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The matching of two-dimensional shapes is an important problem with many applications in
anthropology. Examples of objects that anthropologists are interested in classifying,
clustering and indexing based on shape include bone fragments, projectile points
(arrowheads/spearpoints), petroglyphs and ceramics. Interest in matching such objects
originates from the fundamental question for many biological anthropologists and
archaeologists: how can we best quantify differences and similarities? This interest is fuelled
in part by a movement that notes: ‘an increasing number of archaeologists are showing
interest in employing Darwinian evolutionary theory to explain variation in the material
record’. Aiding such research efforts with computers requires a shape similarity measure that
is invariant to many distortions, including scale, offset, noise, partial occlusion, etc. Most of
these distortions are relatively easy to handle, either in the representation of the data or in
the similarity measure used. However, rotation invariance seems to be uniquely difficult.
Current approaches typically try to achieve rotation invariance in the representation of the
data, at the expense of poor discrimination ability, or in the distance measure, at the expense
of efficiency. In this work, we show that we can take the slow but accurate approaches and
dramatically speed them up. On real world problems, our technique can take current
approaches and make them four orders of magnitude faster, without false dismissals.
Moreover, our technique can be used with any of the dozens of existing shape representations
and with all the most popular distance measures, including Euclidean distance, dynamic time
warping and longest common subsequence. We show the applications of our work to several
important problems in anthropology, including clustering and indexing of skulls, projectile
points and petroglyphs.
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1. INTRODUCTION

Anthropologists often deal with physical (as opposed to
purely social or linguistic, etc.) artefacts.While the colour
or texture of such artefacts may be of interest, it is often
the case that the shape is of most interest. Examples of
artefacts that anthropologists are interested in classify-
ing, clustering or indexing based on shape include bone
fragments, projectile points (arrowheads/spearpoints),
petroglyphs and ceramics. While anthropologists have
long been interested in shape, interest in matching such
objects is fuelled in part by the availability of computing
power and by a recent movement that notes: ‘an
increasing number of archaeologists are showing interest
in employing Darwinian evolutionary theory to explain
variation in the material record’ (O’Brien & Lyman
2003). For example, anthropologists have recently used
tools from biological morphology to attempt to explain
spatial and temporal distribution of projectile points in
orrespondence (eamonn@cs.ucr.edu).

ugust 2006
eptember 2006 207
North America. Aiding such research efforts with
computers requires a shape similarity measure that is
invariant to many distortions, including scale, offset,
noise, partial occlusion, etc. Most of these distortions are
relatively easy to handle, particularly if we use the well-
knowntechnique of converting the shapes into time-series
as in figure 1.

However, no matter what representation is used,
rotation invariance seems to be uniquely difficult to
handle. For example, Li & Simske (2002) notes that
‘rotation is always something hard to handle compared
with translation and scaling’, and the literature abounds
with similar statements. Many current approaches try to
achieve rotation invariance in the representation of the
data, at the expense of discrimination ability (Osada et al.
2002), or in the distance measure, at the expense of
efficiency (Gdalyahu & Weinshall 1999; Adamek &
O’Connor 2003, 2004; Attalla & Siy 2005).

As an example of the former, the very efficient rotation
invariant technique of Osada et al. (2002) cannot
differentiate between the shapes of the lowercase letters
J. R. Soc. Interface (2007) 4, 207–222
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Figure 1. Shapes can be converted to time-series. (a) A bitmap
of a human skull. (b) The distance from every point on the
profile to the centre is measured and treated as the Y-axis of a
time-series of length n, see (c).

2More precisely, the time complexity is O(Rp log p), where p is the
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‘d’ and ‘b’. As an example of the latter, the work of
Adamek &O’Connor (2004), which is the state of the art
in terms of accuracy or precision/recall, takes an
untenable amount of time for each shape comparison.

In this work,1 we show that we can take the slow but
accurate approaches and dramatically speed them up.
For example, we can take the O(n3) approach of
Adamek & O’Connor (2004) and on real world
problems bring the average complexity down to
O(n1.06). This dramatic improvement in efficiency
does not come at the expense of accuracy; the algorithm
is guaranteed to return the same answer set as the
slower methods.

We achieve speedup of the existing methods by
dramatically decreasing the central processing unit
(CPU) requirements. Our technique works by grouping
together similar rotations and defining an admissible
lower bound to that group. Given a tight and
admissible lower bound, we can use the many search
techniques known in the database community.

Our technique has the following advantages:

— there are dozens of techniques in the literature for
converting shapes to time-series (Wang et al. 2000;
Cardone et al. 2003; Adamek & O’Connor 2004;
Zhang & Lu 2004; Attalla & Siy 2005; Vlachos et al.
2005), including some that are domain specific
(Rath & Manmatha 2002; Bhanu & Zhou 2004).
Our approach works for any of these representations.

—while there are many distance measures for shapes in
the literature, Euclidean distance, dynamic time
warping (Rath & Manmatha 2002; Adamek &
O’Connor 2003; Bhanu & Zhou 2004; Ratanamaha-
tana & Keogh 2005) and longest common subse-
quence (Vlachos et al. 2005) account for the majority
of the literature. Our approach works for any of these
distance measures.

— our approach uses the idea of envelope lower bounding
as its cornerstone. Since the introduction of this idea a
few years ago (Keogh 2002), dozens of researchers
worldwide have adopted and extended this framework
for applications as diverse as motion capture
indexing (Keogh & Kasetty 2002), P2P searching
1In this work, we make use of Big O notation such as ‘O(n3)’. See
appendix A for an intuition for this notation.
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(Karydis et al. 2005), handwriting retrieval (Rath &
Manmatha 2002), dance indexing, query by humming
and monitoring streams (Wei et al. 2005). This
widespread adoption of envelope lower bounding has
insured that it has become a mature and widely
supported technology, and it suggests that any
contributions made here can be rapidly adopted
and expanded.

