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  ABSTRACT   
The matching of two-dimensional shapes is an important problem 
with applications in domains as diverse as biometrics, industry, 
medicine and anthropology. The distance measure used must be 
invariant to many distortions, including scale, offset, noise, partial 
occlusion, etc. Most of these distortions are relatively easy to 
handle, either in the representation of the data or in the similarity 
measure used. However rotation invariance seems to be uniquely 
difficult. Current approaches typically try to achieve rotation 
invariance in the representation of the data, at the expense of 
discrimination ability, or in the distance measure, at the expense of 
efficiency.  In this work we show that we can take the slow but 
accurate approaches and dramatically speed them up. On real 
world problems our technique can take current approaches and 
make them four orders of magnitude faster, without false 
dismissals. Moreover, our technique can be used with any of the 
dozens of existing shape representations and with all the most 
popular distance measures including Euclidean distance, Dynamic 
Time Warping and Longest Common Subsequence.  
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1. INTRODUCTION 
The matching of two-dimensional shapes is an important problem 
with applications in domains as diverse as biometrics, industry, 
medicine and anthropology. The distance measure used must be 
invariant to many distortions, including scale, offset, noise, partial 
occlusion, etc. Most of these distortions are relatively easy to 
handle, particularly if we use the well-known technique of 
converting the shapes into time series as in Figure 1. However, no 
matter what representation is used, rotation invariance seems to 
be uniquely difficult to handle. For example [14] notes “rotation 
is always something hard to handle compared with translation 
and scaling”, and the literature abounds with similar statements. 
Many current approaches try to achieve rotation invariance in the 
representation of the data, at the expense of discrimination ability 
[19], or in the distance measure, at the expense of efficiency 
[1][2][3][7]. 
As an example of the former, the very efficient rotation invariant 
technique of [19] cannot differentiate between the shapes of the 
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humming and monitoring streams [26]. This widespread 
adoption of LB_Keogh lower bounding has insured that it 
has become a mature and widely supported technology, and 
suggests that any contributions made here can be rapidly 
adopted and expanded. 

• In some domains it may be useful to express rotation-limited 
queries. For example, in order to robustly retrieve examples 
of the number “8”, without retrieving infinity symbols “∞”, 
we can issue a query such as:  “Find the best match to this 
shape allowing a maximum rotation of ± 15 degrees”. Our 
framework supports such rotation-limited queries.  

The rest of this paper is organized as follows. In Section 2 we 
discuss background material and related work. In Section 3 we 
formally introduce the problem and in Section 4 we offer our 
solution. Section 5 offers a comprehensive empirical evaluation of 
our technique. Finally Section 6 offers some conclusions and 
directions for future work. 

2. BACKGROUND AND RELATED WORK 
The literature on shape matching is vast; we refer the interested 
reader to [6][22] and [28] for excellent surveys. While not all 
work on shape matching uses a 1D representation of the 2D 
shapes, an increasingly large majority of the literature does. We 
therefore only consider such approaches here. Note that we lose 
little by this omission. The two most popular measures that 
operate directly in the image space, the Chamfer [5] and 
Hausdorff [18] distance measures, require O(n2logn) time1 and 
recent experiments (including some in this work) suggest that  1D 
representations can achieve comparable or superior  accuracy.   
In essence there are three major techniques for dealing with 
rotation invariance, landmarking, rotation invariant features and 
brute force rotation alignment. We consider each below. 
2.1 Landmarking 
The idea of “landmarking” is to find the one “true” rotation and 
only use that particular alignment as the input to the distance 
measure. The idea comes in two flavors, domain dependent and 
domain independent. 
In domain dependent landmarking, we attempt to find a single (or 
very few) fixed feature to use as a starting point for conversion of 
the shape to a time series. For example, in face profile recognition 
the most commonly used landmarks (fiducial points) are the chin 
or nose [4]. In limited domains this may be useful, but it requires 
building special purpose feature extractors. For example, even in 
a domain as intuitively well understood as human profiles, 
accurately locating the nose is a non-trivial problem, even if we 
discount the possibility of mustaches and glasses. Probably the 
only reason any progress has been made in this area is that most 
work reasonably assumes that faces presented in an image are 
likely to be upright. For shape matching in skulls, the canonical 
landmark is called the Frankfurt Horizontal [27], which is defined 
by the right and left porion (the highest point on the margin of the 
external auditory meatus) and the left orbitale (the lowest point on 
the orbital margin).  However, a skull can be missing the relevant 
bones to determine this orientation and still have enough global 
                                                                 
1 More precisely the time complexity is O(Rplogp), where p is the number 

of pixels in the perimeter and R is the number of rotations that need to 
be executed. Here p = n, and while R is a user defined parameter, it 
should be approximately equal n to guarantee all rotations (up to the 
limit of rasterization) are considered. 

information to match its shape to similar examples. Indeed the 
famous Skhul V skull shown in Figure 12 is such an example. 
In domain independent landmarking, we align all the shapes to 
some cardinal orientation, typically the major axis. This approach 
may be useful for the limited domains in which there is a well-
defined major axis, perhaps the indexing of hand tools. However 
there is increasing recognition that the “…major axis is sensitive 
to noise and unreliable” [28]. For example a recent paper shows 
that under some circumstances, a single extra pixel can change the 
rotation by ± 90 degrees [29]. 
To show how brittle landmarking can be we performed a simple 
clustering experiment where we clustered three primate skulls 
using Euclidean distance with both the major axis technique, and 
the minimum distance of all possible rotations (as found by brute 
force). Figure 2 shows the result. 
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Figure 2: Top) Three primate skulls, two of them from the same 
genus, are clustered using both the landmark rotation beginning at the 
major axis, and the best rotation. Bottom) The landmark-based 
alignment of A and B explains why the landmark-based clustering is 
incorrect: a small amount of rotation error results in a large difference 
in the distance measure 

