClasses = classes associated with this occurrence; 

      For each class (classk)in subClasses 

          votes[classk]  votes[classk] + 1; 

      end 

      For (j = 1 to number of classes)   //update probability 

          class_prob[j] =votes[classj]/sum(votes);  

      end 

      dict  update_dictionary_labels(dict,index,class_prob);  

   end 

end 

For concreteness, we will give an illustration that closely matches an experiment 

we consider in Section 4.6; however, we envision a host of possible variants 

(hence our insistence that this phase be domain dependent). As illustrated in 

Fig.11a, we can measure the X-axis acceleration on the wrist of the subject as he 

works with various tools. Moreover, RFID tags mounted on the tools can produce 
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binary time series that record which tools are close to the user’s hand, although 

these binary sensors clearly cannot encode any information about whether the tool 

is being used or carried or cleaned, etc. At some point, our active learning 

algorithm is invoked in weak teacher mode with pattern C1, which happens 

(although we do not know this) to correspond to an axe swing.  

The weak teacher simply waits for future occurrences of the pattern to be observed, 

and then, as shown in Fig.11b, immediately polls the binary sensors for clues as to 

C1’s label. 

In the example shown in Fig.11c, after the first detection of C1, we have one vote 

for Axe, one for Cat, and zero votes for Bar. However, by the third detection of 

C1, we have seen three votes for Axe, one for Bar, and one for Cat. Thus, we 

can compute that the most likely label for C1 is Axe, with a probability of 0.6 = 3 / 

(3 + 1 +1). 

 

Fig.11  An illustration of a weak teacher. a) A stream P in which we detect three occurrences of 
the pattern C1. b) At the time of detection we poll a set of binary sensors to see which of them are 
active. c) We can use the frequency of associations between a pattern and binary “votes” to 
calculate probabilities for C1’s class label (A cat’s paw is an informal name for a nail puller) 

This simple weak teaching scheme is the one we use in this work and we 

empirically evaluate it in Section 4.6 and Section 4.7. However, we recognize that 

more sophisticated formulations can be developed. For example, our approach 

assumes that the binary sensors are mostly in the off position. A more robust 

method would look at the prior probability of a sensor’s state and the dependence 

between sensors. Our point here is simply to provide an existence proof of a 

system that can learn without human intervention.  
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Finally, note that the sensors polled do not have to be natively binary. They could 

be real-valued, but treated as binary when polled by our algorithm; for example, 

an accelerometer time series can be discretized to binary {has moved in the last 

10-sec, has not moved in the last 10-sec}. 

3.8 Algorithm Performance  

In this section, we will discuss the space and time requirements of our algorithm.  

3.8.1 Memory Requirement 

The memory requirements includes storage for the dendrogram, the dictionary, 

and the algorithm overhead. If ݈ is the length of a subsequence, ݓ is the size of 

the dendrogram, ܰ is the total number of concepts in the stream, the total storage  

required is ݈ݓ  	ܰሺ݈  2ሻ  ܿ, where ܿ is a small constant for the overhead, 

such as storage for parameters and for buffering a subsequence as it is streaming 

by. Note that ݓ is usually a small number typically no more than a thousand. 

This is because a too large ݓ will slow down the algorithm while offering little 

improvement at mining the concepts. This “diminishing returns” property we have 

shown in Fig.8 and Appendix A. ܰ is the largest possible size of the dictionary. 

Although in principle a dictionary can grow arbitrarily large, in most real-world 

applications, the number of concepts in a stream is limited and quite small. For 

example, there are at most a few dozens of heartbeat classes recognized, and we 

are unlikely to encounter more than a few hundred species of flying insects at any 

one location. Even if we imagined our system being used to learn the entire 

vocabulary of the full Harry Potter series (cf. Section 4.7), this is about 13,000 

words, and could easily reside in the memory of a desktop with 4GB memory. For 

all the experiments used in this work, the dictionary learned is never larger than 

ten mega-bytes. Therefore, the memory requirements of the algorithm are 

inconsequential.  

3.8.2 Time Complexity 

We first consider the time the algorithm takes to process a subsequence. In the 

worst case, a subsequence goes through all the components in the framework, 

including subsequence extraction, subsequence processing, frequent pattern 

maintenance and active learning. The running time for a subsequence extraction is 

ܱሺ݈ሻ, which is used to calculate the ED distance of the subsequence to the 

previously extracted one. The subsequence processing includes a domain-
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dependent pre-processing procedure and a classification. The running time for the 

pre-processing depends on the procedure used. In the case of z-normalization, 

which is the most common processing procedure for time series data, it takes time 

ܱሺ݈ሻ. The classification of a subsequence involves comparing the subsequence to 

all the concepts in the dictionary to find the nearest neighbor, and thus, takes time 

ܱሺ݈ܰሻ. When a subsequence is not classified by the dictionary, it enters the 

frequent pattern maintenance component. Inserting a subsequence into the 

dendrogram takes time ܱሺݓଷ   ሻ is used for updating the݈ݓሻ, where ܱሺ݈ݓ

distance matrix and ܱሺݓଷሻ for re-clustering. The number of subtrees in the 

dedrogram is bounded by the dendrogram size ݓ, and thus finding the most 

significant subtree takes time ܱሺݓሻ. In the case where a query is triggered, it 

takes time ܱሺ1ሻ to send the patterns to a teacher and time ܱሺ݈ሻ to add a new 

concept to the dictionary. Summarizing the above, the running time for a 

subsequence that goes through all the components of the framework is ܱሺݓଷ 

݈ݓ  ݈ܰሻ. 

In the worst case, every subsequence in the stream goes through all the 

components in the framework. In that case, to process ݇ subsequences, it takes 

time ܱሺ݇ ∗ ሺݓଷ  ݈ݓ  ݈ܰሻሻ. Note that as we discussed before, ݓ and ܰ are 

typically small numbers, and thus, our algorithm is fast. In all experiments in this 

work, the algorithm is faster than real-time on a standard machine with 8GB 

RAM and 2GHz Intel Core processor.  

