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ABSTRACT
More and more applications and services move to the web
and this has led to web traffic amounting to as much as 80%
of all network traffic. At the same time, most traffic classi-
fication efforts stop once they correctly classified a flow as
web or HTTP. In this paper, we focus on understanding what
happens “under the hood” of HTTP traffic. One of our key
contribution is ReSurf, a systematic approach to reconstruct
web-surfing activity starting from raw network data. Even
when HTTP traffic is unencrypted, this problem is far from
trivial. A key challenge is that websites are complex: a sin-
gle user request (think user click) creates many network level
flows to many different websites. ReSurf overcomes these
challenges and reconstructs on average 91% of user requests
with more than 95% precision. Our second contribution is
an extensive analysis of web activity over four different net-
work traces, including a residential ISP, a large university
campus, and mobile data from a cellular provider. By uti-
lizing ReSurf, we study the user behavior in terms of user
requests issued and transitions between websites (e.g. the
click-through history of following hyperlinks). In terms of
user requests explicitly issued towards a site, Facebook dom-
inates in our mobile trace with 38% of user requests com-
pared to 11% for Google. A surprising result is the “shal-
lowness" of the click-through stream with a median of one
website transition. Finally, we find that mobile user requests
download one third of the objects and generate one tenth of
the traffic compared to user requests on the wireline traces.

1. INTRODUCTION
HTTP is the new IP in the Web 2.0 world, and traffic anal-

ysis methods need to adapt to this new reality. First, web
browsers are being used as the ubiquitous interface to a large
number of services and applications, such as Email, gaming,
file sharing, video streaming, and social networking sites.
Second, today HTTP is the most widely used protocol, con-
tributing up to 80% of the traffic on some networks [12]. One
implication of these trends is the limited relevance and ap-
plicability of traditional traffic analysis and characterization
tools [9, 19]. Assigning flows to an HTTP category today
conveys very limited information with regard to the usage of
websites/services and web users behaviors.

Given the above trends, it is increasingly important for
network administrators to monitor and characterize web
traffic for operational and security purposes. First, under-
standing traffic is important for managing and provisioning
one’s network. Second, such capabilities are important for
security, since modern malware spreads via websites and
botnet command & control channels utilize HTTP. Overall,
the more information administrators have about the traffic,
the more effectively they can manage the network, identify
anomalies and prevent attacks. In addition, analyzing web
traffic is important for researchers that want to study modern
websites and understand their evolution [8, 6].

The overarching problem we address in this paper is the
following. Given web traffic collected at a network link, we
want to be able to look “under the hood” and reconstruct
the user behavior. Here is a list of motivating questions:
(a) What websites (e.g.,facebook.com, cnn.com) are
explicitly requested by a user as opposed to being accessed
automatically in the background? (b) How much traffic is
generated by each request? and (c) What are the typical
web surfing user patterns and the typical referral relation-
ships across websites? We want to answer these questions
starting from raw network traffic, such as atcpdumptrace,
or web-proxy records [8].

Surprisingly perhaps, answering these questions is chal-
lenging even when HTTP headers and payloads are not en-
crypted. First, users often browse multiple websites at the
same time, which causes flows and HTTP requests to inter-
mingle. Second, modern web pages are fairly complex [6];
often rendering a single page generates tens of HTTP re-
quests1 towards different web servers. Third, many web-
sites, such as content distribution networks (CDNs), web-ad
servers, and web analytics services are used by many web-
sites and shared across several services. All the above make
the problem of attributing individual HTTP requests to a user
request and to the correct primary website quite complex.
We discuss the challenges of this problem and the limita-
tions of previous efforts in Sections 2 and 5.

1Each HTTP request corresponds to a web-object such as image,
video, or javascript. The initial HTTP request is typicallya web
page (e.g. *html), which can include other objects, which are then
acquired by separate HTTP requests.



User

request

1

2

3

4
5

Website A Website B Website C

User

request

Click 

through

Click-through stream

Figure 1: Web-surfing activity: (top) A single user request
first generates an HTTP request tocnn.com, and then mul-
tiple subsequent HTTP requests to other web servers (e.g.,
doubleclick.com); (bottom) An example of click-
through stream of user requests over different websites.

To illustrate the complexity of the task, we show visually
the technical questions we address through the toy examples
of Figure 1. The graph at the top shows a user request
towardswww.cnn.com, which then triggers a sequence
of requests towards a CDN serverakamai.com, a web-ad
server doublecklick.com, a web analytics severgoogle-
analytics.com, and others. The requests and responses
are numbered based on how they occur over time. For
simplicity, only the first response from thecnn.com
website is shown. Looking at each of these requests in
isolation, it is hard to identify the primary website or service
that triggered them. For example, it is hard to say that
the request towards the CDN server actually serves the
rendering of thecnn.com website. In fact, we find that
simply using the host name of the server to map requests to
websites results in less than 40% accuracy.

Making the problem more specific, we can identify two
sub-tasks: (a) we want to group HTTP requests generated by
a single user request, such as a click, and associate them with
the primary website requested by the user, e.g.,cnn.com in
Figure 1; and (b) we want to reconstruct theclick-through
stream, i.e., the referral relationship of the web-surfing, to
capture if a user’s request to a website is from a hyperlink
clicked on an earlier website or from within the same web-
site. A toy example of a click-through stream is shown at
the bottom of Figure 1. Here, the user clicks from website A
to website B and she also clicks from website A to website
C. The graph also shows the user issuing two clicks inside
website A and two clicks inside website B. Understanding
web traffic at both the user request and click-through level
provides visibility into the user’s web-surfing activity.

The problem, as defined here, has not received much at-
tention. Most existing web traffic studies focus on differ-
ent problems and most traffic classification efforts stop once
they identify a flow as web traffic [9, 19], which is our start-
ing point. Several studies [2, 6] focus on understanding the
complexity of popular websites by analyzing their homepage
and their evolution [8], but but its focus was not real user
surfing behavior. Other work [5, 16] just focuses on how
users interact with specific online social network websites.
We discuss and compare with previous efforts in Sections
3.2 and 5.

In this paper, we make two main contributions: (a) we
present ReSurf, an effective approach to reconstruct web-
user behavior, and (b) we conduct an extensive measurement
study with four real network traces. Our datasets include a
residential ISP in Europe, a mobile provider offering 3G and
4G services in the US, a group of users from a research lab in
the US, and a large university campus network in China. Our
datasets have up to 19 billion HTTP transactions, and range
in duration from a three hours to six months. For evaluating
and comparing ReSurf, we also use a synthetic data set and
a dataset based on accessing the most popular Alexa sites.
We explain our two contributions in more detail below.