The most important lesson we learned from this experiment (and 
dozens of other similar experiments on diverse domains [10]) is 
that rotation (mis)alignment is the most important invariance for 
shape matching, unless we have the best rotation then nothing else 
matters.  
2.2 Rotation Invariant Features 
A large number of papers achieve fast rotation invariant matching 
by extracting only rotation invariant features and indexing them 
with a feature vector [6]. This feature vector is often called the 
shapes “signature”. There are literally dozens of rotation invariant 
features including ratio of perimeter to area, fractal measures, 
elongatedness, circularity, min/max/mean curvature, entropy, 
perimeter of convex hull etc. In addition many researchers have 
attempted to frame the shape-matching problem as a more 
familiar histogram-matching problem. For example in [19] the 
authors build a histogram containing the distances between two 
randomly chosen points on the perimeter of the shapes in 
question. The approach seems to be attractive, for example it can 
trivially also handle 3D shapes, however it suffers from extremely 
poor precision. For example, it cannot differentiate between the 
shapes of the lowercase letters “d” and “b”, or “p” and “q”, since 
these pairs of shapes have identical histograms. In general, all 
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these methods suffer from very poor discrimination ability [6]. In 
retrospect this is hardly surprising. In order to achieve rotation 
invariance, all information that contains rotation information must 
be discarded; inevitably, some useful information will also be 
discarded in this process. Our experience with these methods 
suggests that they can be useful for making quick coarse 
discriminations, for example differentiating between skulls and 
vertebrae. However we could not get these methods to distinguish 
between the skulls of humans and orangutan, a trivial problem for 
human or the brute force algorithm discussed in the next section.  
2.3 Brute Force Rotation Alignment 
There are a handful of papers that recognize that the above 
attempts at approximating rotation invariance are unsatisfactory 
for most domains, and they achieve true rotation invariance by 
exhaustive brute force search over all possible rotations, but only 
at the expense of computational efficiency and indexability 
[1][2][3][7][25]. For example, paper [1] uses DTW to handle 
nonrigid shapes in the time series domain, while they note that 
most invariances are trivial to handle in this representation, they 
state “rotation invariance can (only) be obtained by checking all 
possible circular shifts for the optimal diagonal path.” This step 
makes the comparison of two shapes O(n3) and forces them to 
abandon hope of indexing. Similarly paper [25] notes “In order to 
find the best matching result, we have to shift one curve n times, 
where n is the number of possible start points.” All the techniques 
introduced thus far to mitigate this untenable computational 
complexity do so at the expense of introducing false dismissals. 
Typically they offer some implicit or explicit trick to find a one 
(or a small number of) of starting point(s) [2][3][7]. For example 
paper [2] suggests “In order to avoid evaluation of the 
dissimilarity measure for every possible pair of starting contour 
points …we propose to extract a small set of the most likely 
starting points for each shape.” Furthermore, both the heuristic 
used and the number of starting points must “be adjusted to a 
given application”, and it is not obvious how to best achieve this. 
In forceful experiments on publicly available datasets it has been 
demonstrated that brute force rotation alignment produces the best 
precision/recall and accuracy in diverse domains [1][2]. In 
retrospect this is not too surprising. The rival techniques with 
rotation invariant features are all using some lossy transformation 
of the data. In contrast the brute force rotation alignment 
techniques are using a (potentially) lossless transformation of the 
data. With more high quality information to use, any distance 
measures will have an easer time reflecting the true similarity of 
the original images. 
The contribution of this work is to speed up these accurate but 
slow methods by many orders of magnitude while producing 
identical results.   

3. ROTATION INVARIANT MATCHING  
We begin by formally defining the rotation invariant matching 
problem. We begin by assuming the Euclidean distance, and 
generalize to other distance measures later. For clarity of 
presentation we will generally refer to “time series”, which the 
reader will note can be mapped back to the original shapes. 
Suppose we have two time series, Q and C of length n, which 
were extracted from shapes by an arbitrary method. 
      Q = q1,q2,…,qi,…,qn  
      C = c1,c2,…,cj,…,cn  

As we are interested in large data collections we denote a 
database of m such time series as Q . 
     Q  = {Q1, Q2, ...Qm}      
If we wish to compare two time series, and therefore shapes, we 
can use the ubiquitous Euclidean distance: 
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When using Euclidean distance as a subroutine in a classification 
or indexing algorithm, we may be interested in knowing the exact 
distance only when it is eventually going to be less than some 
threshold r. For example, this threshold can be the “range” in 
range search or the “best-so-far” in nearest neighbor search. If this 
is the case, we can potentially speed up the calculation by doing 
early abandoning [12]. 

Definition 1. Early Abandon: During the computation of the 
Euclidean distance, if we note that the current sum of the 
squared differences between each pair of corresponding data 
points exceeds r2, then we can stop the calculation, secure in 
the knowledge that the exact Euclidean distance had we 
calculated it, would exceed r.  

While the idea of early abandoning is fairly obvious and intuitive, 
it is so important to our work we illustrate it in Figure 3 and 
provide pseudocode in Table 1.  
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Figure 3: A visual intuition of early abandoning. Once the squared 
sum of the accumulated gray hatch lines exceeds r2, we can be sure 
the full Euclidean distance exceeds r 

Note that the “num_steps” value returned by the optimized 
Euclidean distance in Table 1 is used only to tell us how useful 
the optimization was. If its value is significantly less than n this 
suggests dramatic speedup. 

Table 1: Euclidean distance optimized with early 
abandonment 

algorithm [dist, num_steps] = EA_Euclidean_Dist(Q, C, r ) 

accumulator = 0 

for i = 1 to length(Q )                                // Loop over time series                    

   accumulator += (qi -  ci)
2                        // Accumulate error contribution    

   If accumulator > r 2                                 // Can we abandon?    

       disp(‘doing an early abandon’) 

       num_steps = i 

       return [ infinity, num_steps ]              // Terminate and return an  

   end                                                         // infinite error to signal the 

end                                                            // early abandonment. 
return [ sqrt(accumulator), length(Q ) ]    // Terminate with true dist 

While the Euclidean distance is a simple distance measure it 
produces surprisingly good results for clustering, classification 
and query by content of shapes, if the time series in question 
happen to be rotation aligned. For example, in an experiment in 
[20] we manually performed rotation alignment of the time series 
extracted from face profiles by explicitly showing the algorithm 
the beginning and endpoint of a face (the nape and Adams apple 
respectively). 



However if the shapes are not rotation aligned, this method can 
produce extremely poor results. To overcome this problem we 
need to hold one shape fixed, rotate the other, and record the 
minimum distance of all possible rotations.  
For reasons that will become apparent later, we achieve this by 
expanding one time series into a matrix C of size n by n. 
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Note that each row of the matrix is simply a time series, shifted 
(rotated) by one from its neighbors. It will be useful below to 
address the time series in each row individually, so we will denote 
the ith row as Ci, which allows us to denote the matrix above in 
the more compact form of C = {C1, C2,…, Cn}. 
We can now define the Rotation invariant Euclidean Distance 
(RED) as: 

RED(Q, C) = ( ) ( )
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Table 2 shows the pseudocode to calculate this.  
Table 2: An algorithm to find the rotated match between two 
time series 

algorithm: [bestSoFar] = Test_All_Rotations(Q,C,r) 
bestSoFar = r 
for j = 1 to n 

   distance = EA_Euclidean_Dist(Q, Cj, bestSoFar)     // As in Table 1 

 if distance <  bestSoFar 

     bestSoFar = distance; 

                   end; 

end; 

return[bestSoFar] 
Note that the algorithm tries to take advantage of early 
abandoning by passing EA_Euclidean_Dist the value of r, the best 
rotation alignment discovered thus far. 
If we are simply measuring the distance between two time series 
then the algorithm is invoked with r set to infinity, however, as 
we shall see below, if the algorithm is being used as a subroutine 
in a linear scan of a large dataset Q , the calling routine can set 
the value of r to achieve speedup. In particular the calling 
function sets r to the value of the best match (under any rotation) 
discovered thus far. Table 3 shows the pseudocode. Note that the 
time complexity for this algorithm is O(mn2). This is simply 
untenable for large datasets. 

Table 3: An algorithm to find the best rotated match to query 
from a database of possible matches 

algorithm: [best_match_loc, bestSoFar]= Search_Database_for_Rotated_Match(C, Q ) 

  best_match_loc = null 

  bestSoFar           = inf  
   for i = 1 to number_of_time_series_in_database( Q )  

     distance  = Test_All_Rotations(
iQ ,C, bestSoFar);        // As in Table 2  

         if distance <  bestSoFar   

                       best_match_loc = i 
                       bestSoFar = distance  

        end; 

  end; 

return[best_match_loc, bestSoFar] 

Before continuing we will review the notation introduced thus far 
in Table 4. 