In the cases where we have to deal with higher arrival rate, the bottleneck step is 

the update of the dendrogram after insertion of a new subsequence. Fortunately, 

we can speed up this process from ܱሺݓଷሻ to ܱሺݓ logଷ  ሻ using the methodݓ

proposed in [37]. This will reduce the total time complexity to ܱሺݓ logଷ ݓ 

݈ݓ  ݈ܰሻ.  Note that the classification step can also be a bottleneck. This happens 

when ܰ is very large. However in the literature there are many techniques 

designed to speed up the search of nearest neighbor in large datasets. For example, 

in [51], the search of a nearest neighbor in a trillion ECG dataset takes only 18 

minutes. By applying such techniques, our algorithm can be made much faster. 

We have not availed of such speed up techniques in this work, because once our 

algorithm is real-time, we have little motivation to make it faster.  
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4 Experiments 

We begin by noting that all code and data used in this paper, together with 

additional details and many additional experiments, are archived in perpetuity at 

[64]. While true never-ending learning systems are our ultimate goal, here we 

content ourselves with experiments that last from minutes to days. Our 

experiments are designed to demonstrate the vast range of problems we can apply 

our framework to. 

For simplicity, we use the frequent pattern mining algorithm in Table 3 for all but 

one experiment. That one exception is the experiment in Section 4.4, which 

considers bird calls. As noted in [28] and [49], bird vocalizations are domains 

where we should expect significant temporal locality; thus for this domain we use 

the algorithm outlined in Table 4.       

We do not consider the effect of varying w on our results. As noted in Section 3.5, 

once it is set to a reasonably large value (typically around 250), its value makes 

almost no difference and we can process streams with such values in real-time for 

all the problems considered below. Because the algorithm in Table 3 discards 

subsequences randomly, where possible, we test each dataset 100 times and report 

the average performance. For each class, we report the number of times the class 

is learned (detection rate) as well as the average precision and recall [59]. To 

compute the average precision and recall, we count in each run the number of true 

positives, false positives, and false negatives after the class is first added to the 

dictionary. All the datatsets used in the experiments are summarized in Table 7. 

Table 7  Datasets Used in the Experiments 

Dataset Name Size Duration Dimension # Classes 

Activity  61 KB 13.3 minutes 1 10 

Flying Insect  15 GB 2 days 1 3 

ECG  18 MB 20 hours 1 5 

Bird Song 11 MB 6 minutes 1 3 

Insect EPG 4 MB 27 minutes 1 ~15 

Elder Care 9 MB 240 minutes 41 dozens 

Audio Books 5 MB 142 minutes 2 hundreds 

Energy Usage 9 MB 2 months 1 dozens 
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4.1 Activity Data 

We begin with a relatively small dataset, the activity dataset of [60]. This 

experiment may be regarded as more of a demonstration than a challenging test of 

our system; however, it is a visually intuitive problem and this will help the reader 

appreciate the strengths of our framework.  

This dataset consists of a 13.3 minute 10-fps video sequence (thresholded to 

binary pixel values by the original authors) of an actor performing one of eight 

activities. From this data, the original authors extracted 721 optical flow time 

series. We randomly chose just one of these time series to act as P, with S being 

the original video. 

We set our trigger threshold to 3.5, which is the value that we expect to spawn 

about three requests for labels on each run, and we assume a label is given after a 

delay of ten seconds. Fig.12a shows the first query shown to the teacher on the 

first run. 

 
Fig.12  a) A query shown to the user during a run on the activity dataset; the teacher labeled it 
Pushing and a new concept C1 was added to the dictionary. b) About 9.6 minutes later, the classifier 
detected a new example of the class 

The teacher labeled this Pushing, and the concept was inserted into the dictionary. 

About 9.6 minutes later, this classifier correctly claimed to spot a new example of 

this class, as shown in Fig.12b.  

This dataset has the interesting property that the actor starts in a canonical pose 

and returns to it after completing the scripted action at eight-second intervals. This 

means that we can permute the data so long as we only “cut and paste” at 

multiples of eight seconds. This allows us to test over one hundred runs and 

smooth our performance estimates. 

Averaged over one hundred runs, we achieved 41.82% precision and 87.96% 

recall on the running concept. On some other concepts, we did not fare so well. 
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For example, we only achieved 19.87% precision and 51.01% recall on the 

smoking concept. However, this class has much higher variability in its 

performance, and recall that we only used a single time series of the 721 available 

for this dataset. Table 8 shows the complete results. 

Table 8 Results on Activity Dataset 

Class Detection Rate Precision Recall 
Picking up 96% 0.184 0.576 

Running 100% 0.418 0.880 

Pushing 98% 0.191 0.532 

Squating 92% 0.193 0.554 

Hand waving 98% 0.193 0.561 

Kicking 90% 0.189 0.485 

Bending 88% 0.208 0.524 

Throwing  95% 0.184 0.554 

Turning around 84% 0.205 0.526 

Smoking 97% 0.199 0.510 

4.2 Invasive Species of Flying Insects 

Recently, it has been shown that it is possible to accurately classify the species3 of 

flying insects by transforming the faint audio produced by their flight into a 

periodogram and doing nearest neighbor time series classification on this 

representation [6]. Fig.13 demonstrates the practicality of this idea. 

 
Fig.13  a) An audio snippet of a female Cx. stigmatosoma pursued by a male. b) An audio snippet 
of a common house fly. c) If we convert these sound snippets into periodograms we can cluster and 
classify the insects 
                                                                  
3And for some sexually dimorphic species such as mosquitoes, the sex. 
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This allows us to classify known species, such as species we have raised in our lab, 

to obtain training data. However, in many insect monitoring settings we are almost 

guaranteed to encounter some unexpected or invasive species [44]; can we use our 

framework to detect and classify them? At first blush, this does not seem possible. 

The S data source is a high quality audio source, and while entomologists could 

act as our teachers, at best they could recognize the sound at the family level, i.e., 

some kind of Apoidea (bee). We could hardly expect them to recognize which of the 

21,000 or so species of bee they heard.  