The rest of this paper is organized as follows. In §2,
we discuss the background material and the related
work. In §3, we formally introduce the problem and in
§4, we offer our solution. Section 5 offers a comprehen-
sive empirical evaluation of our technique. Finally, §6
offers some conclusions and directions for future work.
2. BACKGROUND AND RELATED WORK

The literature on shape matching is vast; we refer the
interested reader to Cardone et al. (2003), Zhang & Lu
(2004) and Veltkamp & Latecki (2006) for excellent
surveys. While not all work on shape matching uses a
one-dimensional representation of the two-dimensional
shapes, an increasingly large majority of the literature
does. Therefore, we consider only such approaches here.
Note that we lose little by this omission. The two most
popular measures that operate directly in the image
space, the chamfer (Borgefors 1988) and Hausdorff
(Olson & Huttenlocher 1997) distance measures,
require O(n2 log n) time,2 and recent experiments
(including some in this work) suggest that one-
dimensional representations can achieve comparable
or superior accuracy.

In essence, there are three major techniques for
dealing with rotation invariance, landmarking, rotation
invariant features and brute force rotation alignment.
We consider each in §§§2.1–2.3.
2.1. Landmarking

The idea of ‘landmarking’ is to find the one ‘true’
rotation and only use that particular alignment as the
input to the distance measure. The idea comes in two
flavours: domain dependent and domain independent.

In domain dependent landmarking, we attempt to
find a single (or very few) fixed feature to use as a
starting point for the conversion of the shape to a time-
series. For example, in face profile recognition, the most
commonly used landmarks (fiducial points) are the chin
or the nose (Bhanu & Zhou 2004). In limited domains,
this may be useful, but it requires building special-
purpose feature extractors. For example, even in a
domain as intuitively well understood as human
profiles, accurately locating the nose is a non-trivial
problem, even if we discount the possibility of
mustaches and glasses. Probably, the only reason any
progress has been made in this area is that most work
number of pixels in the perimeter and R is the number of rotations
that need to be executed. Here pZn, and while R is a user-defined
parameter, it should be approximately equal n to guarantee all
rotations (up to the limit of rasterization) are considered.
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Figure 2. (a) Three primate skulls, two of them from the same genus, are clustered using both the landmark rotation beginning at
the major axis and the best rotation. (b) The landmark-based alignment of A and B explains why the landmark-based clustering
is incorrect: a small amount of rotation error results in a large difference in the distance measure.
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reasonably assumes that faces presented in an image
are likely to be upright. For shape matching in skulls,
the canonical landmark is called the Frankfurt hori-
zontal (White 2000), which is defined by the right and
left porion (the highest point on the margin of the
external auditory meatus) and the left orbitale (the
lowest point on the orbital margin). However, a skull
can be missing the relevant bones to determine this
orientation and still have enough global information to
match its shape to similar examples. Indeed, the Skhul
V skull shown in figure 12 is such an example.

In domain independent landmarking, we align all the
shapes to some cardinal orientation, typically the major
axis. This approach may be useful for the limited
domains in which there is a well-defined major axis,
perhaps the indexing of hand tools. However, there is an
increasing recognition that the ‘.major axis is
sensitive to noise and unreliable’ (Zhang & Lu 2004).
For example, a recent paper shows that under some
circumstances, a single extra pixel can change the
rotation by G908 (Zunic et al. 2006).

To show how brittle landmarking can be, we
performed a simple clustering experiment where we
clustered three primate skulls using Euclidean distance,
with both the major axis technique and the minimum
distance of all possible rotations (as foundbybrute force).
Figure 2 shows the result. It is clear that themajor axes do
not have any biological meaning: the points connecting
eachaxis for each specimenare nothomologous (of shared
evolutionary origin). Therefore, the resulting clusters are
meaningless in terms of biology and morphology.

The most important lesson we learned from this
experiment (and dozens of other similar experiments on
diverse domains; see Keogh 2006) is that rotation
J. R. Soc. Interface (2007)
(mis)alignment is the most important invariance for
shape matching; unless we have the best rotation, then
nothing else matters.
2.2. Rotation invariant features

A large number of papers achieve fast rotation
invariant matching by extracting only the rotation
invariant features and indexing them with a feature
vector (Cardone et al. 2003). This feature vector is often
called the shapes ‘signature’. There are literally dozens
of rotation invariant features, including ratio of
perimeter to area, fractal measures, elongatedness,
circularity, min/max/mean curvature, entropy, per-
imeter of convex hull, etc. In addition, many research-
ers have attempted to frame the shape-matching
problem as a more familiar histogram-matching
problem. For example, in Osada et al. 2002, the authors
build a histogram containing the distances between two
randomly chosen points on the perimeter of the shapes
in question. The approach seems to be attractive, for
example, it can trivially also handle three-dimensional
shapes, however, it suffers from extremely poor
precision. For example, it cannot differentiate between
the shapes of the lowercase letters ‘d’ and ‘b’ or ‘p’ and
‘q’, since these pairs of shapes have identical histo-
grams. In general, all these methods suffer from very
poor discrimination ability (Cardone et al. 2003).
2.3. Brute force rotation alignment

There are a handful of papers that recognize that the
above attempts at approximating rotation invariance
are unsatisfactory for most domains, and they achieve
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Figure 3. A visual intuition of early abandoning. Once the squared sum of the accumulated grey hatch lines exceeds r 2, we can be
sure that the full Euclidean distance exceeds r.

Table 1. Euclidean distance optimized with early abandon-
ment.

algorithm [dist, num_steps]ZEA_Euclidean_Dist(Q, C, r)

accumulatorZ0

for iZ1 to length(Q) //loop over time-series

accumulatorCZ(qiKci)
2 //accumulate error contri-

bution

if accumulatorOr 2 //can we abandon?

disp(‘doing an early abandon’)

num_stepsZi

return [infinity, num_steps] //terminate and return an

end //infinite error to signal the

end //early abandonment.

return [sqrt(accumulator),

length(Q)]

//terminate with true dist
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true rotation invariance by an exhaustive brute force
search over all possible rotations, but only at the
expense of computational efficiency (Gdalyahu &
Weinshall 1999;Wang et al. 2000; Adamek &O’Connor
2003, 2004; Attalla & Siy 2005). For example, the paper
of Adamek & O’Connor (2004) uses dynamic time
warping (DTW is discussed in detail in §4.2) to handle
non-rigid shapes in the time-series domain; while they
note that most invariances are trivial to handle in this
representation, they state that ‘rotation invariance can
(only) be obtained by checking all possible circular
shifts for the optimal diagonal path’. This step makes
the comparison of two shapes O(n3). Similarly, the
paper of Wang et al. (2000) notes that ‘in order to find
the best matching result, we have to shift one curve n
times, where n is the number of possible start points’.
3. ROTATION INVARIANT MATCHING

We begin by formally defining the rotation invariant
matching problem and by assuming the Euclidean
distance, and we generalize to other distance measures
later. For clarity of presentation, we will generally refer
to ‘time-series’, which the reader will note can be
mapped back to the original shapes.