Table 4: Notation Table 
C A time series               c1,c2,…,cj,…,cn    
C A n by n matrix containing every rotation of C  
Ci The ith row of the above 
Q   Another time series    q1,q2,…,qi,…,qn   
Q
 

A database containing many time series Q  = {Q1,..,Qm} 

Note that our notation seems somewhat space inefficient in that it 
expands time series C, of length n, to a matrix of size n by n. 
However the rest of the database uses the original (arbitrary 
rotation) time series, and since the size of the database is assumed 
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to be large, this overhead is asymptotically irrelevant.  
There are
thus far.  

irror Image Invariance: Depending on the application we may 
wish to retrieve shapes that are enantiomorphic (mirror images) 
to the query. For example, in matching skulls, the best match 
may simply be facing the opposite direction. In contrast when 
matching letters we don’t want to match a “d” to a “b”. If 
enantiomorphic invariance is required we can trivially achieve 
this by a
≤ i ≤ n. 
otation-Limited Invariance: In some domains it may be useful 
to express rotation-limited queries. For example, in order to 
robustly retrieve examples of the number “6”, without retrieving 
examples of the number “9”, we can issue a query such as:  
“Find the best match to this shape allowing a maximum rotation 
of ± 15 degrees”. Our framework trivially supports such 
rotation-limited queries, by removing from the mat
series that correspond to the unwanted rotations.   

Thus far we have shown a brute force search algorithm that can 
support rotation invariance, rotation-limited invariance and/or 
mirror image invariance. We simply put the appropriate time 
series into matrix C and invoke the algorithm in Table 3. This 
algorithm, even though speeded up by the early abandoning 
optimization, is too slow for large datase
introduce our novel search mechanism. 

4. WEDGE BASED ROTATION MATCHING 
We will begin by showing how we can efficiently search for the 
best match in main memory. Since large datasets may
disk we will further show how we can index the data.  

4.1 Fast and Exact Main Memory Search 
We begin by defining time series wedges. Imagine that we take 
several time series, C1,..,Ck , from our matrix C. W

ew sequences U and L
Ui = max(C1i,..,Cki ) 
Li = min(C1i,..,Cki ) 

U and L stand for Upper and Lower respectively. We can see why 
in Figure 4. They form the smallest possible bounding envelope 
that encloses all memb

ly: 
    ∀i     Ui ≥  C1i,..,Cki  ≥ Li      

For notational convenience, we will ca
edge as W: 



 

Figure 4: Top) Two time series C1 and C2. Middle) A time series 
wedge W, created from C1 and C2. Bottom) An illustration of 
LB_Keogh 

We can now define a lower bounding measure between an 
arbitrary time series Q and the entire set of candidate sequences 
contained in a wedge W: 
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For brevity we do not show a proof of this lower bounding 
property. A proof appears in [10] and also in [15], where the 
authors use this representation for different problem.  
Note that the LB_Keogh function has been used before to support 
DTW [11][20][21][23], uniform scaling [13], and query filtering 
[26]. For these tasks the lower bounding distance function is the 
same, but the definition of U and L are different.  
There are two important observations about LB_Keogh. First, in 
the special case where W is created from a single candidate 
sequence, it degenerates to the Euclidean distance. Second, not 
only does LB_ Keogh lower bound all the candidate sequences 
C1,..,Ck, but we can also do early abandon with LB_Keogh. 
While the latter fact might be obvious, for clarity we make it 
explicit in Table 5. 

Table 5: LB_Keogh optimized with early abandonment 

algorithm  [dist, num_steps] = EA_LB_Keogh(Q, W, r ) 
accumulator = 0 

for i = 1 to length(Q )                             // Loop over time series                     
   if qi  >  W.Ui                                         // Accumulate error contribution   
             accumulator += (ci - W.Ui )

2           

   elseif  qi  <  W.Li    

             accumulator += (ci - W.Li )
2    

   end    

    if accumulator > r 2                           // Can we abandon?    
            return [ infinity, i ]                     // Terminate and return an infinite error 

    end                                                //  to signal the early abandonment. 
end                                                           

return [ sqrt(accumulator), length(Q ) ]   // Terminate with true dist 

Note once again that the value returned in “num_steps” is merely 
a bookkeeping device to allow a post mortem evaluation of 
efficiency. 
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Suppose we have just two time series C1 and C2 of length n, and 
we know that in future we will be given a time series query Q and 
asked if one (or both) of C1 and C2 are within r of the query. We 
naturally wish to minimize the number of steps we must perform 
(“steps” are measured by “num_steps”). We are now in a position 
to outline two possible approaches to this problem.   
• We can simply compare the two sequences, C1 and C2 (in 

either order) to the query using the early abandon algorithm 
introduce in Table 1. We will call this algorithm, classic. 

• We can combine the two candidate sequences into a wedge, 
and compare Q to the wedge using LB_Keogh. If the 
LB_Keogh function early abandons, we are done. We can 
say with absolute certainty that neither of the two candidate 
sequences is within r of the query. If we cannot early 
abandon on the wedge, we need to individually compare the 
two candidate sequences, C1 and C2 (in either order) to the 
query. We will call this algorithm, Merge. 

Let us consider the best and worst cases for each approach. For 
classic the worst case is if both candidate sequences are within r 
of the query, which will require 2n steps. In the best case, the first 
point in the query may be radically different to the first point in 
either of the candidates, allowing immediate early abandonment 
and giving a total cost of 2 steps. 
For Merge, the worst case is also if both candidate sequences are 
within r of the query, because we will waste n steps in the lower 
bounding test between the query and the wedge, and then n steps 
for each individual candidate, for a total of 3n. However the best 
case, also if the first point in the query is radically different, 
would allow us to abandon with a total cost of 1 step.  
Which of the two approaches is better depends on: 
• The shapes of C1 and C2. If they are similar, this greatly 

favors Merge. 
• The shape of Q. If Q is truly similar to one (or both) of the 

candidate sequences, this would greatly favor classic. 
• The matching distance r. Here the effect is non monotonic 

and dependent on the two factors above. 
We can generalize the notion of wedges by hierarchically nesting 
them. Let us begin by augmenting the notation of a wedge to 
include information about the sequences used to form it. For 
example, if a wedge is built from C1 and C2, we will denote it as 
W(1,2). Note that a single sequence is a special case of a wedge, for 
example the sequence C1 can also be denoted as W1. We can 
combine W(1,2) and W3 into a single wedge by finding maximum 
and minimum values for each ith location, from either wedge. 
More concretely: 

    Ui = max(W(1,2)i, W3i )     
Li = min(W(1,2)i, W3i )  
W((1,2),3) = {U, L} 

In Figure 5 we illustrate this notation. We call W(1,2) and W3 
children of wedge W((1,2),3). Since individual sequences are special 
cases of wedges, we can also call C1 and C2 children of W(1,2). 



 

Figure 5: An illustration of hierarchically nested wedges   

Given the generalization to hierarchal wedges, we can now also 
generalize the Merge approach. Suppose we have a time series Q 
and a wedge W((1,2),3). We can compare the query to the wedge 
using LB_Keogh. If the LB_Keogh function early abandons, we 
are done. We know with certainty that none of the three candidate 
sequences is within r of Q. If we cannot early abandon on the 
wedge, we need to compare the two child wedges, W(1,2) and W3 to 
the query. Again, if we cannot early abandon on the wedge W(1,2), 
we need to individually compare the two candidate sequences, C1 
and C2 (in either order) to the query. We call this algorithm H-
Merge (Hierarchal Merge). 
The utility of a wedge is strongly correlated to its area. We can 
get some intuition as to why by visually comparing LB_Keogh(Q, 
W(1,2)) with  LB_Keogh(Q, W((1,2),3)) as shown in Figure 6. Note 
that the area of W((1,2),3) is much greater than that of W(1,2), and that 
this reduces the value returned by the lower bound function and 
thus the possibility to early abandon. 
 