We had considered augmenting S with HD video, and sending the teacher short 

video clips of the novel insects. However, many medically and agriculturally 

important insects are tiny; for example, some species of Trichogramma (parasitic 

wasps) are just 0.2 mm.  

Our solution is to exploit the fact that some insect traps can physically capture the 

flying insects themselves and record their time of capture [43]. Thus, the S data 

source consists of audio snippets of the insects as they flew into the trap and the 

physical bodies of insects. Naturally, this causes a delay in the teaching phase, as 

we cannot digitally transmit S to the teacher but must wait until she comes to 

physically inspect the trap once a day. 

Using insects raised from larvae in our lab, we learned two concepts: 

Culexstigmatosoma male (Cstig ♂) and female (Cstig ♀). These concepts are just 

the periodograms shown in Fig.13 with the thresholds that maximized cross-

validated accuracy. 

With the two concepts now hard coded into our dictionary, we performed the 

following experiments. On day one we released 500 Cx. Stigmatosoma of each sex, 

together with two members of an invasive species. If we could not detect the 

invasive species, we increased their number for the next day, and tried again until 

we did detect them. After we detected the invasive species, the next day we 

released 500 of them with 500 Cx. Stigmatosoma of each sex and measured the 

precision/recall of detection for all three classes. We repeated the whole procedure 

for three different species to act as our invasive species. Table 9 shows the results.   

Table 9  Our Algorithm’s Ability to Detect and Then Classify Invasive Insects 

Number of insects before detection Precision / Recall 

invasive species name triggered invasive species Cstig♂ Cstig♀ 
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Aedes aegypti ♀ 3 0.91 / 0.86 0.88/0.94 0.96/0.92 

Culex tarsalis ♂ 3 0.57 / 0.66 0.58/0.78 1.00/0.95 

Musca domestica ♂ and ♀ 7 0.98 / 0.73 0.99/0.95 0.96/0.94 

Recall that the results for Cstig ♂ and Cstig ♀ test only the representational power 

of the dictionary model, as we learned these concepts offline. However, the results 

for the three invasive species do reflect our ability to learn rare concepts (just 3 to 

7 sub-second occurrences in 24 hours), and having learned these concepts, we 

tested our ability to use the dictionary to accurately detect further instances. The 

only invasive species for which we report less than 0.9 precision is Cx. tarsalis ♂, 

which is a sister species of the Cx. stigmatosoma, and thus it is not surprising that 

our precision falls to a (still respectable) 0.57. 

4.3 Long-Term Electrocardiogram 

We investigated BIDMC Dataset ch07, a 20-hour long ECG recorded from a 48-

year-old male with severe congestive heart failure [23][24]. This record has 

17,998,834 data points containing 92,584 heartbeats. As shown in Table 10, the 

heartbeats have been independently classified into five types.  

Table 10  The Ground Truth Frequencies of Beats in BIDMCch07 

Name Abbreviation Frequency (%) 

Normal N 97.752 

R-on-T Premature Ventricular Contraction r 1.909 

Supraventricular Premature or Ectopic Beat S 0.209 

Premature Ventricular Contraction V 0.104 

Unclassifiable Beat Q 0.025 

In Fig.14, we can see this data has both intermittent noise and a wandering 

baseline; we did not attempt to remove either. 

Fig.14  A small snippet (0.0065%) of BIDMCch07 Lead 1 

Let us consider a single test run. After 45 seconds, the system asked for a label for 

the pattern shown in Fig.15a. Our teacher, Dr. Criley4, gave the label Normal(N). 

                                                                  
4Dr. John Michael Criley, MD, FACC, MACP is Professor Emeritus at the David Geffen School of Medicine at UCLA. 

0 400 800 1200 1600 2000

BIDMC Dataset ch07: ECG  lead 1
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Just two minutes later, the system asked for a label for the pattern shown in 

Fig.15b; here, Dr. Criley annotated the pattern as R-on-T PVC (r). 

These two requests happened so quickly that the attending physician who hooked 

up the ECG apparatus would be in the same room and able to answer the queries 

directly. The next request for a label did not occur for another 9.5 hours, and we 

envisioned it being sent by email to the teacher. As shown in Fig.15c, our teacher 

labeled it PVC (V). 

 
Fig.15  Three patterns discovered in our ECG experiment. From top to bottom, they are the motif 
discovered and used to query the teacher; the learned concept; some examples of true positives; 
some examples of false positives 

In this run, the class (S) was also learned, but just thirty minutes before the end of 

the experiment. We did not discover class (Q); however, it is extremely rare and as 

hinted at by its name (Unclassifiable Beat), very diverse in its appearance. 

Because the data has been independently annotated beat-by-beat by an algorithm, 

we can use this ground truth as a virtual teacher and run our algorithm 100 times 

to find the average precision and recall, as shown in Table 11. We note, however, 

that our cardiologist examined some of the “false positives” of our algorithm and 

declared them to be true positives, suggesting that some of the annotations on the 

original data are incorrect. In fairness, [24] notes the data was “prepared using an 

automated detector and has not been corrected manually.”       

Table 11  Results on BIDMCch07 

Class Detection Rate Precision Recall 

Normal (N) 100% 0.997 0.994 

R-on-T PVC (r) 100% 0.914 0.808 

Supraventricular (S) 100% 0.502 0.414 

PVC (V) 100% 0.234 0.677 

Unclassifiable (Q) 0% - - 

Beyond the objectively correct cardiac dysrhythmias discovered by our system, we 

frequently found our algorithm has the ability to surprise us. For example, after 

0 40 80 120

Normal Premature Ventricular ContractionR-on-T Premature Ventricular 
Contraction

Learned concept

True positives

False positives

Discovered pattern

(a) (b) (c)
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eighteen minutes of monitoring BIDMC-chf07-lead 2 [24], the algorithm asked for 

a label for the extraordinary repeated pattern shown in Fig.16. 