(a) ReSurf: reconstructing web-surfing activity. We
develop a systematic methodology that operates in two steps:
(i) we reconstruct user requests (e.g., clicks, refreshes), and
(ii) we determine the click-through behavior of the user. To
achieve this, we combine information from the HTTP header
with timing information at the network level. In a nutshell,
ReSurf uses the referrer relationships between related HTTP
requests to trace back the user request that generated it. It
then uses the size and type of the download objects, as well
explicit timing information between successive requests in
order to achieve the desirable precision. We provide the de-
tails of ReSurf, discuss limitations, and describe our evalua-
tion in Section 3.

(b) Extensive measurements and validation.Our exper-
iments with real data traces and our validation with both real
and synthesized data provide the following highlights:

• ReSurf can reconstruct web-surfing accurately.We
show that our approach can identify and reconstruct
user requests with more than 95% precision and
91% recall on all our traces. Our validation further
highlights weaknesses in the current state-of-the-art
methodologies that rely on web analytics beacons [8].

• The usual suspects dominate: Google/Baidu,
Facebook/Renren, and adult sites.We quantify the
presence of the dominant players of web traffic. In our
traces from Europe and the US, adult sites contribute
40% of the traffic. Google is the top referrer website in
all our traffic traces, with 34% and 49% of all inter-site
referrals in our ISP and mobile trace, respectively.
Facebook leads the way with 38% of user requests
in our mobile trace, although Google has a small
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lead in user request in the ISP trace. In our Chinese
trace, Baidu and Renren are dominating, followed by
Taobao, an online shopping portal. Interestingly, even
in the Chinese dataset, Google is the second most
active referrer site. Surprisingly, filesharing sites like
bitshre.com, filesonic.com and 115.com
account for 30-35% of the traffic in volume in both the
European residential ISP and the Chinese University
campus traces.

• Web caching reduces the number of downloaded
web-objects by three times. When accessing the
same website several times we observe that on average
2/3 of the objects are cached. Therefore, using syn-
thetic traces that accesses popular Alexa websites [6],
can overestimate the generated network traffic.

• Click-through streams are “shallow.” Surprisingly,
the median number of websites in a click-through
stream is just one. Moreover, we observed that only
5% of the click-through streams have more than three
websites.

• Mobile user requests generate one tenth of the traf-
fic compared to wireline user requests.On average,
the user requests in mobile trace generate one third of
the HTTP requests and generate an order of magnitude
less web traffic compared to user requests in the wire-
line trace. This reflects the convergence of online ser-
vices to mobile equivalent services that are sensitive to
the UI limitations of mobile devices and corresponding
data charges.

The rest of the paper is structured as follows: In Section 2,
we present the problem, provide the necessary background,
and describe our data sets. In Section 3, we explain ReSurf,
and evaluate its classification performance. The observa-
tions extracted from data traces are presented in Section 4.
Finally, we discuss related work in Section 5.

2. PROBLEM DEFINITION AND TRACES
The goal of this section is to present the problem in more

detail, describe its challenges, and define the terminology.
We also present the datasets that we use here.

2.1 Problem definition and background
Web traffic is composed of a sequence of HTTP requests

and responses occurring over time. We will refer to an HTTP
request and its corresponding response as anHTTP trans-
action. Throughout this paper, we use the terms HTTP re-
quest and HTTP transaction interchangeably. When a user
requests a website, it causes many HTTP transactions trans-
ferred across the network. Each HTTP transaction corre-
sponds to aweb-object, such as an image, video, HTML
file, flash file, javascript, etc. The main website requested by
the user is called theprimary website, e.g.,google.com,
facebook.com, cnn.com to name a few. We refer to

(1) Initial request to cnn.com

GET / HTTP/1.1

Host: www.cnn.com

Accept-Language: en-us,en;q=0.5

Connection: keep-alive

...

(2) A advertisement request caused by (1)

GET /html.ng/site=cnn&cnn pagetype=main...

Host: ads.cnn.com

Referer: http://www.cnn.com/

...

(3) Request to a CDN server caused by (2)

GET /cnn/.../advertisement.gif HTTP/1.1

Host: i.cdn.turner.com

Referer: ads.cnn.com

...

Figure 2: An example of some HTTP requests issued by
a web browser during a visit towww.cnn.com. For sim-
plicity, only parts of the HTTP headers are shown. The first
request directly reflect the action of the user to request (e.g.,
click on) thecnn.com website; and we call this the “head
request.” The second and third requests are “embedded re-
quests,” which are automatically initiated by the user’s web
browser software.

this first request as thehead HTTP request, which typi-
cally retrieves an HTML or XML file. Usually, this HTML
file includes other embedded objects, which are, in turn, ac-
quired by separate HTTP requests initiated automatically by
the web browser. We call these subsequent requestsembed-
ded HTTP requestsand they are usually transparent to the
user. Ultimately, our goal is to assign each HTTP transaction
observed in the network to the user request that generated it.
Doing so enables us to measure traffic generated by different
user requests and helps us understand web users behavior in
the network.

In Figure 2 we present an example of three HTTP requests
generated by a visit tocnn.com. Following the above ter-
minology, the first HTTP request is thehead requestto the
primary webpage(i.e.,cnn.com) and the other two are em-
bedded HTTP requests. For each HTTP request, the domain
name of the web server is located in thehost field of the
HTTP header. Even though all three requests are caused
by the visit tocnn.com, in this example, only one has
www.cnn.com as the host name. From this example, we
see that by looking at an HTTP transaction in isolation, it is
hard to know which visit generates the HTTP transaction.