Figure 6: Top) An illustration of LB_Keogh(Q, W(1,2)). Bottom) An 
illustration of LB_Keogh(Q, W((1,2),3)). Note that the tightness of the 
lower bound is proportion to the number and (squared) length of 
vertical lines 

For some problems, the H-Merge algorithm can give 
exceptionally poor performance. If the wedge W(1,2), created from 
C1 and C2 has an exceptional large area (i.e. C1 and C2 are very 
dissimilar), it is very unlikely to be able to prune off any steps.  
At this point we can see that the efficiency of H-Merge is 
dependent on the candidate sequences and Q itself. In general, 
merging similar sequences into a hierarchal wedge is a good idea, 
but merging dissimilar sequences is a bad idea.  
The observations above motivate a final generalization of H-Merge. 
Recall that to achieve rotation invariance we expanded our time 
series C into a matrix with n time series. Given these n sequences, 

we can merge them into K hierarchal wedges, where 1 ≤ K ≤ n. 
This merging forms a partitioning of the data, with each sequence 
belonging to exactly one wedge. We will use W to denote a set of 
hierarchal wedges: 

C1  (or W1 ) C2  (or W2 ) C3  (or W3 )

W(1, 2)

W((1, 2), 3)

C1  (or W1 ) C2  (or W2 ) C3  (or W3 )

W(1, 2)

W((1, 2), 3)

W = {Wset(1) , Wset(2) ,.., Wset(K)} ,      1 ≤ K ≤  n 
where Wset(i) is a (hierarchically nested) subset of the n candidate 
sequences. Note that we have 

Wset(i) ∩ Wset(j) = ∅  if i ≠ j,  and 

| Wset(1) ∪Wset(2) ∪..∪ Wset(K) | = n 
We will attempt to merge together only similar sequences. We 
can then compare this set of wedges against our query. Table 6 
formalizes the algorithm.  

Table 6: Algorithm H-Merge 

algorithm   [dist] = H-Merge(Q, W,K, r ) 

S = {empty }                                                       // Initialize a stack.  
for i = 1 to K                                              // Place all the wedges into the stack. 

     enqueue(Wset(i) ,S ) 

end 

while not empty(S ) 

     T = dequeue(S ) 

     dist =  EA_LB_Keogh(Q,T,r )           // Note that is early abandon version. 

     if isfinite(dist)                                          //  We did not early abandon. 

          if cardinality(T ) = 1                           // T  was an individual sequence. 

             disp(‘The sequence ’,T, ‘is ’, dist, ‘ units from the query’) 

             return[dist] 

         else                                                     // T was a wedge, find its children 

            enqueue(children(T ) ,S )               // and push them onto the stack. 

         end 

    end 

end 

W(1,2)

Q

W((1,2),3)

Q

W(1,2)

QQ

W((1,2),3)

QQ

Note that this algorithm is designed to replace the 
Test_All_Rotations algorithm that is invoked as a subroutine in the 
Search_Database_for_Rotated_Match algorithm shown in Table 3. 
As we shall see in our empirical evaluations, H-Merge can 
produce very impressive speedup if we make judicious choices in 
the set of hierarchal wedges that make up W. However, the 
number of possible ways to arrange the hierarchal wedges is 
greater than KK, and the vast majority of these arrangements will 
be very poor, so specifying a good arrangement of W is critical. 
A simple observation alleviates the need to invent a new 
algorithm to find a good arrangement of W. Note that hierarchal 
clustering algorithms have very similar goals to an ideal wedge-
producing algorithm. In particular, hierarchal clustering 
algorithms can be seen as attempting to minimize the distances 
between objects in  each subtree. A wedge-producing algorithm 
should attempt to minimize the area of each wedge. However the 
area of a wedge is simply the maximum Euclidean distance 
between any sequences contained therein (i.e Newton-Cotes rule 
from elementary calculus). This motivates us to derive wedge sets 
based on the result of a hierarchal clustering algorithm. Figure 8 
shows wedge sets W, of every size from 1 to 5, derived from the 
dendrogram shown in Figure 7. 



 

Figure 7: A dendrogram of five sequences C1, C2,..., C5, clustered 
using group average linkage 

Given that the clustering algorithm produces the tentative wedge 
sets, all we need to do is to choose the best one. We could attempt 
to do this by eye, for example in Figure 8 it is clear that any 
sequence that early abandons on W3, will almost certainly also 
early abandon on both W2 and W5; similar remarks apply to W1 
and W4. At the other extreme, the wedge at K = 1 is so “fat” that it 
is likely have poor pruning power. The set W = {W((2,5),3), W(1,4)} 
is probably the best compromise. However because the set of time 
series might be very large, such visual inspection is not scalable. 
 

Figure 8: Wedge sets W, of size 1 to 5, derived from the dendrogram 
shown in Figure 7 

The problem is actually even more complex, in that the best value 
for K also depends on the current value of r (Recall r is the “best-
so-far” in nearest neighbor search.). If r is large then very little 
early abandoning is possible and this favors a large value for K. In 
contrast, if r is small we can do a lot of early abandoning, and we 
are better off having many sequences in a single wedge so we can 
early abandon all of them with a single calculation. Note however 
that for nearest neighbor search the value of r will get smaller as 
we search through the database.  
With this in mind, we dynamically choose the wedge set based on 
a fast empirical test. We start with the wedge set where K = 2. 
Each time the bestSoFar value changes, we test a subset of the 
possible values of K and choose the most efficient one (as 
measured by num_steps) as the next K to use. Which subset to test 

is decided on-the-fly based on the current K value. They are the 
values which evenly divide the ranges [1, current_K] and 
[current_K, max_K] into 5 intervals. Note that on average the 
bestSoFar value only changes log(m) during a linear search, so this 
slight overhead in adjusting the parameter is not too burdensome, 
however we do include this cost in all experiments in Section 5. 

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

4.2 Lower Bounding in Index Space 
True rotation invariance has traditionally been so demanding in 
terms of CPU time that little or no effort was made to index it (or 
it was indexed with the possibility of false dismissals). As we 
shall see in the experiments in Section 5.2, the ideas presented in 
the last section produce such dramatic reductions in CPU time 
that it is worth considering indexing the data. 
There are several possible techniques we could consider for 
indexing. Recent years have seen dozens of papers on indexing 
time series envelopes that we could attempt to leverage off 
[11][15][20][21][23]. The only non-trivial adaptation to be made 
is that instead of the query being a single envelope, it would be 
necessary to search for the best match to K envelopes in the 
wedge set W. 
Note however that we do not necessarily have to use the 
enveloping idea in the indexing phase. So long as we can lower 
bound in the index space we can use an arbitrary technique to get 
(hopefully a small subset of) the data from disk to main memory, 
where our H-Merge can very efficiently find the distance to the 
best rotation. One possible method to achieve this indexable 
lower bound is to use Fourier methods. Many authors have 
independently noted that transforming the signal to the Fourier 
space and calculating the Euclidean distance between the 
magnitude of the coefficients produces a lower bounds to any 
rotation [24]. We can leverage of this lower bound to use a VP-
tree to index our time series as shown in Table 7. 