 
Fig.16  A pattern (green/bold) shown with surrounding data for context, discovered in lead 2 of 
BIDMCch07 

The label given by the teacher, Dr. Criley, was “Interference from nearby electrical 

apparatus:  probably infusion pump.” Having learned this label, our algorithm 

detected fifty-nine more occurrences of it in the remaining twenty hours of the 

trace. A careful retrospective examination of the data suggests that the algorithm 

had perfect precision/recall on this unexpected class. 

4.4 Bird Song Classification: Exploiting Temporal Locality 

Bird monitoring has played an important role in conservation planning and 

wildlife management, providing essential information in understanding birds’ 

habits, diversity, population size and trend [2][38]. Most bird monitoring systems 

are acoustic [38] and monitoring data can quickly run into many terabytes. 

Automatic detection and classification of the bird calls can greatly decrease the 

cost of performing biodiversity studies [16]. In this experiment, we wish to see if 

our framework is capable of detecting and classifying bird calls without the need 

for extensive preliminary setup work, including the manual searching of audio 

archives and editing of classification templates [4]. 

When a bird calls, it typically repeats the call over and over again. This gives a 

potential mate an opportunity to hear the call, and then converge on the singer’s 

location. Thus, we expect significant temporal locality of bird calls from the 

monitoring audio [49]. In order to produce a large dataset of bird sounds for which 

we had ground truth, we did the following. We recorded three hours of ambient 

sound on January 18, 2013. A careful human annotation of the sound file revealed 

no obvious avian calls. Using data from xeno-canto.org, we embedded a sixty 

second long bird sound snippet after each hour in the data. Note that the sixty 

second snippets of bird sounds we inserted had natural temporal locality. We did 

not edit these sounds in any way.   

275,500 One Second 277,500

BIDMC‐chf07 Lead 2
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We have in total three sound snippets, created by three different species of birds: 

the Long-billed Woodcreeper (Nasica longirostris), the Cinnamon-vented Piha 

(Lipaugus lanioides) and the White-tailed Hawk (Geranoaetus albicaudatus). 

Each bird sound snippet contains five examples of the bird’s call. Using the raw 

audio as S, and a single 100Hz Mel-Frequency Cepstral Coefficient (MFCC) as P, 

we ran our algorithm that exploits temporal locality (c.f. Section 3.5) on this data. 

As Fig.17 shows, our system can easily discover the patterns. 

Fig.17  Two repeated patterns (green/bold) shown with surrounding data for context, discovered 
in the bird dataset, with the buffer size w set to 40 seconds, and motif length l set to 6 seconds. 
Fig.18b shows a zoom-in of the two patterns, which come from a Cinnamon-vented Piha 

As shown in Fig.18, our system has discovered three different motifs/concepts, 

each belonging to a different species of bird. The audio snippets corresponding to 

the motifs may be heard at [64]. They are easily identifiable as three different bird 

calls.  

Fig.18  Three motifs discovered in the bird song experiment. From top to bottom, they are the 
motif discovered and used to query the teacher; the learned concept. 

As shown in the bottom-row of Fig.18, for each motif pair, we created a concept 

by simply averaging the subsequences. To test the accuracy of the classifiers, we 

created a test dataset, which is 90 seconds long, containing seven bird calls, three 

from the Long-billed Woodcreeper, two from the Cinnamon-vented Piha and two 

from the White-tailed Hawk, and the remainder from randomly chosen species. 

Table 12 shows the accuracy of the three classifiers on the test dataset.  

Table 12  Classification Results on the Test Dataset 

Class Precision Recall 

  Long-billed Woodcreeper 1.00 0.667 

  Cinnamon-vented Piha 1.00 1.00 

  White-tailed Hawk 0.667 1.00 

1,093,600 1,101,600

Buffer size: 40 Seconds

Motif length: 6 Seconds

Learned concept

Discovered patterns

Long-billed Woodcreeper Cinnamon-vented Piha White-tailed Hawk

(a) (b) (c)
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In this experiment, we set the motif length to be 6 seconds long. To see how 

sensitive our algorithm is to the motif length, we varied the motif length between 

five seconds and seven seconds. In both cases, our framework found the same 

three motifs as those found by setting the motif length to be six seconds. Thus, our 

algorithm does not require the motif length to be precisely set in order to detect 

repeated patterns.  

Note that in most of the experiments shown in this paper, we build the classifiers 

based on the proxy data from stream P. However, there is nothing in our 

framework that requires this. The classifiers can be built using the raw data from 

stream S, or some proxy data other than P, depending on the applications. For 

example, in the bird song dataset, we can use the spectrogram of the motifs to 

build the classifiers if the spectrogram is better at classifying the bird calls than the 

MFCC subsequences are, while still using a single MFCC as the proxy stream P 

for motif detection.   

4.5 Understanding Sapsucking Insect Behavior  

Insects in the order Homoptera feed on plants by using a feeding tube called a 

stylet to suck out sap. This behavior is damaging to the plants, and it has been 

estimated that species in this order cause billions of dollars of damage to crops 

each year. Given their economic importance, hundreds of researchers study these 

insects, and they have been increasingly using a tool called an Electrical 

Penetration Graph (EPG), which, as shown in Fig.19, adds the insect to an 

electrical circuit and measures the minuscule changes in voltage that occur as the 

insect feeds [32]. 

While there are now about ten widely agreed-upon behaviors that experts can 

recognize in the EPG signals, little progress has been made in automatic 

classification in this domain. One reason for this is that the 32,000 species that 

make up the order Homoptera are incredibly diverse; for example, their size 

ranges over at least three orders of magnitude. Thus, for many species, an expert 

could claim of a given behavior, “I know it when I see it,” but he/she could not 

expect a template learned from one species to match even a closely related species.  