Referrer: The referrer field in an HTTP header
provides information as to which web-object led to the re-
quest for the current web-object. This previous web-object
is called the referrer. For example, in Figure 2, we see that
the second HTTP request towards the advertising server
ads.cnn.com has the main web page (www.cnn.com)
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Name LAB ISP-1 MOB SYN ALE CAM
Starting date Oct 3 2010 Aug 25 2011 Jan 7 2011 Aug 11 2011 Aug 11 2011 Mar 9 2012

Duration 6 mon 24 h 3 h 1 mon - 2 mon
# of HTTP transactions 1.2 M 1.7 M 22.9 M 186K 973K 19B
Ground truth available No No No Yes Yes No

Payload Full Full Full Full Full HTTP header

Table 1: An overview of the web traffic traces used in our study. The LAB, ISP-1, MOB, and CAM traces contain real-world
web activity from thousands of users over different countries. The SYN and ALE traces are traces that were specifically crafted
to evaluate ReSurf in a controlled environment.

as its referrer. Similarly, the third HTTP request to the CDN
server came from the advertising server and has the name
of the advertising server (ads.cnn.com) as its referrer.
As we explain in Section 3 in more detail, the referrer field
can help in our task of attributing HTTP requests to their
primary website. The referrer field has one additional key
utility. It captures the clicks by the user from one web page
that lead to another. For example, when a user visits web
pageB by clicking a link in web pageA, the web browser
will place the URL of web pageA in the referrer field
when generating the HTTP request for web pageB. Below,
we explain how this helps in identifying the click-through
streams of different users in a trace.

User Requests: Typically, a user request happens in
the form of clicking hyperlinks, opening and refreshing web
pages, writing a URL in a browser’s address bar, submitting
forms and so on. A user request generates a series of HTTP
transactions. As we explained before, the first HTTP request
is referred to as the head request. Aclick-through stream
is a series of consecutive user requests which have referring
relationship between them. Figure 1 shows an example of
a user request (top) and a click-through stream (bottom). In
the click-through stream of Figure 1, we see two clicks (user
request) inside website A, two inside website B, and one in
website C. In addition, we see that the user moved from web-
site A to websites B and C by clicking on hyperlinks from
inside A.

2.2 Data traces
The six web traffic traces used in our study are summa-

rized in Table 1. Our data cover several thousands of mil-
lions HTTP requests, over long periods of time, and at dif-
ferent locations. Details regarding the exact locations and
the names of the providers for all our traces are intention-
ally kept anonymized due to privacy concerns and business
agreements. We collected our data from a variety of sources:
(a) from monitoring the web activity of users inside a uni-
versity research lab over the length of six months and over a
large university campus over two moths; (b) a 24-hour trace
collected at a residential ISP network; (c) a 3 hour trace from
a 3G/4G mobile service provider; (d) a trace generated by
replaying the browsing history from nine users over a pe-
riod of one month in a controlled environment; and (e) a
trace generated by issuing requests to popular websites in
a controlled environment. We collected traces in both con-

trolled and uncontrolled environments, which allows us to
both examine user browsing activities in the wild as well as
verify the correctness of our methodology. The users in our
traces are also diverse, covering academic users in an uni-
versity lab, residential ADSL users, students and academic
staff from a large university campus, as well as mobile de-
vice (smartphone and tablet) users. This allows us to com-
pare the browsing pattern difference between different users.

Next,we provide details for each trace. For all traces, we
use the same collection methodology: We collected all the
IP packets (both header and payload) on TCP ports 80, 443,
8000 and 8080. Due to privacy concerns, the campus (CAM)
trace is the only one that contains just the header part of the
HTTP requests, without their payload.

LAB: We collected this traffic trace from a research lab in
a university in the US. In the lab, there are about 15 graduate
students and 20 laptops/desktops. The collection duration
covered six non-consecutive months over the period of De-
cember 2010 until September 2011.

ISP-1: The trace was collected from an edge link of a
European residential ISP. We were given access to only the
first five packets of each unidirectional TCP flow. Given that
most flows only transfer few HTTP transactions, we did not
observe this to be problematic for our study.

MOB: We collected this trace from from a 3G/4G mobile
service provider in the US. The vast majority of the traffic
is generated by the applications on mobile devices, such as
smart-phones and tablets.

CAM: The CAM trace is collected from a university cam-
pus in China. Approximately, the trace contains the activ-
ity of about 28.2K users. Our monitor point sits on the
edge gateway connecting the campus to the public Inter-
net. All downloading and uploading traffic from the whole
campus goes through the monitor point. We log all impor-
tant HTTP header fields for all HTTP transactions on TCP
port 80. Specifically, the fields we log are the following:
timestamp of each request, client/server IPs, URL, referrer,
content-type, content-length, HTTP response code and user-
agents. To preserve privacy, client IPs are anonymized. We
applied our method to several different days of traffic. The
trends extracted from different day of traffic are very similar.
So we only show the results for one workday in the rest of
paper.

SYN: The trace is generated in a controlled environment
for the purpose of evaluating ReSurf. We generated the traf-
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fic by replaying a users’ browsing history from their Google
Chrome browser. We use the web browsing history from
nine users that volunteered for our experiments. We ex-
tracted the timestamp, referrer and URL field of each visit
from their browsing history. Then, we replayed each visit
using the procedure described in Figure 3. The replay of a
URL works as follows. We remotely instruct the browser
(Google Chrome) to open each URL separately. At the same
time, we use a packet capturing software (tcpdump) to col-
lect all the traffic on TCP port 80, 443, 8000 and 8080. Next,
we close the browser after 60 seconds and save the collected
HTTP traffic to an individual file. As the final step, we ar-
tificially adjust the time stamps and referrer fields to simu-
late how the traffic would be like if it came directly from
the user’s surfing activity. Both the timing information and
referrer relationships are directly extracted from Chrome’s
browsing history records (see Figure 3). After replaying all
visits, all these individual files are merged to form a com-
plete traffic trace. Since each user activity was collected and
stored separately, we effectivity have the ground truth for
each HTTP request in the trace.

ALE: The ALE trace is also artificially generated using
the same methodology as described above. The only differ-
ence is that here we only visit the URLs of the home page of
the top 80,000 ranked websites in Alexa [1], and we do not
artificially add any referrer fields or modify the timestamps.

3. THE ReSurf APPROACH
In this section, we present our ReSurf methodology, and

we evaluate and compare it with existing solutions. In sec-
tion 3.3, we discuss the practical issues and limitations of
our method.

3.1 The ReSurf Methodology
The goal of ReSurf is to group HTTP transactions into

user requests (see definition in Section 2.1). Our approach
works in two steps. First, we identify thehead HTTP re-
questsby using different features from each HTTP transac-
tion. These features include: the size of the web-object, the
type of the object, the timing between successive requests,
and others. Second, we use the referring relationships (see
definition in Section 2.1) to assign all the embedded HTTP
transactions to their corresponding head request. We explain
the methodology in more detail below.