Suppose that we have two time-series, Q and C of
length n, which were extracted from shapes by an
arbitrary method,

QZ q1; q2;.; qi;.; qn;
C Z c1; c2;.; cj ;.; cn:

As we are interested in large data collections, we denote
a database of m such time-series as �Q,

�QZ fQ1;Q2;.;Qmg:
If we wish to compare two time-series, and therefore

shapes, we can use the ubiquitous Euclidean distance

EDðQ;CÞh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
iZ1

ðqiKciÞ2
s

:

When using the Euclidean distance as a subroutine in a
classification or indexing algorithm, we may be inter-
ested in knowing the exact distance only when it is
eventually going to be less than some threshold r. For
example, this threshold can be the ‘range’ in range
search or the ‘best-so-far’ in nearest neighbour search.
If this is the case, we can potentially speedup the
J. R. Soc. Interface (2007)
calculation by doing early abandoning (Agrawal et al.
1993; Keogh & Kasetty 2002).

Definition 3.1. Early abandon. During the computation
of the Euclidean distance, if we note that the current
sum of the squared differences between each pair of
corresponding data points exceeds r 2, then we can stop
the calculation, secure in the knowledge that the exact
Euclidean distance had we calculated it would exceed r.

While the idea of early abandoning is fairly obvious
and intuitive, it is so important to our work that we
illustrate it in figure 3 and provide pseudocode in
table 1.

Note that the ‘num_steps’ value returned by the
optimized Euclidean distance in table 1 is used only to
tell us how useful the optimization was. If its value is
significantly less than n, then this suggests a dramatic
speedup.

While the Euclidean distance is a simple distance
measure, it produces surprisingly good results for
clustering, classification and query by content of
shapes, if the time-series in question happen to be
rotation aligned. For example, in an experiment in
Ratanamahatana & Keogh (2005), we manually per-
formed rotation alignment of the time-series extracted
from face profiles by explicitly showing the algorithm
the beginning and the endpoint of a face (the nape and
the Adam’s apple, respectively).

However, if the shapes are not rotation aligned, this
method can produce extremely poor results. To over-
come this problem, we need to hold one shape fixed,



Table 2. An algorithm to find the rotated match between two
time-series.

algorithm: [bestSoFar]ZTest_All_Rotations(Q,C,r)
bestSoFarZr
for jZ1 to n
distanceZEA_Euclidean_Dist(Q, Cj, bestSoFar) //as in
table 1
if distance!bestSoFar
bestSoFarZdistance
end

end
return [bestSoFar]

Table 3. An algorithm to find the best rotated match to query
from a database of possible matches.

algorithm: [best_match_loc, bestSoFar]Z
Search_Database_for_Rotated_Match(C, �Q)

best_match_locZnull
bestSoFarZinf

for iZ1 to number_of_time_series_in_database( �Q)

distanceZTest_All_Rotations( �Q, C, bestSoFar) //as in
table 2
if distance!bestSoFar
best_match_locZi
bestSoFarZdistance
end

end
return [best_match_loc, bestSoFar]

Table 4. Notation table.

C a time-series c1,c2,., cj,., cn
C a n!n matrix containing every rotation of C
Ci the ith row of the above
Q another time-series q1,q2, ., qi,., qn
�Q a database containing many time-seriesZ{Q1, ., Qm}
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rotate the other and record the minimum distance of all
possible rotations.

For reasons that will become apparent later, we
achieve this by expanding one time-series into a matrix
C of size n by n,

C Z

c1; c2;.; cnK1; cn
c2;.; cnK1; cn; c1

«

cn; c1; c2;.; cnK1

8>>><
>>>:

9>>>=
>>>;
:

Note that each row of the matrix is simply a time-series,
shifted (rotated) by one from its neighbours. It will be
useful below to address the time-series in each row
individually, so we will denote the ith row as Ci, which
allows us to denote the matrix above in the more
compact form of CZ{C1, C2, ., Cn}.

We can now define the rotation invariant Euclidean
distance (RED) as

REDðQ;CÞZ min
1%j%n

EDðQ;CjÞh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
iZ1

ðqiKciÞ2
s

:

(

Table 2 shows the pseudocode to calculate this.
Note that the algorithm tries to take advantage of

early abandoning by passing EA_Euclidean_Dist the
value of r, the best rotation alignment discovered thus far.

If we are simply measuring the distance between two
time-series, then the algorithm is invoked, with r set to
infinity; however, as we shall see below, if the algorithm
is being used as a subroutine in a linear scan of a large
dataset �Q, the calling routine can set the value of r to
achieve speedup. In particular, the calling function sets
r to the value of the best match (under any rotation)
discovered thus far. Table 3 shows the pseudocode.
Note that the time complexity for this algorithm is
O(mn2). This is simply untenable for large datasets.

Before continuing, we will review the notation
introduced thus far in table 4.

Note that our notation seems somewhat space
inefficient, in that it expands time-series C, of length
n, to a matrix of size n!n. However, the rest of the
database uses the original (arbitrary rotation) time-
series, and since the size of the database is assumed to
be large, this overhead is asymptotically irrelevant.

Depending on the application, we may wish to
retrieve the shapes that are enantiomorphic (mirror
images) to the query. For example, in matching skulls,
the best match may simply be facing the opposite
direction. In contrast, when matching letters, we do not
want to match a ‘d’ to a ‘b’. If enantiomorphic inva-
riance is required, we can trivially achieve this by
augmenting matrixC to contain Ci and reverse(Ci), for
1%i%n.