As such, this is a perfect application for our framework, and several leading 

experts on this apparatus agreed to help us by acting as teachers. 
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Fig.19  a) A tethered brown leafhopper. b) A schematic diagram of the circuit for recording EPGs. 
c) A snippet of data produced during one of our experiments 

Let us consider a typical run on a dataset consisting of a Beet Leafhopper 

(Circulifertenellus) recorded by Dr. Greg Walker of UCR Entomology 

Department. Dr. Elaine Backus of the USDA, one of the co-inventors of the EPG 

apparatus, agreed to act as the teacher. She was only given access to the requests 

from our system; she could not see the whole time series or the insect itself. After 

65 seconds, the system requested a label for the three patterns shown in Fig.20a. 

Dr. Backus labeled the pattern: phloem ingestion with interruption for salivation. 

After 13.2 minutes, the system requested a label for behavior shown in Fig.20b. 

Dr. Backus labeled this pattern: transition from non-probing to probing. The former 

learned concept went on to classify twenty-four examples, and the latter concept 

classified six. Examples of both can be seen in Fig.20c. 

 

Fig.20  a,b) The two concepts discovered in the EPG data. c,d) Examples of classified patterns 

0 100 200 300 400 500

transition from non-probing to probing phloem ingestion with interruption for salivation
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(b)

(c) (d)
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A careful retrospective study of this dataset tells us that we had perfect precision 

and recall on this run (we have access to a time-stamped video recording of the 

insects, and the expertise of Dr. Greg Walker to label the data). Other runs on 

different datasets in this domain had similar success. We defer the detailed results 

to [64] for brevity.  

4.6 Weak Teaching Example: Elder Care 

The use of sensors placed in the environment and/or on parts of the human body 

has shown great potential in the effective and unobtrusive long-term monitoring 

and recognition of daily living activities [57][50]. However, labeling 

accelerometer and sensor data is still a great challenge and requires significant 

human intervention. In [50], the authors bemoaned the fact that high-quality 

annotation is an order of magnitude slower than real time: “A 30-minutes video 

footage requires about 7-10 hours to be annotated.” In this example, we leverage 

off our weak teacher framework to explore how well the framework can label the 

sensor data without any human intervention. 

We consider the dataset of [57] which comes from an activity monitoring and 

recognition system created using a 3D accelerometer and RFID tags mounted on 

household objects. A sensor containing both an RFID tag reader and a 3D 

accelerometer is mounted on the dominant wrist. Volunteers were asked to 

perform housekeeping activities in any order of their choosing to the natural 

distribution of activities in their daily life. Thus, the dataset is a multidimensional 

time series with three real-valued and thirty-eight binary dimensions. 

For our experiment, we consider just the X-axis acceleration sensor. The active 

learning algorithm is set in weak teacher mode. After 24 seconds the system finds 

a concept, C1, worth exploring (Fig.23a). As we can see in Fig.21, our algorithm 

waited for the next occurrence of the pattern (it happens that three occur close 

together) and it polls the 38 binary RFID-detected sensors to see which are 

currently on.  



37 

Fig.21  a) After we have learned the concept C1, our system monitors for future occurrences of it. 
Here, it sees three examples in a row. b) By polling the binary RFID sensors when a “hit” for C1 is 
detected, we can learn that the concept is associated with ‘glove’ 

Our algorithm found an additional ten subsequences similar to the template. For 

six of these subsequences, only the RFID tag sensor labeled glove was on. Of 

the remaining four hits, just the iron was on three times and just the fan was on 

once. Thus, we end up with the probabilities shown in Fig.22b. 

 
Fig.22  a) A zoom-out of the time series shown in Fig.21. b) The probability of concept C1 being with 
various tagged items. Of 38 possibilities, only three, glove, iron and fan, have non-zero entries. Note that 
fan had a zero probability until the last few minutes  

In Fig.23, we show the relevant subsequences. Here, the true positives are 

subsequences that voted for glove, and the false positives voted for iron or 

fan. After a careful check of the original data we discovered that the pattern 

actually corresponds to dishwashing, which is the only behavior for which the 

participant wore gloves. 
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Fig.23  a) The motif discovered in our EPG experiment and averaged into concept C1 (c). b,d) 
Examples of true positives and false positives 

4.7 Weak Teaching Example: Audio Books 

Audio books have changed the way many people consume books. In most audio 

books, we naturally expect to encounter many frequently repeated words. For 

example, in the Harry Potter audio books, the words Harry, Hermione and magic 

occur many times. Note, however, that even within a single audio book, different 

occurrences of the same word may sound different as the performer wants to 

distinguish between characters by using different ‘voices’. Moreover, two 

different words may sound similar as they have similar pronunciations, like Harry 

and hurry. This makes the discovery and classification of the repeated words 

challenging, and makes audio books an interesting domain to test our framework. 

An audio book usually has a corresponding text. In most cases, the audio and the 

text are only weakly aligned in time, so it is difficult to associate exactly the 

correct text with the corresponding audio. For example, if a spoken hapax 

legomenon appears in the 565th second of a three-hour recording, this would 

suggest that the ASCII version should appear at 5.231% of the way into the 

corresponding text. However, because a speaker speaks at a non-constant speed, 

we need to bracket the location where we expect to find the corresponding word, 

perhaps somewhere in the range {4%  6%}. This is what the parameter R 

indicates in Fig.24a. Once we understand this minor issue, it is clear that the 

ASCII text can help to identify a set of possible words that corresponds to the 

repeated audio found by our algorithm, and thus can be used as a weak teacher.  

For example, suppose that one example of a motif pair corresponded to the ASCII 

“While shopping for school supplies with the Weasleys...”, and the second 

example corresponded to “...when the older Weasleys arrived at school, they....” 

0 200 400 0 200 400

Learned concept  C1

True positives

False positives

Discovered pattern

(a) (b)

(c) (d)
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While the uncertainty of the temporal alignment means we do not know which 

word corresponds to our motif, words that appear in both text snippets are much 

more likely candidates. Thus, here we have reason to suspect the motif 

corresponds to either “Weasleys” or “school”. By monitoring for further 

occurrences of the motif and checking the ASCII snippets, we can update our 

initial 50/50 guess in a principled Bayesian manner.       