Chrome 

history
Browser

Traffic 

dump file
Synthesized

web traffic

URL

Timestamp and referrer 

Traffic

Figure 3: The diagram shows the steps we take to gener-
ate synthesized web traffic by replaying a users’ browsing
history.

Figure 4: An example of an HTTP referrer graph show-
ing three user requests, one tocnn.com and two to
gamestop.com. We represent the web-objects from head
HTTP requests with circles and the web-objects downloaded
from embedded HTTP requests with rectangles.

Referrer Graphs: To facilitate our methodology, we
first represent all HTTP requests from the same client IP ad-
dress as a graph. For generating the graph, we use the refer-
rer and host fields from the HTTP requests (see examples in
Figure 2). Using these fields, we generate a directed graph
that captures the referring and timing relationship between
downloaded web-objects. Figure 4 shows an example of the
HTTP referrer graph of a single user accessingcnn.com
andgamestop.com. For the purpose of exposition, we
simplify the example and keep only a subset of nodes and
edges. In reality, even within few minutes the size of the
referrer graph reaches several hundreds of nodes. For exam-
ple, in the CAM trace, the median size of the referrer graph
over a ten minute interval is 200 nodes for an IP address.
The nodes in the HTTP referrer graph are web-objects an-
notated with their complete URI. Inside each node we also
add the timestamp of it corresponding HTTP transaction to
help us understand the ordering of the different requests in
our trace. The directed edges capture the referring relation-
ship between nodes. The directed edge fromA to B means
A is B’s referrer. The label of a directed edge represents
the timestamp difference between the requests for the two
objects.

We provide an intuitive explanation of how our method
works using the example of Figure 4. In the figure, we rep-
resent head HTTP requests with circles and the web-objects
downloaded from embedded HTTP requests with rectangles.
In Figure 4, we have three user requests with their corre-
sponding head HTTP request and different embedded HTTP
transactions. Note that, initially, the referrer graph does not
distinguish between head HTTP requests, and has no infor-
mation of which groups form User Requests. This informa-
tion is the outcome of ReSurf. To detect the head requests,
ReSurf exploits the following characteristics. First, thehead
requests of user requests are HTML or XML objects, have
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very few incoming edges and many outgoing edges in the
referrer graph. At the same time, the nodes in the same
user request are very close together in time. On the other
hand, HTTP transaction from different user requests are fur-
ther away from each other in time. Finally, head requests
are connected with an edge, if there is referring relationship
among them. In more detail, our approach has the following
steps:

Step 1. We form the HTTP referrer graph. ReSurf
builds an HTTP referrer graph for each host over a period
of time (e.g., every five minutes). The creation of the HTTP
referrer graph was explained earlier in this section, and an
example is shown in Figure 4.

Step 2. We identify all the head HTTP request candi-
dates. ReSurf selects head request candidates according to
following rules:

(a) The candidate should be an HTML/XML object.
Specifically, its content-type should be one of following:
“text/html”, “ text/xhtml”, “ text/shtml”, and
“text/xml.”

(b) Since most web pages are fairly complex, the size of
candidates should be larger thanV bytes.

(c) Candidates should have at leastK embedded objects.
(d) The time gap between candidates and their referrers

should be larger than a predefined thresholdT .
(e) As an optional refinement requirement, ReSurf filters

out candidates based on the keywords in their URI. That
is, candidates’ URI should not contain the keywords:
adserver, ads, widget, andbanner.

We observed this keyword heuristic to boost the classifi-
cation accuracy between 2-3% depending on the trace. We
provide specific values for the parametersV,K, T next in
our validation section.

Step 3. We finalize the identification of the head re-
quests. We utilize the referring relationship between the
head request candidates. Specifically, a candidate is clas-
sified as a head request if its referrer is also a head request or
if it does not have any referrer. In the referrer graph, nodes
with no referrers have no incoming edges. In Figure 4, the
cnn.com in “User Request 1” is an example of such a node
with no referrer. Such nodes occur when a user, for example,
opens a web pages from a browser bookmark or by directly
typing the URL in the browser’s address bar. If the referrer
is not empty, it means that the user navigated to a web page
by following the links from a referrer web pages. Following
this logic implies that the referrer of a head request should
also be a head request itself.

Step 4. We assign embedded HTTP requests to head
requests. ReSurf associates embedded HTTP requests
to head requests by utilizing the timing information and
referring relationship in the referrer graph. In fact, once
we know the head request of a user requests, it is easy to
attribute the rest of HTTP requests to user requests. For
each HTTP transaction (node), we traverse the referrer
graph backwards until we reach a head request. If an HTTP

Heuristics for detecting head HTTP requests
a Its content-type should be one of: “text/html”,

“text/xhtml”, “text/xml”, “application/xhtml”, or “ap-
plication/xml.”

b Its object size should be larger thanV bytes.
c It should have at leastK embedded objects (out-degree

in the referrer graph).
d The time gap between the request under question and

its parent request (i.e.g, its referrer) should be more
thanT .

e Its URI should not contain any of the keywords:ad-
server, ads, widget, embed,or banner.

f Its referrer is a head request or does not exist.

Table 2: The heuristic rules that ReSurf uses to identify head
HTTP requests given a referrer graph. The default values
for the above parameters used in ReSurf areT = 0.5s, V =
3, 000 bytes, andK = 2.

transaction (node) has more than one incoming edges, we
follow the edge with the smallest time difference (i.e.,
smaller weight on the edge). In this way, the path will
eventually lead back to the head request that was triggered
by the user request.

To summarize, the head request of an user request should
meet all the requirements in the Table 2.

3.2 Evaluation
We evaluate the accuracy of ReSurf using two different

sources of ground truth: (a) our synthetically generated trace
SYN, and (b) using the web analytics beacons as proposed in
StreamStructure[8]. We also examine the sensitivity of our
approach to its parameters of ReSurf, and justify the values
we choose. Finally, we compare ReSurf to the state of the
art [8].

Evaluation metrics: We use the standard classification
metrics of precision and recall. Precision is the number of
true positives (TP) divided by number of TP and false pos-
itives (FP),P = TP/(TP + FP ). Recall is the num-
ber of TP divided by the number of TP and false negatives,
R = TP/(TP + FN). We also use the F1 score which is
the harmonic mean of P and R, specifically,F1 = 2× P×R

P+R
.