Thus far, we have shown a brute force search
algorithm that can support rotation invariance,
rotation-limited invariance and/or mirror image invar-
iance. We simply put the appropriate time-series into
matrix C and invoke the algorithm in table 3. This
algorithm, even though speeded up by the early
abandoning optimization, is too slow for large datasets.
In §4, we introduce our novel search mechanism.
J. R. Soc. Interface (2007)
4. WEDGE BASED ROTATION MATCHING

We will begin by showing how we can efficiently search
for the best match in the main memory. We will further
show how to generalize to other distance measures.
4.1. Fast and exact main memory search

We begin by defining time-series wedges. Imagine that
we take several time-series, C1,., Ck, from our matrix
C. We can use these sequences to form two new
sequences U and L,

Ui ZmaxðC1i;.;CkiÞ;
Li ZminðC1i;.;CkiÞ:

U and L stand for upper and lower, respectively. We
can see why in figure 4. They form the smallest possible
bounding envelope that encloses all members of the set
C1, ., Ck from above and below. More formally,

ci UiRC1i;.;CkiRLi:

For notational convenience, we will call the com-
bination of U and L a wedge, and denote a wedge as W,

W Z fU ;Lg:
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Figure 4. (a) Two time-series C1 and C2. (b) A time-series wedgeW, created from C1 and C2. (c) An illustration of LB_Envelope.

Table 5. LB_Envelope optimized with early abandonment.

algorithm [dist, num_steps]ZEA_LB_Envelope(Q,W, r)

accumulatorZ0

for iZ1 to length(Q) //loop over time-series

if qiOW$Ui //accumulate error

contribution

accumulator CZ(ciKW$Ui)
2

elseif qi!W$Li

accumulator CZ(ciKW$Li)
2

end

if accumulatorOr 2 //can we abandon?

return [infinity, i ] //terminate and return

an infinite error

end //to signal the early

abandonment.

end

return [sqrt(accumulator), length(Q)] //terminate with true

dist
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We can now define a lower-bounding measure between
an arbitrary time-series Q and the entire set of
candidate sequences contained in a wedge W,

LB_Envelope ðQ;W Þ

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
iZ1

ðqiKUiÞ2 if qiOUi

ðqiKLiÞ2 if qi!Li

0 otherwise

:

8>><
>>:

vuuuuut

For brevity, we do not show a proof of this lower-
bounding property. A proof appears in Keogh (2006)
and also in Li et al. (2004), where the authors use this
representation for different problems.

Note that the LB_Envelope function has been used
before to support DTW(Keogh 2002; Rath&Manmatha
2002; Vlachos et al. 2003; Ratanamahatana & Keogh
2005), uniform scaling (Keogh et al. 2004) and query
filtering (Wei et al. 2005). For these tasks, the lower-
bounding distance function is the same, but the definition
of U and L is different.

There are two important observations about LB_En-
velope. First, in the special case where W is created
from a single candidate sequence, it degenerates to the
Euclidean distance. Second, not only does LB_Enve-
lope lower bound all the candidate sequencesC1,., Ck,
but we can also do early abandon with LB_Envelope.
While the latter fact might be obvious, for clarity we
make it explicit in table 5.
J. R. Soc. Interface (2007)
Note once again that the value returned in
num_steps is merely a bookkeeping device to allow a
post-mortem evaluation of efficiency.

Suppose we have just two time-series, C1 and C2 of
length n, and we know that in the future we will be
given a time-series queryQ and asked if one (or both) of
C1 and C2 are within r of the query. We naturally wish
to minimize the number of steps which wemust perform
(‘steps’ are measured by num_steps). We are now
in a position to outline two possible approaches to
this problem.
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Figure 5. An illustration of hierarchically nested wedges.
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—We can simply compare the two sequences, C1 and
C2 (in either order), to the query using the early
abandon algorithm introduced in table 1. We will
call this algorithm, classic.

—We can combine the two candidate sequences into a
wedge and compare Q to the wedge using LB_Enve-
lope. If the LB_Envelope function early abandons,
we are done.We can say with absolute certainty that
neither of the two candidate sequences is within r of
the query. If we cannot early abandon on the wedge,
we need to individually compare the two candidate
sequences, C1 and C2 (in either order), to the query.
We will call this algorithm, Merge.

Let us consider the best and the worst cases for each
approach. For classic, the worst case is if both
candidate sequences are within r of the query, which
will require 2n steps. In the best case, the first point in
the query may be radically different to the first point in
either of the candidates, allowing immediate early
abandonment and giving a total cost of two steps.

For Merge, the worst case is also if both candidate
sequences are within r of the query, because wewill waste
n steps in the lower-bounding test between the query and
the wedge, and then n steps for each individual
candidate, for a total of 3n. However, the best case,
also if the first point in the query is radically different,
would allow us to abandon with a total cost of one step.

Which of the two approaches is better depends on as
follows:

— the shapes of C1 and C2. If they are similar, this
greatly favours Merge.

— the shape ofQ. IfQ is truly similar to one (or both) of
the candidate sequences, this would greatly favour
classic.

— the matching distance r. Here, the effect is non-
monotonic and dependent on the two factors above.

We can generalize the notion of wedges by hier-
archically nesting them. Let us begin by augmenting
the notation of a wedge to include information about
the sequences used to form it. For example, if a wedge is
built from C1 and C2, we will denote it as W(1,2). Note
that a single sequence is a special case of a wedge; for
J. R. Soc. Interface (2007)
example, the sequence C1 can also be denoted as W1.
We can combine W(1,2) and W3 into a single wedge by
finding maximum and minimum values for each ith
location, from either wedge. More concretely,

Ui ZmaxðWð1;2Þi;W3iÞ;
Li ZminðWð1;2Þi;W3iÞ;
Wðð1;2Þ;3Þ Z fU ;Lg:

In figure 5, we illustrate this notation. We call W(1,2)

and W3 children of wedge W((1,2),3). Since individual
sequences are special cases of wedges, we can also call
C1 and C2 children of W(1,2).

Given the generalization to hierarchal wedges, we
can also now generalize the Merge approach. Suppose
we have a time-series Q and a wedge W((1,2),3). We can
compare the query to the wedge using LB_Envelope. If
the LB_Envelope function early abandons, we are done.
We know with certainty that none of the three
candidate sequences is within r of Q. If we cannot
early abandon on the wedge, we need to compare the
two child wedges,W(1,2) andW3, to the query. Again, if
we cannot early abandon on the wedge W(1,2), we need
to individually compare the two candidate sequences,
C1 and C2 (in either order), to the query. We call this
algorithm H-Merge (Hierarchal Merge).

The utility of a wedge is strongly correlated to
its area. We can get some intuition by visually
comparing LB_Envelope(Q,W(1,2)) with LB_Envelope
(Q, W((1,2),3)), as shown in figure 6. Note that the area
ofW((1,2),3) is much greater than that ofW(1,2), and that
this reduces the value returned by the lower-bound
function, and thus the possibility to early abandon.