Expanding on this intuition, we conducted a simple experiment to see how well 

our framework can classify repeated words from an audio stream in the weak 

teacher mode. Note that we are not claiming this domain is in need of a sound-to-

text alignment mechanism, or that if it was, our never-ending learning would be an 

especially fruitful method. Our point is simply to give a demonstration of weak 

teacher learning in a domain for which ground truth is available. Moreover, we are 

deliberately making this problem harder by considering only a single Mel-

Frequency Cepstral Coefficient (MFCC) [40], whereas most speech processing 

algorithms use twelve.   

In this experiment, we consider the audio book Harry Potter and the Chamber of 

Secrets as performed by Stephen Fry [52]. The raw audio S is first transformed 

into the 2nd MFCC coefficient5, which is our proxy P for the high-dimensional data 

[40]. In Fig.24b we show three examples of MFCC time series corresponding to 

the word “Harry”. The reader can appreciate that they have significant variance.  

                                                                  
5Usually the top thirteen coefficients are used for audio analysis. The first coefficient is a normalized energy parameter, 

which is not used for speech recognition [40] 
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Fig.24  a) The audio and the text are assumed to be approximately linearly aligned, as shown by 
the red line. However, due to the variability of the actor’s performance, the alignment actually 
wanders like the blue curve. We assume the offset of the real alignment curve from the linear line 
is limited to the band indicated by the dashed grey lines. b) Three examples of 2nd MFCC time 
series converted from the audio snippets of the word Harry.    

The system is set to the weak teacher mode. The subsequence length is set to 0.8 

seconds, about the length of time we expect it takes to pronounce a three- or four-

syllable word. After 4,294 seconds, a pattern C is discovered. The first occurrence 

of the pattern is observed five seconds after the pattern is learned, as shown in Fig. 

25. Each time an occurrence is observed, the words are ranked based on their term 

frequency–inverse document frequency (tf-idf) [53], where the term frequency is 

calculated as the number of associations between the word and the pattern. The tf-

idf measures how important a word is to the pattern, and the top-ranked word is 

the most likely to be associated with the pattern. 

 
Fig. 25  a) After we have learned the concept C, our system monitors for future occurrences of it. 
Here, it sees five examples (the long spaces in between have been edited out for clarity). b) By 
checking the text associated with each occurrence, we can learn that the concept is associated with 
the word Gilderoy 

Five subsequences are observed to be similar to the pattern C. The word Gilderoy 

is on for three of the subsequences. All the remaining words are on for at most one 

subsequence. Fig.26 shows the rank changes for the word Gilderoy and one 

B
eg
in
  .
..
…
..
…
..
…
.…
…
.…
..
. E
n
d

Audio Input

Te
xt

In
p
u
t

t

R

0 40 80

(a) (b)

4298 4302 4504

Gilderoy

wanderings

(omitted)

off
on

off
on

4900 5978

P (2nd MFCC converted from the audio)

C observed C observed C observed C observedC observed

B (words from the text)

C (concept discovered)  

(a)

(b)



41 

exemplar word wanderings as more occurrences are observed. Here, we can see 

that the rank of Gilderoy becomes 1st after five occurrences. Conversely, although 

the word wanderings was ranked 1st at the beginning, it degrades to lower ranks as 

more occurrences are observed. After a careful check of the original audio, we 

identify that the pattern is Gilderoy.  

The reader may be surprised that the word Gilderoy was initially confused with 

the word wanderings in spite of the fact that they don’t have similar 

pronunciations. Recall that we use a single MFCC coefficient, rather than all 

thirteen coefficients typically used in the literature for audio analysis. 

Fig.26  The rank of two exemplar words Gilderoy and wanderings as more occurrences of the 
pattern are observed. Lower rank means higher probability for the pattern. The word Gilderory is 
top-ranked after five occurrences are observed. 

4.8 Weak Teaching Example: Energy Disaggregation 

Discovering patterns from the whole-home electricity signal and then “factoring” 

these patterns into individual component appliances is called household energy 

disaggregation, and it has been an active research topic in recent years 

[30][36][7][26]. It can reveal how energy is consumed by what device, enabling 

users to take effective energy-saving steps.  

Many methods have been proposed for energy disaggregation, most of which 

focus on classifying electrical events [36][7][26]. In this example, we leverage off 

our weak teacher framework to explore the correspondence between the temporal 

patterns in the whole-home energy signal and the operations of component devices. 

We investigated a publicly available dataset [3], which contains a main metering 

that measures the whole-home energy consumption, and three sub-meterings that 

measure the energy consumption in the kitchen, in the laundry room, and by the 

water-heater and an air-conditioner. The dataset contains nearly four years of the 

power data for a house. For our experiment, we randomly choose two months’ 

data. To be complete, we add a virtual sub-metering as other appliances, which is 
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the difference between the whole-home energy and the combination of the three 

sub-meterings. We threshold all the sub-meterings data to be binary, and thus, as 

illustrated in Fig.27, the dataset is a multidimensional time series with one real-

valued and four binary dimensions. We set the length of the patterns to be 120 

minutes, which was our first guess as to a good comprise of the cycle time of 

various appliances. 

Fig.27b shows an exemplar pattern that is discovered on the 51st day. Four 

occurrences of the pattern are observed in the next three days after the pattern is 

discovered, as shown in Fig.27a. For each occurrence, the weak teacher polls the 

four binary sub-meterings to see which are on. 

Fig.27  a) An excerpt of the whole-home energy consumption data. b) An exemplar of the learned 
concept C.  c) The binary sub-meterings data indicating which component appliances are on at a 
given time   

Our system observed a further seven occurrences of the pattern. For six of them, 

only the sub-metering corresponding to the water-heater/air-

conditioner was on. Of the remaining one hit, just the water-

heater/air-conditioner and the other appliances were on. Thus, 

we converge with the probabilities shown in Fig.28. 