To evaluate the performance of ReSurf, we ask the follow-
ing complementary but slightly different questions.

Q.1: How accurately can ReSurf identify head HTTP
requests?We want to quantify how effectively ReSurf iden-
tifies the head requests from a large set of requests. Given
that the number of head requests is usually much less than
the total number of requests, this question allows us to focus
only on head requests. For example, if out of 100 requests
one is a head and the others are embedded, if a classifiers re-
ports all the requests as embedded it would be correct 99%
of the times, but would offer limited utility in solving our
problem. For this reason, we report the P and R on head
requests separately.

Q.2: How accurately can ReSurf classify head and em-
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bedded requests?We want to quantify how effectively our
approach classifies each HTTP requests as a head or an em-
bedded HTTP request. Unlike Q.1, we report results over all
HTTP requests and not only over the head requests. That
is, precision represents the number of correctly classified
HTTP requests compared to the total number of HTTP re-
quests classified by our algorithm. Note that ReSurf may
leave some requests unlabeled (a.k.a unknown). Recall ex-
presses the total number of classified HTTP requests com-
pared to the total number of existing HTTP requests in the
trace.

Q.3: How accurately can ReSurf associate HTTP re-
quests to their corresponding user request?This is a more
demanding question than the classification for Q.1 and Q.2:
we want to associate each HTTP request with the generating
user request. This is amulti-class classificationproblem,
where each user request is a separate class. For example, if
an embedded HTTP requestR is correctly identified as em-
bedded, but it is associated with the wrong user request, we
will consider it a misclassification. The precision captures
the number of correctly classified HTTP requests compared
to the total number of HTTP requests classified. The recall
reports the correctly classified HTTP requests compared by
the total number of HTTP requests in the trace.

We use the following values for the parameters in ReSurf:
T = 0.5, V = 3000 andK = 2. We justify this selection
later in this section.

A key issue in evaluating any classifier is how to deter-
mine the ground truth in the datasets. To address this chal-
lenge, we use two different approaches: (a) using a synthe-
sized trace, and (b) using the labels from a classifier that is
based on web analytics beacons.

(a) Validation using ground truth from the SYN trace.
To evaluate our approach, we created a synthesized trace un-
der a controlled environment. During the creation of this
trace, at each point in time we knew exactly which web-
site was being visited, and what requests were generated by
the visits to those websites. Details regarding the genera-
tion of the SYN trace are given in Section 2.2. Even though
we know the ground truth for the ALE trace as well, we do
not show results with that trace here since it does not rep-
resent real browsing activity. Figure 5 shows the precision,
recall and F1 score when we apply ReSurf on the SYN trace,
for all three questions, Q1-Q3. As we see, all metrics are
above 90%, showing that ReSurf can successfully identify
the originating website for the vast majority of HTTP re-
quests. Moreover, we see that the precision of ReSurf is
very high, 96% and above, implying high confidence in our
classification of requests.

(b) Validation using web analytics beacons as ground
truth. For the LAB, ISP-1 CAM, and MOB traces, we do
not have the ground truth. Therefore, we compare the clas-
sification performance of ReSurf based on the predictions
given by theStreamStructure[8] method. This method is
based on the observation that many websites use web analyt-
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Figure 5: The precision, recall and F1 score in the SYN
trace.

ics beacons to track their web pages and objects. Intuitively,
the web analytics beacons report to the analytics server, and
this helps us detect which is the head request and towards
which primary website. We consider web analytics beacons
from three major services:google-analytics.com,
pixel.quantserve.comandyieldmanager.com [8,
10, 11].

Here, we give a more detailed explanation of the beacon
method (i.e., StreamStructure), using the google-analytics
beacon as an example. Once the object or web page tracked
by google-analytics is requested, a beacon is generated based
on the requested object’s URI and sent to a google-analytics
server in the form of “special” HTTP GET request. Unlike
regular HTTP GET requests, their URIs encode various in-
formation about the user request, including the URI of the
requested object/page. Therefore, after some careful pars-
ing of the HTTP requests, we can identify the beacons, and
from there we can identify the URL of its main object, which
leads us to the primary website of the user request. We refer
the reader to [8] for more details aboutStreamStructure.

As we will discuss later in this section,StreamStructure
can be used for only a fraction of the requests, since only a
small percentage of requests use beacons. However, this set
of requests can help us determine the effectiveness of ReSurf
providing an additional ground truth set. To achieve this, we
first useStreamStructureto identify as many head requests
using beacons. We refer to this set of identified head re-
quests as S. Then, we compare how well ReSurf performs
over the known set S. Figure 6 shows the precision, recall
and F1 for head detection (Q.1) using beacons as ground
truth. We observe that ReSurf achieves above 96% precision
in all traces and 91-98% recall. The results show that our
approach performs consistently well across all the datasets,
which are collected in different continents and during differ-
ent time periods. Note that we only use web analytics bea-
cons here to establish the ground truth, butReSurf does not
use beacon informationduring its classification process.

Evaluating ReSurf over a different range of parame-
ters: We examine the effect of different parameters on the
performance of ReSurf. We only show the plots for Q.1 for
brevity; the performance for all questions is qualitatively the
same. We use the SYN trace to set our parameters and then
apply them to the rest of the traces.
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quests (Q.1) using web analytics beacons as ground truth.
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Figure 7: The F1 score of detecting head requests (Q.1) as
a function of parameterV and for different values of param-
eterK in the SYN trace.

Figure 7 shows the F1 metric for detecting head requests
(Q.1) using different values for the volumeV and the out-
degreeK over the SYN trace. We observe that the precision
increases and the recall decreases as we increase the value of
V . Intuitively, largehtml/xml files are more likely to be
the web-page of an actual user request compared to shorter
ones. Shorthtml/xml files typically carry advertising re-
lated content and are triggered by embedded requests. At
the same time, by further increasingV , we start consider-
ing only very largehtml/xml files and we start missing
requests, which results to lower recall. As we see from Fig-
ure 7, the combined behavior or P and R captured by the F1
score, exhibits good performance forV in the range of 3000
to 5000 bytes. To achieve both good precision and recall, we
chooseV = 3000. In the same figure, different lines show
how the out-degreeK varies from 1 to 5. We find that the
values 2 and 3 gave the best results, withK = 2 performing
slightly better in the range of parameterV.