For some problems, the H-Merge algorithm can give
exceptionally poor performance. If the wedge W(1,2),
created from C1 and C2, has an exceptionally large area
(i.e. C1 and C2 are very dissimilar), it is very unlikely to
be able to prune off any steps.

At this point, we can see that the efficiency of
H-Merge is dependent on the candidate sequences and
Q itself. In general, merging similar sequences into a
hierarchal wedge is a good idea, but merging dissimilar
sequences is a bad idea.

The observations above motivate a final general-
ization of H-Merge. Recall that to achieve rotation
invariance, we expanded our time-seriesC into a matrix
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Table 6. Algorithm H-Merge.

algorithm [dist]ZHKMerge(Q, W, K, r)
SZ{empty} //initialize a stack.
for iZ1 to K //place all the wedges

into the stack.
enqueue(Wset(i),S)
end
while not empty(S)
TZdequeue(S)
distZEA_LB_Envelope
(Q, T, r)

//note that is early
abandon version.

if infinite(dist) //we did not early
abandon.

if cardinality(T)Z1 //T was an individual
sequence.

disp(‘The sequence ’,T, ‘is ’, dist,
‘units from the query’)

return [dist]
else //T was a wedge, find

its children
enqueue(children(T ),S ) //and push them onto

the stack.
end
end
end

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

Figure 7. A dendrogram of five sequences C1, C2, ., C5,
clustered using group-average linkage.
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with n time-series. Given these n sequences, we can
merge them into K hierarchal wedges, where 1%K%n.
This merging forms a partitioning of the data, with each
sequence belonging to exactly one wedge. We will use
W to denote a set of hierarchal wedges,

WZ fWsetð1Þ;Wsetð2Þ;.;WsetðKÞg; 1%K%n;

where Wset(i) is a (hierarchically nested) subset of the n
candidate sequences. Note that we have

WsetðiÞhWsetðjÞ Z: if isj; and;

jWsetð1ÞgWsetð2Þg.g WsetðKÞjZ n:

We will attempt to merge together only similar
sequences. We can then compare this set of wedges
against our query. Table 6 formalizes the algorithm.
J. R. Soc. Interface (2007)
Note that this algorithm is designed to replace the
Test_All_Rotations algorithm that is invoked as a
subroutine in the Search_Database_for_Rotated_
Match algorithm shown in table 3.

As we shall see in our empirical evaluations,
H-Merge can produce very impressive speedup if we
make judicious choices in the set of hierarchal wedges
that make up W. However, the number of possible
ways to arrange the hierarchal wedges is greater than
KK, and the vast majority of these arrangements will
be very poor, so specifying a good arrangement of W
is critical.

A simple observation alleviates the need to invent a
new algorithm to find a good arrangement of W. Note
that hierarchal clustering algorithms have very similar
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Figure 8. Wedge sets W, of size 1–5, derived from the dendrogram shown in figure 7.
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goals to an ideal wedge-producing algorithm. In
particular, hierarchal clustering algorithms can be
seen as attempting to minimize the distances between
objects in each subtree. A wedge-producing algorithm
should attempt to minimize the area of each wedge.
However, the area of a wedge is simply the maximum
Euclidean distance between any sequences contained
therein (i.e. Newton–Cotes rule from elementary
calculus). This motivates us to derive wedge sets
based on the result of a hierarchal clustering algorithm.
Figure 8 shows wedge sets W, of every size from 1 to 5,
derived from the dendrogram shown in figure 7.

Given that the clustering algorithm produces the
tentative wedge sets, all we need to do is to choose the
best one. We could attempt to do this by eye; for
example, in figure 8, it is clear that any sequence that
early abandons on W3 will almost certainly also early
abandon on both W2 and W5; similar remarks apply to
W1 and W4. At the other extreme, the wedge at KZ1
is so ‘fat’ that it is likely to have poor pruning
power. The set WZ{W((2,5),3), W(1,4)} is probably the
best compromise. However, because the set of time-
series might be very large, such visual inspection is
not scalable.

The problem is actually even more complex, in that
the best value forK also depends on the current value of
r (recall r is the best-so-far in nearest neighbour
search.). If r is large, then very little early abandoning
is possible, and this favours a large value for K. In
contrast, if r is small, we can do a lot of early
abandoning, and we are better off having many
sequences in a single wedge, hence we can early
abandon all of them with a single calculation. However,
note that for nearest neighbour search, the value of r
will get smaller as we search through the database.

With this in mind, we dynamically choose the wedge
set based on a fast empirical test. We start with the
wedge set where KZ2. Each time the bestSoFar value
J. R. Soc. Interface (2007)
changes, we test a subset of the possible values of K
and choose the most efficient one (as measured by
num_steps) as the nextK to use. Which subset to test is
decided on-the-fly based on the current K value. They
are the values which evenly divide the ranges
[1, current_K] and [current_K, max_K] into a small
number of intervals. All the experiments below use five
as this small number; however, the results are not
sensitive to this choice. For example, using values as
low as 3 or as high as 25 did not change the efficiency by
more than 1% on datasets larger than 128 objects. Note
that on average, the bestSoFar value only changes
log(m) times during a linear search, so this slight
overhead in adjusting the parameter is not too
burdensome; however, we do include this cost in all
the experiments in §5.
4.2. Generalizing to other distance measures

As we shall see in §5, the Euclidean distance is typically
very effective and intuitive as a distance measure for
shapes. However, in some domains, it may not produce
the best possible precision/recall or classification
accuracy (Adamek & O’Connor 2003; Ratanamaha-
tana & Keogh 2005). The problem is that even after
best rotation alignment, subjectively similar shapes
may produce time-series that are globally similar but
contain local ‘distortions’. These distortions may
correspond to local features that are present in both
shapes but in different proportions. For example, in
figure 9, we can see the more prominent sagittal and
nuchal crests of a lowland gorilla change the locations,
in which the brow ridge and jaw map to in a time-series
relative to a mountain gorilla. However, it should be
noted that the two specimens do not differ much in the
actual shape of the brain case, much of the difference
attributable to the extracranial structures such as the
sagittal and nuchal crests.
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Figure 10. (a) Two time-series sequences which are similar
but out of phase. (b) To align the sequences, we construct a
warping matrix and search for the optimal warping path,
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Figure 9. Lowland and mountain gorillas are morphologically
similar, but have slightly different proportions. Dynamic time
warping can be used to align homologous features in the time-
series representation space.
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Even if we assume that the database contains the
actual object used as a query, it is possible that the two
time-series are distorted versions of each other. Here,
the distortions may be caused by camera perspective
effect, differences in lighting causing shadows which
appear to be features, parallax, etc.