Fig.28  The probability of concept C associated with various component appliances. Note that 
while the probability of our pattern being attributed to the water heater/AC is initially just 0.58, it 
converges to 0.875 within a few weeks  

Water-heater/AC

Kitchen

off
on

off
on

Other appliances

off
on

Laundry
off
on

P (whole-home power consumption)

B (sub-meterings)

8106180375  81331 81718

C (concept discovered)  

(a)

(c)

(b)

3000 6000 9000

0.2

0.6

1

P(C = other appliances) = 0.125

P(C = water-heater/AC) = 0.875

P(C = Laundry/Kitchen) = 0

P
ro

ba
bi

lit
y



43 

4.9 Revisiting Options for Frequent Pattern Maintenance 

In Section 2 we claimed that the motivation for introducing our novel algorithm 

for frequent pattern maintenance was that no algorithm for the task currently exists. 

Here we revisit this claim. The reader may note that the algorithm introduced in 

[46] seems to solve exactly this problem. For a given sliding window k minutes 

long, the algorithm can maintain the motif within the last k minutes. At each time 

step, a new datapoint is ingested, and the oldest datapoint is ejected. The algorithm 

maintains a “monitoring” data structure which can indicate if this incremental 

change could have affected the correctness of the current motif, and if the change 

necessitates it, a subroutine is invoked to discover the new motif.  

If run on batch data this algorithm is very efficient, because on average the 

monitoring data structure rarely invokes the expensive subroutine. However, on 

streaming data we are not limited by the average case, we must be able to handle 

the worst case. Unfortunately there is no bound on how bad the worst case can be. 

In particular, taking an adversarial position, one can create a synthetic data stream 

that will force the expensive subroutine to be invoked at every time step. For this 

reason, in the streaming case one must set a relatively conservative value for k. 

The exact value depends on the sampling rate and the hardware used, but beyond a 

few hours is simply untenable. Consider Fig.29 which shows two snippets from a 

weather station’s solar panel [5]. There is a motif highlighted (blue/green) which 

appears to correspond to the concept Sunny-Day-with-Shadow-

Occlusion. However, these two examples are 127 days apart, well beyond the 

capacity of the algorithm in [46] to discover.    

 

Fig.29  A never-ending time series stream from a weather station’s solar panel, only a fraction of 
which we can buffer. A pattern we are observing now seems to have also occurred about four 
months ago. Such a long lag between patterns offers an insurmountable obstacle to exact 
algorithms [46] 

This is not to criticize [46], the algorithm is elegant, exact, and significantly better 

than the obvious brute-force algorithm. However its limited time window at k 

minutes (k < 300) guarantees that it will not be able find daily patterns of behavior. 

In contrast, while our algorithm is approximate, its limitless time horizon means 
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that we should expect it to eventually stumble on two occurrences of a repeated 

pattern, and do so faster than random sampling.  

For completeness we performed an experiment to compare our algorithm with [46]. 

From the UCR archive [35] we take examples of class 1 from the MALLAT 

dataset and consider them as target motifs. We randomly embed these into a much 

longer random walk time series, at every X plus N(0,X/4) seconds, and our task is 

to recover at least one matching pair as soon as possible. In this experiment, the 

length of each subsequence is 1024, and the data rate is 50Hz. The total length of 

the time series is 2 hours long. The window size for each algorithm is chosen to 

guarantee real-time processing. According to our experimental results and the 

suggestions from the authors of [46], to guarantee real-time processing, the 

window size for the rival algorithm in [46] is 4,000 datapoints, and the buffer size 

for our algorithm is 80 subsequences. With these setting, we varied X from 25 

seconds to 300 seconds. For each X, we repeated the experiments 10 times, each 

time re-generating a new time series, and counted the number of times each 

algorithm succeeded detecting at least one matching pair of motifs. The results are 

shown in Fig.30.  

 

Fig.30  Comparison of our dendrogram algorithm with the rival method proposed in [46]. The x-
axis is the expected number of seconds to see two target motifs; y-axis is the probability that the 
target concept is discovered  

As we can see, both algorithms are capable of finding the target motifs when X is 

small. However, as X increases, the probability of the rival algorithm detecting the 

motifs is much smaller than that of our algorithm. When X is larger than 250 

seconds, the rival algorithm can never detect the motifs, whereas our algorithm is 

still capable of discovering the concept. This is because as X increases, the target 

motifs are increasingly rare, that is, two target motifs are increasingly further away 

from each other. When any two target motifs are further apart than the window 

size, the rival algorithm can never detect a matching pair, whereas our algorithm 
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does not have a limited time horizon, and thus is possible to find a matching pair 

even when the patterns are very rare. 

Imagine that there exists an algorithm that can see the whole time series at any 

time; the detection ratio as defined above would be 100% for any X. We call this 

hypothetical algorithm the Oracle algorithm. In the next experiment, we compare 

our algorithm with the Oracle algorithm. Note that the buffer size required for the 

Oracle algorithm is infinite. However, as we will show, our algorithm can 

approach the performance of the Oracle algorithm even with a small limited 

buffer size, under the reasonable assumptions found in many real word datasets.  

In this experiment, we generated time series in the same manner as in the previous 

experiment with X = 300. We started with the buffer size the same as in the 

previous experiment (ݓ ൌ 80ሻ, and increased the size by one buffer each time. 

For each buffer size, we repeated the experiment 10 times, and counted the 

number of times the target motifs were successfully detected by our algorithm. 

The results are shown in Fig.31. As we can see, with a buffer size of merely 240 

subsequences, our algorithm detects the target concept with 100% success rate. 

That is, our algorithm approaches the performance of the Oracle algorithm with a 

much smaller buffer size.  

The reason for this unintuitive result is that in a sense our algorithm has an easier 

task. The Oracle algorithm is finding the true best motifs in the data. However, 

our algorithm only needs to find any pair of motifs to be successful. Thus if there 

are K examples of the motifs in the stream, there are K(K-1)/2 possible pairs that 

we can find that allow us to report success.  

Fig.31  Comparison of our dendrogram algorithm with the Oracle algorithm. The performance of 
our algorithm approaches the Oracle algorithm as the buffer size increases  
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These two results in essence lower bound and upper bound the performance of our 

frequent pattern discovery algorithm. We have shown that we are doing much 

better than the only obvious rival algorithm, and that under reasonable settings and 

assumptions, there is little room for improvement. Thus, as we note in the next 

section, most of our planned future work focuses on learning issues.     