RegardingT , we found that our approach exhibits good
performance as long as T is less than 1 second and more
than 0.1 second. The results are not shown due to space lim-
itations. In the rest of paper, we use this parameter setting:
T = 0.5, V = 3000 andK = 2.

Using web-analytic beacons is not enough.A natural
question is why we don’t just use web analytics beacons ex-
clusively for user request reconstruction. Even though the
use of beacons gives good results for those websites that use
them we identify several limitations:

The majority of user requests (80%) do not have a bea-
con in our data traces. We find that less than 20% of the
user requests that were found by ReSurf have beacons in the

LAB, ISP-1, CAM, and MOB traces. Given the precision
and recall of ReSurf in the controlled datasets, we are con-
fident that this percentage is reasonably accurate estimateof
requests in the trace. To further verify this, we used the SYN
trace, for which we have the ground truth. We plot the results
comparing ReSurf with theStreamStructureapproach [8] in
Figure 8. We observe that for the SYN trace, less than 22%
of user requests are detected using beacons. To summa-
rize, we observed that using beacons, we can only success-
fully identify approximately 20% of the user requests, com-
pared to above 91% we achieve with ReSurf. A comparable
statistic in the number of head requests that have beacons of
23.9% is also reported in other studio [8].

An additional complication is that sometimes, one user re-
quest has multiple beacons and could confuse beacon-based
reconstruction solutions.

Figure 8 shows the recall for detecting head requests in
the SYN and ALE traces usingStreamStructureand ReSurf.
As we see, withStreamStructurethe recall is 22% and 60%
for the SYN and ALE traces, respectively. The higher recall
in the ALE trace is due to the higher popularity of web ana-
lytics by very popular websites. By contrast, ReSurf works
consistently well in both traces with recall above 92%. Un-
fortunately, for the LAB, ISP-1, MOB and CAM traces, we
cannot repeat the same experiment since we do not have
ground truth. Overall, we observed that ReSurf identifies
double the number of head requests in these traces compared
to StreamStructure.

3.3 Discussion
What about encrypted web traffic?ReSurf uses infor-

mation from the HTTP header, therefore, if the web traffic is
encrypted (e.g., using HTTPS) our approach will not classify
those flows. However, by analyzing our real-word traces (see
Table 1), we observed that the encrypted traffic only amounts
for 2% to 8% of the total web traffic. The lowest percentage
corresponds to the mobile trace, suggesting that encryption
in smartphone applications is not popular. Overall, we ob-
served that unencrypted web traffic is the norm today and we
believe it will continue to amount for a significant portion of
the traffic in the future. The analysis of encrypted web traffic
remains an interesting, open problem.

How is ReSurf affected by users behind network address
translation (NAT)?Having users behind NATs is very sim-
ilar to having users with very high activity. Since referrer
graphs are built per IP, NAT users will appear as one “heavy
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Figure 8: The recall for detecting head HTTP requests (Q.1)
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Figure 9: The CDF of the number of downloaded objects
per user requests over different traces.

user” with a complex referrer graph, for user accesses within
the same time windows. There are two cases here: If differ-
ent NAT users browse completely different websites, their
referrer graphs will not be connected and ReSurf will distin-
guish different requests. On the contrary, in the worst case
where two users request the same web page at the same time,
ReSurf will combine them as one large request. However, it
will still be able to attribute their traffic to the originating
website. Finally, there may be cases where some embedded
requests are “multiplexed” between more than one user re-
quests and disambiguating is hard; however, we have not ob-
served that to be a problem in our study. Note that our goal
is twofold: i) Group HTTP requests to identify the initial
user requested page, and ii) identify the user click-through
stream. Hence, having users behind NATs does not affect
the first goal, while the second is impacted if users follow
the same stream of pages at the same time.

Can ReSurf classify traffic in real-time?Our current im-
plementation does not support real-time classification. In
Step 1, we require the collection of traffic for several min-
utes before we analyze the referrer graph and classify the
different requests. Therefore, our approach can classify re-
quests several minutes after their creation. As mentioned
earlier, off-line analysis of web traffic is useful to operators
that want to understand how their network is being used, as
well as for researches that want to study modern trends and
changes in web activity. Real-time classification can be im-
portant to network operators that want to enforce different
policies and achieving this requirement is left as future work.

4. USING ReSurf ON REAL WEB TRAFFIC
In this section, we use ReSurf and analyze the four real-

world web traffic traces: LAB, ISP-1, MOB and CAM. First,
we group HTTP transactions into user requests with ReSurf.
Then, we analyze web traffic at two levels: (a) website, and
(b) click-through stream. At the website level, we study how
much traffic is caused by different user requests and which
are the most popular websites. At the click-through level,
we analyze how users behave and how they move from one
website to another. Finally, we present differences between
mobile and wireline web traffic.

4.1 Analyzing requests at the website level
In Figure 9, we show the CDFs of the number of down-
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Figure 10: The number of downloaded objects in different
visits towards the top 80,000 websites reported by Alexa.

loaded objects by all the user requests in the four traces. Asa
first observation, we see significant differences between mo-
bile and wireline traces. The median number of web-objects
per user request is 4 for the mobile trace compared to 11 for
the three wireline traces. Similar trends are also observed
for the volume of generated traffic, the number of generated
TCP flows, contacted IPs, and autonomous system numbers
(ASNs) which are not shown here due to limited space. We
also observe that approximately 40% of the user requests in
the wireline traces results in the download of 20 objects cor-
responding to 100 KBytes traffic (median). This shows that
user requests to modern websites trigger a fairly large num-
ber of HTTP requests (web-objects) as well as high traffic
volume. Finally, we observed a significant similarity be-
tween the CDFs in the LAB, ISP-1, and CAM traces, es-
pecially for the lower 50% of user requests. This shows that
user requests in wireline traces have similar characteristics,
even when the users are in different countries with differ-
ent websites being popular. The two most similar traces are
LAB and CAM. This suggests that even with the small num-
ber of users we have in the LAB trace, it captures behaviors
that closely match a trace of thousands of users in a large
university campus (CAM).

4.1.1 Caveats of using synthesized data

To further understand user requests towards popular
websites, we compare the properties of the ALE trace with
our other traces that represent real user behavior. The
use of popular Alexa [1] websites has also been used by
other studies [6] that aim to understand the complexity of
modern websites. Applying ReSurf on the ALE trace, we
observed some significant differences between this trace
and our real-world traces. Our hypothesis for this difference
is that the browsers’ local cache may affect web traffic
measurements significantly. To quantify the effect of local
caching, we visit the homepage of the top 80,000 website
in Alexa [1] four times. The time gap between successive
visits is ten minutes.