Fortunately, there is a well-known technique for
compensating such local misalignments, dynamic time
warping (DTW; Keogh 2002; Ratanamahatana &Keogh
2005). While DTW was invented in the context of one-
dimensional speech signals, others have noted its utility
for matching shapes, including face profiles (Bhanu &
Zhou 2004), leafs (Ratanamahatana & Keogh 2005),
handwriting (Rath&Manmatha 2002) and general shape
matching (Adamek & O’Connor 2004).

To align two sequences using DTW, an n!n matrix
is constructed, where the (ith, jth) element of the
matrix is the distance d(qi, cj) between the two points qi
and cj (i.e. d(qi, cj)Z(qiKcj)

2). Each matrix element
(i, j) corresponds to the alignment between the points qi
and cj, as illustrated in figure 10.

A warping path P is a contiguous set of matrix
elements that defines a mapping between Q and C. The
tth element of P is defined as ptZ(i, j)t, so we have

P Z p1; p2;.; pt;.; pT n%T!2nK1:

The warping path that defines the alignment between
the two time-series is subject to several constraints. For
example, the warping path must start and finish in
diagonally opposite corner cells of the matrix; the steps
in the warping path are restricted to adjacent cells
(including diagonally adjacent cells); the points in the
warping path must be monotonically spaced in time. In
addition to these constraints, virtually all practitioners
using DTW also constrain the warping path in a
J. R. Soc. Interface (2007)
global sense by limiting how far it may stray from the
diagonal (Keogh 2002; Rath & Manmatha 2002;
Ratanamahatana & Keogh 2005). A typical constraint
is the Sakoe–Chiba band, which states that the warping
path cannot deviate more than R cells from diagonal.

The optimal warping path can be found in O(nR)
time by dynamic programming (Keogh 2002). We shall
show experimentally in §5 that DTW can significantly
outperform Euclidean distance on real datasets.

Based on an arbitrary wedge W and the allowed
warping range R, we define two new sequences,
DTW_U and DTW_L,

DTW_Ui ZmaxðUiKR : UiCRÞ;
DTW_Li ZminðLiKR : LiCRÞ:

They form an additional envelope above and below the
wedge, as illustrated in figure 11.

We can now define a lower-bounding measure for
DTW distance between an arbitrary query Q and the
entire set of candidate sequences contained in a
wedge W,

LB_EnvelopeDTWðQ;W Þ

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
iZ1

ðqiKDTW_UiÞ2 if qiODTW_Ui

ðqiKDTW_LiÞ2 if qi!DTW_Li

0 otherwise

:

8>><
>>:

vuuuuut
We make the following claim.

Proposition 4.1. For any sequence Q of length n and a
wedge W containing a set of time-series C1, ., Ck of the
same length n, for any global constraint on the warping
path of the form jKR%i%jCR, the following inequality
holds:

LB_EnvelopeDTWðQ;W Þ%minðDTWðQ;CsÞÞ;
where sZ 1; 2;.; k:

Owing to the space limitations, we refer the interested
reader to Keogh (2006) for the proof. In addition, space
limitations also prohibit a discussion of the minor
modifications required to index LB_EnvelopeDTW

(Q, W ); however, Vlachos et al. (2003) contains the
necessary modifications for both DTW and LCSS which
are discussed below.



WW

WW

WWWW

WW

WWWW

WW

WW

C2

C1

W
U

L

W

W

DTW_U

DTW_L

W

DTW_U

DTW_L

W

Q

WW

(a)

(b)

(c)

(d)

Figure 11. The idea of bounding envelopes introduced in figure 4 is generalized to allow DTW. (a) The two time-series C1 and C2.
(b) A time-series wedge W, created from C1 and C2. (c) In order to allow lower bounding of DTW, an additional envelope is
created above and below the wedge. (d) An illustration of LB_EnvelopeDTW.

A B

B

C

this region will
not be matched 

DTW

LCSS
alignment

A B

B

C

DTW

A B

B

C

DTW

A B

B

C

DTW
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To facilitate later efficiency comparisons to Eucli-
dean distance and other methods, it will be useful to
define the time complexity of DTW in terms of
num_steps as returned by tables 1 and 5. The variable
‘num_steps’ is the number of real-value subtractions
that must be performed and completely dominates the
CPU time, since the square root function is only
performed once (and can be removed; see Keogh &
Kasetty 2002). If we construct a full n!n warping
matrix, then DTW clearly requires at least n2 steps.
However, as we noted above and illustrated in figure 10,
we can truncate the corners of the matrix to reduce this
number to approximately nR, where R is the width of
the Sakoe–Chiba band. While nR is the number of steps
for a single DTW, we expect the average number of
steps to be less, because some full DTW calculations
will not be needed if the lower-bound test fails. Since
the lower-bound test requires n steps, the average
number of steps when doing m comparisons should be

m!aðnRÞCmðnÞ
m

;

where a is the fraction of the database that requires the
full DTW calculated. Note that even this is pessimistic,
since both DTW3 and LB_EnvelopeDTW are imple-
mented as early abandoning (recall table 5). Therefore,
we simply count the num_steps required by each
approach and divide it by m to get the average number
of steps required for one comparison.

In addition to DTW, several researchers have
suggested using longest common subsequence (LCSS)
as a distance measure for shapes (Yazdani & Meral
Özsoyoglu 1996). The LCSS is very similar to DTW,
except that while DTW insists that every point in C
maps onto one (or more) point(s) in Q, LCSS allows
some points to go unmatched. The intuition behind this
idea in a time-series domain is that subsequences may
contain additions or deletions; for example, an extra (or
forgotten) dance move in a motion capture performance
or a missed beat in ECG data. Rather than forcing
DTW to produce an unnatural alignment between two
3Note that a recursive implementation of DTW would always require
nR steps; however, iterative implementation (as used here) can
potentially early abandon with as few as R steps.
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such sequences, we can use LCSS, which simply ignores
parts of the time-series that are too difficult to match.
In the image space, the missing section of the time-
series may correspond to a partial occlusion of an object
or to a physically missing part of the object, as shown in
figure 12.