5 Conclusion and Future Work 

We have introduced the first never-ending framework for real-valued time series 

streams. We have shown our system is scalable, able to handle 250Hz with ease 

(c.f. Section 4.3), and that it is robust to significant levels of noise (c.f. Fig.20 and 

Fig.23). Moreover, by applying it to incredibly diverse domains, including bird 

calls, residential power consumption, speech-to-text alignment, body-area-

networks, insect feeding behaviors, cardiology, motion analysis and flying insects, 

we have shown it is a very general and flexible framework. 

Our framework has some limitations. It needs some human intervention to set 

initial parameters and it requires (or at least, greatly benefits from) some domain 

dependent settings. In future work, we hope to remove the few 

assumptions/parameters we have and apply our ideas to year-plus length streams. 

In particular, we plan to investigate extensions to situations where the patterns 

may be very rare, perhaps making up less than one-billionth of the overall data. At 

the very least, it is clear that our frequent pattern mining algorithms would be 

greatly challenged by such domains. In addition we will consider the issue of 

concept drift. For example, recall our case study with invasive species of flying 

insects. It is known that the wingbeat “signatures” of an individual insect change 

with its age. Moreover, the wingbeat frequency changes with temperature, which 

itself changes with the seasons. Addressing such challenges will allow our system 

to be more broadly applied.     

We have made all our code and data freely available at [64] and hope to see our 

work built upon and applied to an even richer set of domains.  
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Appendix A:  The Relationship between Buffer Size and Pattern 
Discovery Time 

In the main text, we provided an equation to calculate the probability of 

discovering a repeated pattern within n steps when the buffer size is w, but did not 

discuss how we derived the equation. We relegated the derivation to this appendix 

to enhance the flow of the paper. 

Theoretical Analysis 

To calculate the probability of seeing at least two examples of the pattern in the 

buffer with no more than n steps when the buffer size is w under the assumptions 

given in the main text (c.f. Section 3.5), we model the problem with the classic urn 

and ball choice model [18] as follows. 

An infinitely large urn contains colored balls in the ratio of one red ball to ninety-

nine blue balls. At each time step, a ball is randomly sampled from the urn, and 

put into a box. The size of the box is w. When the box is full, we randomly discard 

a ball from the box, and replace it with the new sampled ball. The question at hand 

is: what are the chances of seeing at least two red balls in the box within n 

samplings when the box size is w?  

This model simulates our problem by having the red ball represent the pattern, and 

the blue balls represent random data. The box simulates the buffer, and the data 

stream is generated through sampling the balls at each time step. The pattern is 

discovered when exactly two red balls are seen in the box (recall that we stop 

when we see two red balls, so we will never see three or more), so the goal is to 

figure out the probability of discovering the pattern within n steps when the box 

size is w. 

According to the model, the probability of seeing at least two red balls in the next 

step is dependent on the current state of the box and independent of the previous 

states. For example, it is possible to see two red balls in the next step only when 

the box currently contains at least one red ball; and given the current state of balls 

in the box, the probability of seeing two red balls in the next step is independent of 

how many red balls there were previously. As such, this problem is a typical 

Markov process and is modeled using the Markov Chain [48] as follows. 

We take as states the number of red balls in the boxes S, Sଵ	and Sଶ, where 

S/Sଵ denotes that there is zero/one red ball in the box, and Sଶ denotes that there 
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are at least two red balls. For simplicity, we explicitly assume that the box is full 

of blue balls at the beginning; that is, the initial state is S. As such, the initial 

probability vector ݑ	is as follows: 

ݑ ൌ 	 ሾ1 0 0ሿ 

We need to specify the transition matrix. The conditions that are required to 

transition from one state to another are listed in Table 13, where ‘impossible’ 

means with zero probability and ‘certainty’ means with hundred percent 

probability.  

Table 13  Conditions for Transitioning States 

Current 
State 

Next State 

 ܁ ܁ ܁

  new ball is blue new ball is red impossible܁

 , discarded ball is red܁
and new ball is blue  

discarded ball is red, 
and new ball is red; 

or, discarded ball is blue 
and new ball is blue 

discarded ball is blue, 
and new ball is red 

  impossible impossible certainty܁

At each step, the probability of sampling a red ball from the urn is 1/100, and of 

sampling a blue ball is 99/100; the probability of discarding a red ball from the 

box is 
ೝ
௪
	, and of discarding a blue ball is 

௪ିೝ
௪

, where ݊ௗ is the number of 

red balls currently in the box. Based on the conditions in Table 13, we can 

compute the transition probabilities and derive the transition matrix ܶ as follows: 

ܶ ൌ 		
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ێ
ێ
ێ
ۍ

99
100

1
100

0

1
ݓ
∗
99
100

1
ݓ
∗

1
100
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ݓ
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0 0 1 ے
ۑ
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ې

 

According to the Markov Chain, the probability of seeing at least two red balls in 

the box (in state ܵଶሻ after ݊ steps is the 3rd entry in the vector ݑሺሻ ൌ ܶݑ , and 

thus, we have: 

,ݓሺݎܲ ݊ሻ ൌ

ۉ
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ۇ
ሾ1 0 0ሿ

ۏ
ێ
ێ
ێ
ۍ
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1
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1
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1
100


ݓ െ 1
ݓ
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100

ݓ െ 1
ݓ

∗
1
100

0 0 1 ے
ۑ
ۑ
ۑ
ې


ی

ۋ
ۊ
ሺ1,3ሻ (1)

which is the equation we provided in the main text. 
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To verify our analysis, we also performed an empirical study with simulations. We 

did simulations for different values of w, and compare the simulation results with 

the theoretical results calculated using Eq.1. Fig.32 shows the comparison results 

for w = 10. As can be seen, the two results are essentially identical. 

Fig.32  Comparison of simulation results (red/bold) with theoretical results (green/thin) for w =10 
 