In Figure 10, we show the CDF of the number of down-
loaded objects in different visits. On average, the second
visit only downloads one third of the objects of the first visit,
and only generates about one third of the network traffic. In
other words, about two thirds of objects are cached locally
after the first visit. The third visit requests even less ob-
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Figure 11: The top websites in term of user request.

jects, which suggests additional objects being cached by the
second visit. Interestingly, there is no significant difference
between the third, fourth, and so on, visits in the number of
downloaded objects and network traffic. Even though the
number of objects decreases significantly between succes-
sive visits, we have not observed this to be true about the
total number of unique server IPs being contacted. In fact,
the total number of contacted IPs in the first visit is just 9%
more than the following visits. As expected, since the num-
ber of object downloaded decreases, we observe the average
number of downloaded objects per server IP to decrease sig-
nificantly as well. After further investigation, we observed
that the different IPs often correspond to third-party analyt-
ics and advertising servers, which serve content that is not
usually kept in the local cache. Therefore, those IPs are con-
tacted during every visit.

Key takeaway: Overall, Alexa-based studies seem to
overestimate the number of downloaded objects and gener-
ated traffic by as much as three times, when compared to
actual user traffic,due to local-cache effects. On the other
hand, the number of contacted IPs and domains do not seem
to be affected by local caching. It is therefore important to
have these two facts in mind when analyzing trends by syn-
thesizing requests to popular websites.

4.1.2 Website popularity

We now turn our attention to website popularity in terms
of user requests, external referrers, traffic volume, and net-
work flows. Figure 11 shows the top 20 websites in term
of user requests in the ISP-1, MOB, and CAM traces. As
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Figure 12: The top external referrers in different traces.

expected, the “usual suspects” are in the top places in the
ISP-1 and MOB traces, e.g.,Google, facebook.com,
wikipedia.org andyoutube.com. The CAM trace is
collected in China, which explains the differences in website
popularity. Other top websites represent local preferences,
such as news sites and portals. This is especially visible in
the ISP-1 and CAM traces. The specific local websites in
the ISP-1 traces are kept anonymized because of a business
agreement. Additionally, Figure 11 shows a large percentage
of traffic in to be cause by “Other” websites, which shows
that web-traffic does not consists of just a handful popular
websites.

Besides popularity, understanding how users reach a par-
ticular website is of interest to both website operators and
designers. Figure 12 shows the top 20 external referrer web-
sites in the ISP-1, MOB, and CAM traces. A website is
considered as an external referrer if it refers users to other
websites. It is worth mentioning that we aggregate all in-
ternational versions of websites into one, e.g.,google.it
andgoogle.br, are aggregated together asGoogle. The
largest external referrer in all traces collected in Europeand
in the US isGoogle. It accounts for over 30% and 45% of
all external referrers, respectively. In the LAB trace, theper-
centage is as high as 80%. The plot for LAB trace is not in-
cluded here because the user population is too small to draw
meaningful conclusions at this level. The second largest ex-
ternal referrer,cellmania.com, in the MOB trace, is a
portal website for mobile devices. It integrates news, map
& weather, wireless search and email for mobile users. Fig-
ure 12(c) shows the referrers for the Chinese dataset (CAM).
In CAM, the largest referrer website isbaidu.com, which
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Figure 13: The top websites in term of traffic volume.

is the most popular search engine in China. Interestingly,
Google is the second most popular referrer site in CAM. In
summary, major external referrers are search engine, portal
and social networking websites in both wireline and mobile
traces.

Figure 13 shows the top 20 websites in term of aggregated
traffic volume in the ISP-1, MOB, and CAM traces. Nine out
of the top 20 websites in the ISP-1 trace and 16 of 20 in the
MOB trace are adult websites. In fact, adult websites in both
traces account for more than 40% of total traffic. The ratio
of adult websites in the MOB trace (16/20) is much higher
than the one (9/20) in the ISP-1 trace. One possible expla-
nation is that people prefer browsing adult websites through
personal mobile devices due to privacy reasons. In contrast
to the ISP-1 and MOB traces, in the CAM trace, none of the
top sites is an adult site. We attribute this to stricter control
and censorship in this network. Finally, we see that the sec-
ond group of big players in the ISP-1 trace are online file
sharing websites, e.g.,bitshre.com, filesonic.com
andfileserve.com, which account for roughly 30% of
the total traffic. The site with largest traffic volume in CAM
is the file-sharing website115.com, which accounts for
roughly 35% of total traffic. Online file sharing websites
are significant contributors of HTTP traffic [3]. Overall, on-
line file sharing websites and adult websites seem to be the
top sources of web traffic in our traces.

Finally, Figure 14 shows the top 20 websites in term
of flows. In both ISP-1 and MOB traces,Facebook
is the number one. There are two possible reasons.
First, Facebook is highly popular among users. Sec-
ond, Facebook is web 2.0 website and adopts AJAX
techniques:Facebook pages periodically update them-
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Figure 14: The top websites in term of flows.

selves even when users leaveFacebook pages in
background. Moreover, the continued interaction of users
with Facebook and the extensive use of load balancing
through CDNs, results in multiple connections being
created over time. Finally, the popularGoogle search and
YouTube video services also rank in the top in both ISP-1
and MOB traces. In Figure 14(c), the CAM trace shows
again some differences with the traces from Europe and
US. The website with the most flows isbaidu.com, a
popular search engine. Furthermore, the social network sites
renren.com and shopping portaltaobao.com (think
amazon) are also among the top websites in terms of flows.

Key takeaway: Overall, examining basic popularity
trends in this section highlights that different statistics
provide different views. For example, looking at user
requests versus generated network traffic or network flows
results in differences in the popular services, which shows
the importance of accurately reconstructing user requests.
This highlights the advantage of having a methodology such
as ReSurf that can provide such key insights into web traffic.

4.2 Click-through streams
Having examined the basic properties of user requests and

website popularity, we now use the referring relationship
between web pages to better understand user browsing pat-
terns. We focus on two main questions: (a) How long is a
click-through stream in term of user requests, i.e., do user
clicks take them through several websites? and (b) what
are the typical transitions in these click-through streams, i.e.,
which websites refer other websites?
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Figure 16: The number of websites in click-through
streams.