W3 

W2 

W5 

W1 

W4 

W3 

W(2,5)

W1 

W4 

W3 

W(2,5)

W(1,4) 

W((2,5),3)

W(1,4) 

W(((2,5),3), (1,4))

K = 5 K = 4 K = 3 K = 2 K = 1
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W3 
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W5 
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W4 

W3 
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W1 

W4 

W3 

W(2,5)

W1 

W4 

W3 

W(2,5)

W(1,4) 

W3 

W(2,5)

W(1,4) 

W((2,5),3)

W(1,4) 
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Table 7: A Vantage Point Tree for Indexing Shapes 
Algorithm [BSF] = NNSearch(C)  
       BSF.ID = null;                               // BSF is the Best-So-Far variable  
       BSF.distance = infinity;      
       W = convert_time_series_to_wedge_set(C); 
        Search(

root
Subroutine Search(NODE, W, BSF)  

Q ,W, BSF);      // Invoke subroutine on the root of index tree 

if NODE.isLeaf                                                  // we are at a leaf node. 
       for each compressed time-series cT in node  
            LB = computeLowerBound(cT, W); 
            queue.push(cT,LB);                              // sorted by lower bound.  
       end 
       while (not (queue.empty()) and (queue.top().LB < BSF.distance))  
           if (BSF.distance > queue.top().LB)  
              retrieve full time series Q of queue.top() from disk; 
              distance = H-Merge(Q, W, BSF.distance )  // calculate full distance. 
                    if distance < BSF.distance                      // update the best-so-far 
                          BSF.distance = distance;                  // distance and location. 
                          BSF.ID = Q; 
                  end 
           end 
       end 
else                                                                      // we are at a vantage point. 
      LB = computeLowerBound(VP, W); 
      queue.push(VP,LB); 
            if LB < (node.median + BSF.distance)  
                        search(NODE.left, W, BSF);      // recursive search left. 
            else 
                        search(NODE.right, W, BSF);    // recursive search right. 
           end 
end 

This technique is adapted from [24], and we refer the reader to 
this work for a more complete treatment. 



4.3 Generalizing to other Distance Measures 
As we shall see in Section 5, the Euclidean distance is typically 
very effective and intuitive as a distance measure for shapes. 
However in some domains it may not produce the best possible 
precision/recall or classification accuracy [2][20]. The problem is 
that even after best rotation alignment, subjectively similar shapes 
may produce time series that are globally similar but contain local 
“distortions”.  These distortions may correspond to local features 
in that are present in both shapes but in different proportions. For 
example in Figure 9 we can see that the larger brain case of the 
Lowland Gorilla changes the locations in which the brow ridge 
and jaw map to in a time series relative to the Mountain Gorilla. 

 

Figure 9: The Lowland Gorilla and Mountain Gorilla are 
morphologically similar, but have slightly different proportions. 
Dynamic Time Warping can be used to align homologous features in 
the time series representation space  

Even if we assume that the database contains the actual object 
used as a query, it is possible that the two time series are distorted 
versions of each. Here the distortions may be caused by camera 
perspective effect, differences in lighting causing shadows which 
appear to be features, parallax etc.   
Fortunately there is a well-known technique for compensating 
such local misalignments, Dynamic Time Warping (DTW) 
[11][20]. While DTW was invented in the context of 1D speech 
signals others have noted its utility for matching shapes, including 
face profiles [4], leafs [20], handwriting [21] and general shape 
matching [1].  
To align two sequences using DTW, an n-by-n matrix is 
constructed, where the (ith, jth) element of the matrix is the 
distance d(qi, cj) between the two points qi and cj (i.e. d(qi, cj) = 
(qi - cj)2 ). Each matrix element (i, j) corresponds to the alignment 
between the points qi and cj, as illustrated in Figure 10. 
A warping path P is a contiguous set of matrix elements that 
defines a mapping between Q and C. The tth element of P is 
defined as pt = (i, j)t so we have: 

P = p1, p2, …, pt, …, pT    n ≤ T < 2n-1  
The warping path that defines the alignment between the two time 
series is subject to several constraints. For example, the warping 
path must start and finish in diagonally opposite corner cells of 
the matrix; the steps in the warping path are restricted to adjacent 
cells (including diagonally adjacent cells); the points in the 
warping path must be monotonically spaced in time. In addition to 
these constraints, virtually all practitioners using DTW also 
constrain the warping path in a global sense by limiting how far it 
may stray from the diagonal [11][20][21]. A typical constraint is 
the Sakoe-Chiba Band which states that the warping path cannot 
deviate more than R cells from diagonal.  

Mountain Gorilla
Gorilla gorilla beringei

Lowland Gorilla
Gorilla gorilla graueri

Mountain Gorilla
Gorilla gorilla beringei

Lowland Gorilla
Gorilla gorilla graueri

 

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R

 

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R
 

Figure 10: Left) Two time series sequences which are similar but out of 
phase. Right) To align the sequences we construct a warping matrix, and 
search for the optimal warping path, shown with solid squares. Note that 
Sakoe-Chiba Band with width R is used to constrain the warping path 

The optimal warping path can be found in O(nR) time by dynamic 
programming [11]. As we shall show experimentally in the 
Section 5, DTW can significantly outperform Euclidean distance 
on real datasets. 
Based on an arbitrary wedge W and the allowed warping range R, 
we define two new sequences, DTW_U and DTW_L: 

DTW_Ui = max(Ui-R  : Ui+R ) 
DTW_Li = min(Li-R : Li+R ) 

They form an additional envelope above and below the wedge, as 
illustrated in Figure 11. 
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Figure 11:  The idea of bounding envelopes introduced in Figure 4 is 
generalized to allow DTW. A) Two time series C1 and C2. B) A time 
series wedge W, created from C1 and C2. C) In order to allow lower 
bounding of DTW, an additional envelope is created above and below 
the wedge. D) An illustration of  
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We can now define a lower bounding measure for DTW distance 
between an arbitrary query Q and the entire set of candidate 
sequences contained in a wedge W: 



∑
= ⎪

⎩

⎪
⎨

⎧

<−
>−

=
n

i
iiii

iiii

DTW

otherwise
LDTWqifLDTWq
UDTWqifUDTWq

WQKeoghLB
1

2

2

           0
_)_(
_)_(

),(_
 

A B

B

C

This region will 
not be matched

DTW

LCSS
Alignment

A B

B

C

This region will 
not be matched

DTW

LCSS
Alignment

We make the following claim: 
Proposition 1: For any sequence Q of length n and a wedge W 
containing a set of time series C1, …, Ck of the same length n, for 
any global constraint on the warping path of the 
form , the following inequality holds: RjiRj +≤≤−