Another example of an anthropological object that
requires LCSS to obtain meaningful matches is
projectile points as shown in figure 13. Such objects
are often discovered with missing parts. In order to find
matches using query-by-content in a database, we can
try to extrapolate our best guess as to the missing
features, but this opens the possibility of imposing our
(possibly misguided) knowledge on the problem, rather



Figure 13. Project points are frequently found with broken
tips or tangs. Such objects require LCSS to find meaningful
matches to complete specimens. From left to right, Edwards,
Langtry and Golondrina projectile points.

Table 7. The error of Euclidean distance and DTW on several
publicly available datasets.

name
number
of classes

number of
instances

Euclidean
error (%)

DTW
error (%)
{R}

face 16 2240 3.839 3.170 {3}
Swedish

leaves
15 1125 13.33 10.84 {2}

chicken 5 446 19.96 19.96 {1}
mixedBag 9 160 4.375 4.375 {1}
osu leaves 6 442 33.71 15.61 {2}
diatoms 37 781 27.53 27.53 {1}

• Human Ancestor
  (Skhul V) 

• Red Howler
  Monkey 

• Orangutan
  (juvenile) 

• Orangutan

• Human (modern)

• Mantled Howler
  Monkey 

• De Brazza monkey 

• De Brazza monkey
  (juvenile)  

Figure 14. A group-average hierarchal clustering of eight
primate skulls based on the lateral view, using Euclidean
distance.
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than letting the data speak for itself. Using LCSS, the
missing features can be simply ignored during the
search process.

While we considered LCSS for generality, we will not
further explain how to incorporate it into our framework.
It has been shown in Vlachos et al. (2003) that it is trivial
to lower-bound LCSS using the envelope-based tech-
niques described previously. The minor changes include
reversing some inequality signs, since LCSS is a similarity
measure, not a distance measure. Our omission here of a
detailed discussion is due to space limitations and to a
slight bias against themethod. UnlikeEuclidean distance
which has no parameters, or DTW, which has one
intuitive and easy-to-set parameter, LCSS requires two
parameters, and tuning them is non-trivial. In the
experiments, we found that we could sometimes tune
LCSS to slightly beat DTW on some problems; however,
we did not have large enough datasets to allow
training/test splits that guarded against overfitting to a
statistically significant standard.
5. EXPERIMENTAL RESULTS

In this section, we empirically evaluate our approach.
We begin by stating our experimental philosophy.
In a recent paper, Veltkamp & Latecki (2006)
attempted to reproduce the accuracy claims of
several shape matching papers, but discovered to
their dismay that they could not match the claimed
accuracy for any approach. One suggested reason is
J. R. Soc. Interface (2007)
the observation that many approaches have highly
tuned parameters, a fact which we believe makes
Euclidean distance (zero parameters) and DTW (one
parameter) particularly attractive. Veltkamp &
Latecki conclude that ‘it would be good for the
scientific community if the reported test results are
made reproducible and verifiable by publishing
datasets and software along with the articles’. We
completely concur and have placed all datasets at the
following URL (Keogh 2006).
5.1. Effectiveness of shape matching

In general, this paper is not making any claims about the
effectiveness of shape matching. Because we are simply
speeding up arbitrary distance calculations on arbitrary
one-dimensional representations of shapes, we automati-
cally inherit the well-documented effectiveness of other
researchers’ published work (Gdalyahu & Weinshall
1999; Adamek & O’Connor 2003, 2004; Attalla & Siy
2005; Jalba et al. 2005; Ratanamahatana & Keogh 2005;
Vlachos et al. 2005).

Nevertheless, for completeness, and in order to
justify the extra computational expense of DTW, we
will show the effectiveness of shape matching on several
publicly available datasets.

Table 7 shows the error rate of one-nearest
neighbour classification as measured using leaving-
one-out evaluation. Recall that Euclidean distance has
no parameters, DTW has a single parameter (the
warping window width R), which was learned by
looking only at the training data. For the face and
leaf datasets, the (approximate) correct rotation was
known (Ratanamahatana & Keogh 2005). We removed
this information by randomly rotating the images.

ThemixedBag dataset is small enough to run themore
computationally expensive chamfer (Borgefors 1988) and
Hausdorff (Olson & Huttenlocher 1997) distance
measures. They achieved an error rate of 6.0 and 7.0%,
respectively (Vlachos et al. 2005), slightly worse than
Euclidean distance. Likewise, the chicken dataset allows
us to compare directly to Mollineda et al. (2002), which



Figure 15. A group-average hierarchal clustering of seven petroglyphs from Nevada and California, using DTW distance.
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used identical experiments to test six different algo-
rithms based on discrete sequences extracted from the
shapes. The best of these algorithms had an error rate of
20.5% and took over a minute for each distance
calculation, whereas our approach takes an average
time of 0.0039 s for each distance calculation.4 For the
diatom dataset, the results are competitive with human
experts, whose error rates ranged from 57 to 13.5%
(Jalba et al. 2005), and only slightly worse than
the morphological curvature scale spaces (MCSS)
approach of Jalba et al. (2005), which obtained 26.0%.
However, note that the Euclidean distance requires
zero parameters once the time-series have been
extracted, whereas the MCSS has several parameters
to set.

In general, these experiments show two things
(which had been noted before): the extra effort of
DTW is useful in some domains and very simple time-
series representations of shapes are competitive to other
more complex representations.

We also performed extensive ‘sanity check’ experi-
ments using a large database of primate skulls. For all
species where we have at least two examples, we
perform a hierarchical clustering and check to see if
both samples of the same species clustered together.
Figure 14 shows a typical example.

It is important to recall that figure 14 shows a
phenogram, not a phylogenetic tree. However, on
larger-scale experiments in this domain (shown in
Keogh 2006), we found that large subtrees of the
dendrograms did conform to the current consensus on
primate evolution (Fleagle 1999).

We performed many additional experiments with
large collections of petroglyphs and projectile points.
Here, the evaluation is more subjective, but we find
that in most cases, we get very intuitive results as
in figure 15.