))(DTW(Q, C(Q, W)LB_Keogh sDTW min≤ , where s = 1, 2, ..., k. 
Because of space limitations we refer the interested reader to [10] 
for the proof. In addition, space limitations also prohibit a 
discussion of the minor modifications required to index 
LB_KeoghDTW(Q,W), however [23] contains the necessary 
modifications for both DTW and for LCSS which is discussed 
below.   
To facilitate later efficiency comparisons to Euclidean distance 
and other methods, it will be useful to define the time complexity 
of DTW in terms of  “num_steps” as returned by Table 1 and 
Table 5. The variable “num_steps” is the number of real-value 
subtractions that must be performed, and completely dominates 
the CPU time, since the square root function is only performed 
once (and can be removed, see [12]). If we construct a full n by n 
warping matrix, then DTW clearly requires at least n2 steps. 
However as we noted above and illustrated in Figure 10, we can 
truncate the corners of the matrix to reduce this number to 
approximately nR, where R is the width of the Sakoe-Chiba Band. 
While nR is the number of steps for a single DTW, we expect the 
average number of steps to be less, because some full DTW 
calculations will not be needed if the lower bound test fails. Since 
the lower bound test requires n steps, the average number of steps 
when doing m comparisons should be: 

 m
nmnRam )()( +∗  

Where a is the fraction of the database that requires the full DTW 
calculated. Note that even this is pessimistic, since both DTW2 
and LB_KeoghDTW are implemented as early abandoning (recall 
Table 5). We therefore simply count the “num_steps” required by 
each approach and divide it by m to get the average number of 
steps required for one comparison. 
In addition to DTW, several researchers have suggested using 
Longest Common SubSequence (LCSS) as a distance measure for 
shapes. The LCSS is very similar to DTW except that while DTW 
insists that every point in C maps onto one (or more) point(s) in 
Q, LCSS allows some points to go unmatched. The intuition 
behind this idea in a time series domain is that subsequences may 
contain additions or deletions, for example an extra (or forgotten) 
dance move in a motion capture performance, or a missed beat in 
ECG data. Rather than forcing DTW to produce an unnatural 
alignment between two such sequences, we can use LCSS, which 
simply ignores parts of the time series that are too difficult to 
match. In the image space the missing section of the time series 
may correspond to a partial occlusion of an object, or to a 
physically missing part of the object, as shown in Figure 12. 

                                                                 
2 Note that a recursive implementation of DTW would always require nR 

steps, however iterative implementation (as used here) can potentially 
early abandon with as few as R steps. 

 

Figure 12: A) The famous Skhul V is generally reproduced with the 
missing bones extrapolated in epoxy, however the original Skhul V (B) 
is missing the nose region, which means it will match to a modern 
human (C) poorly, even after DTW alignment (inset). In contrast, LCSS 
alignment will not attempt to match features that are outside a “matching 
envelope” (heavy gray line) created from the other sequence.   

While we considered LCSS for generality, we will not further 
explain how to incorporate it into our framework. It has been 
shown in [23] that it is trivial to lower bound LCSS using the 
envelope-based techniques described above. The minor changes 
include reversing some inequality signs since LCSS is a similarity 
measure, not a distance measure. Our omission here of a detailed 
discussion is due to space limitations and to a slight bias against 
the method. Unlike Euclidean distance which has no parameters, 
or DTW, which has one intuitive and easy to set parameter, LCSS 
requires 2 parameters, and tuning them is nontrivial. In 
experiments we found that we could sometimes tune LCSS to 
slightly beat DTW on some problems, however we did not have 
large enough datasets to allow training/test splits that guarded 
against overfitting to a statistically significant standard. 

5. EXPERIMENTAL RESULTS 
In this section we empirically evaluate our approach. We begin by 
stating our experimental philosophy. In a recent paper Veltkamp 
and Latecki attempted to reproduce the accuracy claims of several 
shape matching papers but discovered to their dismay that they 
could not match the claimed accuracy for any approach [22]. One 
suggested reason is the observation that many approaches have 
highly tuned parameters, a fact which we believe makes 
Euclidean distance (zero parameters) and DTW (one parameter) 
particularly attractive. Veltkamp and Latecki conclude “It would 
be good for the scientific community if the reported test results 
are made reproducible and verifiable by publishing data sets and 
software along with the articles”. We completely concur and have 
placed all datasets at the following URL [10].  



5.1 Effectiveness of Shape Matching  
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In general this paper is not making any claims about the 
effectiveness of shape matching. Because we are simply speeding 
up arbitrary distance calculations on arbitrary 1-dimensional 
representations of shapes, we automatically inherit the well-
documented effectiveness of other researchers published work 
[1][2][3][7][8][20][24]. 
Nevertheless, for completeness and in order to justify the extra 
computational expense of DTW, we will show the effectiveness 
of shape matching on several publicly available datasets. 
Table 8 shows the error rate of one-nearest neighbor classification 
as measured using leaving-one-out evaluation. Recall that 
Euclidean distance has no parameters, DTW has a single 
parameter (the warping window width R) which was learned by 
looking only at the training data. For the Face and Leaf datasets 
the (approximate) correct rotation was known [20]. We removed 
this information by randomly rotating the images. 

Table 8: The Error of Euclidean distance and DTW on 
several publicly available datasets  

Name Number of 
Classes 

Number 
of 

Instances 

Euclidean 
Error (%) 

DTW 
Error (%) {R} 

Face 16 2240 3.839% 3.170%   {3} 
Swedish Leaves 15 1125 13.33% 10.84%   {2} 
Chicken 5 446 19.96% 19.96%   {1} 
MixedBag 9 160 4.375% 4.375%   {1} 
OSU Leaves 6 442 33.71% 15.61%   {2} 
Diatoms 37 781 27.53% 27.53%   {1} 

The MixedBag dataset is small enough to run the more 
computationally expensive Chamfer [5] and Hausdorff [18] 
distance measures. They achieved an error rate of 6.0% and 7.0% 
respectively [24], slightly worse than Euclidean distance. 
Likewise the Chicken dataset allows us to compare directly to 
[17], which used identical experiments to test 6 different 
algorithms based on discrete sequences extracted from the shapes. 
The best of these algorithms had an error rate of 20.5% and took 
over a minute for each distance calculation, whereas our approach 
takes an average time of 0.0039 seconds for each distance 
calculation3. For the Diatom dataset, the results are competitive 
with human experts, whose error rates ranged from 57% to 13.5% 
[8], and only slightly worse than the Morphological Curvature 
Scale Spaces (MCSS) approach of [8], which got 26.0%. Note 
however that the Euclidean distance requires zero parameters 
once the time series have been extracted, whereas the MCSS has 
several parameters to set. 
In general these experiments show two things (which had been 
noted before), the extra effort of DTW is useful in some domains, 
and very simple time series representations of shapes are 
completive to other more complex representations.   
We also performed extensive “sanity check” experiments using a 
large database of primate skulls. For all species where we have at 
least two examples we perform a hierarchal clustering and check 
to see if both samples of the same species clustered together. 
Figure 13 shows a typical example. 

                                                                 
3 We are aware that one should normally not compare CPU times from 

different computers, however here the 4 orders of magnitude offers a 
comfortable margin that dwarfs implementation details.  

 

Figure 13:  A group average hierarchal clustering of eight primate 
skulls based on the lateral view, using Euclidean distance  

It is important to recall that Figure 13 shows a phenogram, not a 
phylogenetic tree. However on larger scale experiments in this 
domain (shown in [10]) we found that large subtrees of the 
dendrograms did conform to the current consensus on primate 
evolution. 
 