In most cases, we discovered that unintuitive results
were caused by errors in the image processing software
that automatically extracts the shapes, sincemany petro-
glyphs are heavily degraded by weather (Pope 2000).
4We are aware that one should normally not compare CPU times from
different computers; however, here the four orders of magnitude offers
a comfortable margin that dwarfs implementation details.
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5.3. Main memory experiments

There is an increasing awareness that comparing two
competing approaches using only CPU time opens the
possibility of implementation bias (Keogh & Kasetty
2002). As a simple example, while the Haar wavelet
transform is O(n) and DFT is O(n log n), the DFT is
much faster in the popular language MATLAB, simply
because it is a highly optimized subroutine. For this
reason, many recent papers compare approaches
with some implementation-free metric (Keogh 2002;
Vlachos et al. 2003; Ratanamahatana & Keogh 2005;
Vlachos et al. 2005). As we noted earlier, the variable
‘num_steps’ returned by tables 1 and 5 allows an
implementation-free measure to compare performance.

For Euclidean distance queries, we compare to brute
force and fast Fourier transform (FFT) methods, which
are the only competitors to also guarantee no false
dismissals (Vlachos et al. 2005). The cost model for the
FFT lower bound is n log n steps. If the FFT lower
bound fails, we allow the approach to avail of our early
abandoning techniques discussed in §3.

We tested on two datasets, a homogeneous database
of 16 000 projectile point images, all of length 251 and a
heterogeneous dataset consisting of all the data used in
the classification experiments, plus 1000 projectile
points. In total, the heterogeneous dataset contains
5844 objects of length 1024. To measure the per-
formance, we averaged over 50 runs, with the query
object randomly chosen and removed from the dataset.

We measure the average number of steps required by
each approach for a single comparison of two shapes,
divided by the number of steps require by brute force.
For our method, we include a start-up cost of O(n2),
which is the time required to build the wedges. Because
the utility of early abandoning depends on the value of
the best-so-far, we expect our method to do better as we
see larger and larger datasets.

Figure 16 shows the results on the projectile points
dataset using Euclidean distance.

We can see that for small datasets, our approach is
slightly worse than FFT and simple Early abandon
because we had to spend some time building the wedges.
However, by the time we have seen 64 objects, we have
already broken even, and thereafter rapidly race towards
beating FFT and Early abandon by one order of
magnitude and Brute force by two orders of magnitude.
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The results on theprojectile points datasetusingDTW
are shown in figure 17, and are even more dramatic.

Here, the cost of building the wedges is dwarfed by a
single brute force–DTW–rotation invariant compari-
son, so our approach is faster even for a database of
size 3. By the time we have examined the entire
database, our approach is more than 5000 times faster
than the brute force approach. It is interesting to note
that the early abandoning strategy is by itself quite
competitive, yet to our knowledge no one uses it. We
J. R. Soc. Interface (2007)
suspect that this is because most people are more
familiar with the elegant and terse recursive version of
DTW, which does not allow early abandoning, than
the iterative implementation, which does. However,
note that even though our highly optimized early
abandoning strategy is competitive, our wedge
approach is still an order of magnitude faster once the
dataset is larger than 500 objects.

Sometimes indexingmethods thatworkwell for highly
homogeneousdatasets donotworkwell forheterogeneous
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datasets, and vice versa. We consider this possibility by
testing on the heterogeneous dataset in figure 18.

In this dataset, it takes our wedge approach slightly
longer to beat Early abandon (and FFT for Euclidean
search); however, by the time we have seen 8000
objects, our approach is two orders of magnitude faster
than its Euclidean competitors, and for DTW it is an
order of magnitude faster than Early abandon and 3976
times faster than brute force.

Recall that our algorithm requires the setting of a
single parameter, the number of intervals to search for a
new value for K every time the bestSoFar variable is
updated. In all the experiments above, this value was set
to 5. We found that we can change this value to any
number in the range 3–20 without affecting the per-
formance of our algorithmbymore than4%; therefore,we
omit further discussion of this parameter setting.

As a final sanity check,wealsomeasured thewall clock
time of our best implementation of all methods. The
results are essentially identical to those shownpreviously.
6. CONCLUSIONS AND FUTURE WORK

We have introduced a method to support fast rotation
invariant search of large shape datasets with arbitrary
representations and distance functions. Our method
supports rotation-limited queries and mirror image
invariance if desired. This contrasts with most rotation
invariant feature-based approaches, which are perma-
nently unable to distinguish between rotations or
mirroring. We have shown that our method gives
impressive speedup for the state-of-the-art methods
without sacrificing the guarantee of no false dismissals.

Note that our work assumes the availability of high
quality and high contrast images. In some domains,
especially petroglyphs, such images are difficult to obtain
(Pope 2000); it would be interesting to consider methods
that are more robust to error introduced in this way.

Future work includes both extensions and appli-
cations of the current work. We will attempt to extend
this approach to the indexing of three-dimensional
shapes, and we have begun to use our algorithm as a
subroutine in several data mining algorithms, which
J. R. Soc. Interface (2007)
attempt to cluster, classify and discover motifs in a
variety of anthropological datasets, including petro-
glyph and projectile point databases.

We gratefully acknowledge many useful comments from the
anonymous reviewers, as well as helpful comments from
Chotirat Ann Ratanamahatana, Michail Vlachos and Longin
Jan Latecki. Thanks to Jason Dorff for help with skull images.
APPENDIX A: A NOTE ON NOTATION

The text of this paper features ‘Big O’ notation, such as
‘.DTW is O(n2)’. Big O is a mathematical notation
used to describe the asymptotic behaviour of functions.
Its purpose is to characterize a function’s behaviour for
large inputs in a simple but rigorous way that enables
comparison to other functions. More precisely, it is used
to describe an asymptotic upper bound for the
magnitude of a function in terms of another, usually
simpler, function. It is useful in the analysis of the
complexity of algorithms. For example, suppose we
have a list of n objects, we want the computer to sort,
perhaps we have 32 primate skulls we want to sort by
mass. If we say that a particular sorting algorithm is
O(n2), we mean that this algorithm will take approxi-
mately n2 steps to do the sorting, in this case 1024 steps.
In contrast, a better sorting algorithm might be
described as being O(n log2(n)), which means that it
would take approximately 32 log2(32)Z160 steps. Note
that the difference between these two algorithms is not
fixed, but get worse for larger n. See Knuth (1997) for a
more detailed treatment.
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