5.2 Main Memory Experiments 
There is increasing awareness that comparing two competing 
approaches using only CPU time opens the possibility of 
implementation bias [12]. As a simple example, while the Haar 
wavelet transform is O(n) and DFT is O(nlogn), the DFT is much 
faster in the popular language Matlab, simply because it is a 
highly optimized subroutine. For this reason many recent papers 
compare approaches with some implementation-free metric 
[11][20][23][24]. As we noted earlier, the variable “num_steps” 
returned by Table 1 and Table 5 allows an implementation free 
measure to compare performance. 
For Euclidean distance queries we compare to brute force and 
Fourier (FFT) methods, which are the only competitors to also 
guarantee no false dismissals. The cost model for the FFT lower 
bound is nlogn steps. If the FFT lower bound fails we allow the 
approach to avail of our early abandoning techniques discussed in 
Section 3.  
We tested on two datasets, a homogeneous database of 16,000 
projectile point images, all of length 251 and a heterogeneous 
dataset consisting of all the data used in the classification 
experiments, plus 1,000 projectile points. In total the 
heterogeneous dataset contains 5,844 objects of length 1,024. To 
measure the performance we averaged over 50 runs, with the 
query object randomly chosen and removed from the dataset. 
We measure the average number of steps required by each 
approach for a single comparison of two shapes, divided by the 
number of steps require by brute force. For our method, we 
include a startup cost of O(n2), which is the time require to build 
the wedges. Because the utility of early abandoning depends on 
the value of the best-so-far, we expect our method to do better as 
we see larger and larger datasets. 
Figure 14 shows the results on the projectile points dataset using 
Euclidean distance. 
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Figure 14: The relative performance of four algorithms on the 
Projectile Points dataset using the Euclidean distance measure  

We can see that for small datasets our approach is slightly worse 
than FFT and simple Early abandon because we had to spend 
some time building the wedges. However, by the time we have 
seen 64 objects we have already broken even, and thereafter 
rapidly race towards beating FFT and Early abandon by one 
order of magnitude and Brute force by two orders of magnitude.  
The results on the projectile points dataset using DTW are shown 
in Figure 15, and are even more dramatic. 

 

Figure 15: The relative performance of four algorithms on the 
Projectile Points dataset using the DTW distance measure. The inset 
shows a zoom-in of the 3 best algorithms when m = 16,000 

Here the cost of building the wedges is dwarfed by a single brute 
force DTW-rotation-invariant comparison, so our approach is 
faster even for a database of size 3. By the time we have 
examined the entire database, our approach is more than 5,000 
times faster than the brute force approach. It is interesting to note 
that the early abandoning strategy is by itself quite competitive, 
yet to our knowledge no one uses it. We suspect this is because 
most people are more familiar with the elegant and terse recursive 
version of DTW, which does not allow early abandoning, than the 
iterative implementation, which does. Note however that even 
though our highly optimized early abandoning strategy is 
competitive, our wedge approach is still an order of magnitude 
faster once the dataset is larger than 500 objects.  
Sometimes indexing methods that work well for highly 
homogeneous datasets do not work well for heterogenous 
datasets, and vice versa. We consider this possibility by testing on 
the heterogenous dataset in Figure 16.  

 

Figure 16: The relative performance of four algorithms on the 
Heterogeneous dataset using Euclidean distance (left) and DTW (right) 

In this dataset it takes our wedge approach slightly longer to beat 
Early abandon (and FFT for Euclidean search), however by the 
time we have seen 8,000 objects our approach is two orders of 
magnitude faster than its Euclidean competitors, and for DTW it 
is an order of magnitude faster than Early abandon and 3,976 
times faster than brute force. 
Recall that our algorithm requires the setting of a single 
parameter, the number of intervals to search for a new value for K 
every time the bestSoFar variable is updated. In all the experiments 
above this value was set to 5. We found that we can change this 
value to any number in the range 3 to 20 without affecting the 
performance of our algorithm by more than 4%, we therefore omit 
further discussion of this parameter setting.  
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As a final sanity check we also measured the wall clock time of 
our best implementation of all method. The results are essentially 
identical to those shown above. 
 

5.3 Disk Access Experiments 
The results in the previous section show that we can do true 
rotation invariant matching so fast that CPU time is no longer the 
bottleneck, and we should therefore also attempt to minimize disk 
accesses. We will compare to Linear Scan, which is the only other 
competitor that we are aware of that allows exact rotation 
invariant indexing under Euclidean distance and DTW with a 
guarantee of no false dismissals. Recall that the lower bound used 
by the VP-tree requires transforming the signal to the Fourier 
space and calculating the Euclidean distance between the 
coefficient magnitudes [24]. It is well understood that most of the 
energy of the signal will be concentrated in a relatively small 
number of these coefficients [23] and that using just a few large 
valued coefficients is better than using all of them. We therefore 
will perform experiments keeping just the first D coefficients, 
were D = {4, 8, 16, 32}. 
We count the fraction of items that must be retrieved from disk. 
Figure 17 illustrates the results for the full projectile points and 
heterogeneous datasets over a range of dimensionalities.   

 

Figure 17: The fraction of items retrieved from disk to answer a 1-
nearest neighbor query, using dimensionalities D = {4, 8, 16, 32}.  
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6. CONCLUSIONS AND FUTURE WORK 
We have introduced a method to support fast rotation-invariant 
search of large shape datasets with arbitrary representations and 
distance functions. Our method supports rotation limited queries 
and mirror image invariance if desired.  
Future work includes both extensions and applications of the 
current work. We will attempt to extend this approach to the 
indexing of 3D shapes, and we have begun to use our algorithm as 
a subroutine in several data mining algorithms which attempt to 
cluster, classify and discover motifs in a variety of 
anthropological datasets, including petroglyph and projectile point 
databases. 
Reproducible Research Statement: All datasets and images used 
in this work are freely available at this URL [10]. 
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Appendix 
 
Below we present some additional materials that we could not fit into the 
conference version of this paper. To enhance readability we have repeated 
some text from above.  

EUCLIDEAN DISTANCE LOWER BOUND 
Definition 1. Euclidean Distance: given two time series (or 
time series subsequences) both of length n, the Euclidean 
Distance between them is the square root of the sum of the 
squared differences between each pair of corresponding data 
points:   

( ) ( )∑ −≡
=

n

i
ii cqCQED

1

2,  

Figure 18 gives a visual intuition behind the Euclidean distance.  
 

Figure 18: The visual intuition behind the Euclidean distance. The 
Euclidean distance is the square root of the sum of the square 
lengths of the gray hatch lines 

Given a set of time series C1,..,Ck , we can form two new 
sequences U and L: 

Ui = max(C1i,..,Cki ) 
Li = min(C1i,..,Cki ) 

U and L stand for Upper and Lower respectively, as shown in 
Figure 4. They form the smallest possible bounding envelope that 
encloses all members of the set C1,..,Ck from above and below. 
More formally: 

∀i     Ui ≥  C1i,..,Cki  ≥ Li 
For notational convenience, we will call the combination of U and 
L a wedge, and denote a wedge as W: 

W = {U, L} 
 

Figure 19: Top) Two time series C1 and C2. Middle) A time series 
wedge W, created from C1 and C2. Bottom) An illustration of 
LB_Keogh 

Definition 2. LB_Keogh: we can now define a lower 
bounding measure between an arbitrary time series Q and the 
entire set of candidate sequences contained in a wedge W: 
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We will now prove the claim of the lower bounding. 
Proposition 1: For any sequence Q of length n and a wedge W 
containing a set of time series C1,..,Ck of the same length n, the 
following inequality holds: 

),(),(_ sCQEDWQKeoghLB ≤ , where s = 1, 2, ..., k. 

Proof:  
Suppose we know that among the k time series C1,..,Ck , Cs has 
the minimal Euclidean distance to query Q. And we wish to prove 
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Since the terms under radicals are positive, we can square both 
sides: 
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Below we will show that every term in the left summation can be 
matched with some greater or equal term in the right summation. 
There are three cases to consider, for the moment we will just 
consider the case when . We want to show: ii Uq >

22 )()( siiii CqUq −≤−   

  )()( siiii CqUq −≤−  Since , we can take 
square roots on both sides 

ii Uq >

         sii CU −≤−  Subtract   from both sides iq

           isi UC ≤  Add  to both sides sii CU +

           
),...,max( 1 kiisi CCC ≤  

By definition Ui = 
max(C1i,..,Cki ) 
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This is obviously true.  
The case ii Lq < yields to a similar argument. This final case is 

simple to show, since clearly  because  
must be nonnegative. 

2)(0 sii Cq −≤ 2)( sii Cq −

Thus we have shown that each term on the left side is matched 
with an equal or larger term on the right side. Our inequality 
holds. ■ 
 

DTW DISTANCE LOWER BOUND 
LB_Keogh can be generalized to Dynamic Time Warping distance 
(DTW). Below we will first give some definitions and then 
provide the proof. 
Suppose we have two time series Q and C, both of length n, 
where: 

Q = q1, q2, …, qi, …, qn 
C = c1, c2, …, cj, …, cn 



To align these two sequences using DTW, an n-by-n matrix is 
constructed, where the (ith, jth) element of the matrix is the 
distance d(qi, cj) between the two points qi and cj (i.e. d(qi, cj) = 
(qi - cj)2 ). Each matrix element (i, j) corresponds to the alignment 
between the points qi and cj, as illustrated in Figure 10.  

Definition 3. Warping path: a warping path P is a contiguous 
set of matrix elements that defines a mapping between Q and 
C. The tth element of P is defined as pt = (i, j)t so we have: 

P = p1, p2, …, pt, …, pT        n ≤ T < 2n-1 
The warping path that defines the alignment between the two time 
series is subject to several constraints. For example, the warping 
path must start and finish in diagonally opposite corner cells of 
the matrix; the steps in the warping path are restricted to adjacent 
cells (including diagonally adjacent cells); the points in the 
warping path must be monotonically spaced in time. In addition to 
these constraints, virtually all practitioners using DTW also 
constrain the warping path in a global sense by limiting how far it 
may stray from the diagonal [11][20][21].  

 

Figure 20: Left) Two time series sequences which are similar but out of 
phase. Right) To align the sequences we construct a warping matrix, and 
search for the optimal warping path, shown with solid squares. Note that 
Sakoe-Chiba Band with width R is used to constrain the warping path 

Definition 4. Warping Window: the subset of matrix that the 
warping path is allowed to visit is called the warping window. 

The warping window constrains the indices of the warping path pt 
= (i, j)t such that j – R ≤ i ≤ j + R, where R is a term defining the 
reach, or allowed range of warping, for a given point in a 
sequence. 
There are exponentially many warping paths that satisfy the 
above conditions, however we are only interested in the path that 
minimizes the warping cost. 

Definition 5. DTW Distance: given two time series (or time 
series subsequences), the DTW Distance between them is the 
minimal cost of all warping paths: 
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In Section 0, we have shown that given a set of time series 
C1,..,Ck , we can form two new sequences U and L: 

Ui = max(C1i,..,Cki ) 
Li = min(C1i,..,Cki ) 

Based on the wedge W and the allowed warping range R, we can 
now define two new sequences, DTW_U and DTW_L: 

  DTW_Ui = max(Ui-R : Ui+R ) 
DTW_Li = min(Li-R : Li+R ) 

They form an additional envelope above and below the wedge, as 
illustrated in Figure 11. 
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Figure 21:  The idea of bounding envelopes introduced in Figure 4 is 
generalized to allow DTW. A) Two time series C1 and C2. B) A time 
series wedge W, created from C1 and C2. C) In order to allow lower 
bounding of DTW, an additional envelope is created above and below 
the wedge. D) An illustration of  

DTWKeoghLB _

We can now define a lower bounding measure for DTW distance 
between an arbitrary query Q and the entire set of candidate 
sequences contained in a wedge W:  
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We will now prove the claim of the lower bounding. 
Proposition 2: For any sequence Q of length n and a wedge W 
containing a set of time series C1, …, Ck of the same length n, for 
any global constraint on the warping path of the 
form RjiRj +≤≤− , the following inequality holds: 

),(),(_ sDTW CQDTWWQKeoghLB ≤ , where s = 1, 2, ..., k. 

Proof:  
Suppose we know that among the k time series C1, …, Ck, Cs has 
the minimal DTW distance to query Q. And we wish to prove 
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Since the terms under radicals are positive, we can square both 
sides: 
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From Definition 3 we know that n ≤ T, so our strategy will be to 
show that every term in the left summation can be matched with 
some greater or equal term in the right summation. 
There are three cases to consider, for the moment we will just 
consider the case when qi > DTW_Ui . We want to show: 

stii pUDTWq ≤− 2)_(   
22 )()_( sjiii CqUDTWq −≤−  By Definition 3 

  )()_( sjiii CqUDTWq −≤−  Since qi > DTW_Ui , we 
can take square roots on 
both sides 

         sji CUDTW −≤− _  Subtract qi  from both sides 

                       isj UDTWC _≤  Add DTW_Ui + Csj to both 
sides 



                       
 ):max( RiRisj UUC +−≤

By definition DTW_Ui = 
max(Ui-R : Ui+R ) 

Since the query sequence Q and all the candidate sequences C1, 
…, Ck are of the same length and j-R ≤ i ≤ j+R, we know i-R ≤ j ≤ 
i+R. So we can rewrite the right side and the inequality becomes 

Iguania

                  
 ),...,,...,,max( )1( RijRiRisj UUUUC +−+−≤

 
If we remove all terms except Uj from the RHS we are left with 

which is obviously true since Uj = max(C1j,..,Ckj). )max( jsj UC ≤

The case qi < DTW_Ui yields to a similar argument. The final 
case is simple to show, since clearly because 

 must be nonnegative. 

2)(0 sji Cq −≤
2)( sji Cq −

Thus we have shown that each term on the left side is matched 
with an equal or larger term on the right side. Our inequality 
holds. ■ 
  
 
ADDITIONAL SHAPE MATCHING EXAMPLES 
 
Figure 22 shows an alternative figure to explain and motivate 
DTW for shapes. 

 
Figure 22: This figure was an alternative to Figure 9 above, however 
we decided to stick with the primate motif for this paper 

With Dr. Wendy Hodges, a noted herpetologist at the University 
of Texas, we have begun to study reptilian morphology using our 
shape matching tools. Figure 23 shows a simple sanity check 
clustering of some reptile skulls. 

 
Figure 23: A group average hierarchal clustering of fourteen reptile 
skulls using rotation invariant Euclidean distance  

Finally, in Figure 24 we show a clustering of twenty-four primate 
skulls, including all the skulls previously featured in the paper. 
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Figure 24: A group average hierarchal clustering of twenty-four reptile skulls using rotation invariant Euclidean distance. Note that this is a 
phenogram, not a phylogenetic tree. For the current best phylogenetic tree, see the Tree of Life project, starting at their primate page. 
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