In Figure 15 we show the number of user requests in click-
through streams with a timeout parameter of half an hour.
That is, we consider a user request to be a part of a click-
through stream if and only if it is less than half an hour away
from the previous user request in the stream. We experi-
mented with different timeouts in the range of five minutes
up to one hour with very similar results which are not shown
where for brevity. Figure 15 shows that the mean (median)
number of user requests in click-through streams is 4.5 (3).
The 95th percentile of the number of user requests is about
11. This implies that,typically, click-through streams are
short with the users giving up browsing after a small num-
ber of user requests.

In Figure 16, we show the distribution of the number of
websites that are being visited during a single click-through
stream. The median number of websites in a click-through
streams is two for the wireline users and one for the mo-
bile users. This observation suggests that mobile users are
less likely to click on links that take them to different web-
sites, which might be due to lower available download rates.
Intuitively, this suggests that mobile users have an applica-
tion in mind when using the Internet and are less likely to
“surf around.” Finally, it is interesting to observe that for
all traces the 95th percentile is only three. Perhaps the use
of specialized web services, such as social networking and
search engines, explains this behavior.

4.2.1 Transitions between websites

Click-through streams also allow us to track the transi-
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Figure 17: The top website transitions over three traces.

tion across different websites. To this end, Figure 17 shows
the most frequent 20 website transitions in different traces.
The figure shows that transitions depend on the trace exam-
ined. This probably reflects both the different type of collec-
tion environments and locality characteristics. Specifically,
in the LAB trace (not shown due to space limitation), most
transitions are fromGoogle to academic and programming
related websites reflecting users that are graduate students in
a research lab. As shown in Figure 17, website transitions
in the ISP-1, MOB, and CAM traces are much more diverse
because of the larger user populations. In the ISP-1 trace,
most website transitions are fromGoogle, Facebook and
online forums to video and game websites. In MOB, most
website transitions are from search engine and portal web-
sites to video and news/blog websites. In CAM, there is
a considerable percentage (roughly 10%) of website transi-
tions from portal websites like360.cn,hao123.com and
2345.com to other websites, which we did not observe in
the other traces.
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Not surprisingly, our measurements show that “referrer”
websites are usually search engines, social networking and
online forum websites, while “referred-to” websites are con-
tent providers, likewikipedia,YouTube and News/blog
websites.

4.3 Characteristics of mobile web traffic
Here, we focus on web traffic generated by mobile users

and further emphasize on websites that offer dedicated
smartphone applications for their users [20]. With these
proprietary applications, mobile device users can access
websites without traditional web browsers. As we explain
below, identifying the traffic from those applications
requires a less complicated approach compared to ReSurf.

To analyze mobile traffic, we further decomposed the
MOB trace into three categories: (a) traffic generated
by user requests towards regular web pages using web
browsers on mobile devices, (b) traffic generated by user
requests towards customized mobile web pages using
web browsers, and (c) traffic generated by user requests
using smartphone applications (e.g., FacebookTouch). We
distinguish the traffic generated by smartphone applications
by examining theuser-agent field in the HTTP headers.
Further, to distinguish the traffic generated by (a) and
(b), we first reconstruct user requests by applying ReSurf.
Then, we match the head request’s URL against a list of
keywords. If a head request’s URL matches one of the
following patterns:m.*, *.mobi, */wap, ormobile.*,
we considered the user request to be towards a mobile
customized web page. Otherwise, it is a regular web
page. For example,facebook.com is towards a regular
web page whilem.facebook.com is the customized
version. We will refer to them as “Browsers→Regular”
and “Browsers→Customized” through the remaining of the
paper.

Identifying the traffic from smartphone applications.
We observed that HTTP headers generated by these appli-
cations only include the user agent, host, URI, content-type,
and length fields. That is, other important fields like the re-
ferrer and cache control information are missing for the ma-
jority of cases. Therefore ReSurf is not applicable here. In
a nutshell, we classify the flows generated by smartphone
applications using the user agent information in the HTTP
headers. We first extract all user agents present in the MOB
trace. In total, there are 534 different user agents after re-
moving version numbers. Then, we manually compile a
keyword list for all the smartphone applications, which cov-
ers 118 smartphone applications’ user agents. Finally, we
classify all HTTP flows into applications by searching for
these keywords in user agents. The most popular applica-
tions in terms of the number of networks flows are Face-
book, YouTube and Pandora. Finally, we simply use timing
information to group HTTP transactions into user requests.
A user request expires if it is idle for more than 30 seconds.
We observed qualitatively similar results by using different
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Figure 18: The number of objects downloaded by user re-
quests initiated by traditional web browsers towards regular
and customized Facebook web pages, as well as by Face-
book smartphone applications.

timeouts in the range of few second to few minutes.
For presentation purposes, we focus on the compar-

ison of the traffic generated by Facebook smartphone
applications and traditional web browsers, both for the
“Browsers→Regular” and “Browsers→Customized”. We
observed qualitatively similar results for other popular
services and we use Facebook here as a representative
example. Figure 18 shows the CDF of downloaded objects
in user requests initiated by smartphone applications and
browsers in the MOB trace. We observed that user requests
initiated by smartphone applications (Applications→FB)
and by traditional browsers (Browsers→Customized FB)
towards to customized Facebook pages are similar in term
of downloaded objects. However, user requests initiated
by web browsers (Browsers→Regular FB) towards regular
Facebook web pages, on average download almost twice
more objects, and generate four times more network traffic.
This shows how mobile users can benefit from the use of
such applications when accessing their favorite web service
by downloading only relevant content.

5. RELATED WORK
The recent trend of network services over HTTP attracted

the interest of the research community. Labovitz et al. [12]
brought to light the fact that most inter-domain traffic
is HTTP. Schatzman et al. [15] present a methodology
to identify web-based mail servers, and distinguishing
between services, such as Gmail and Yahoo mail. Erman et
al. [7] analyze traffic from residential users and find that a
significant part of HTTP traffic is generated by hand-held
devices and home appliances, while a large fraction is
machine generated (e.g., OS/Anti-virus updates, ads). Li
et al. [13] present methods to identify the type of the
object transferred over HTTP (e.g., video, xml, jpeg). The
recent work from Schneider et al. [17] characterize the
inconsistencies between observed HTTP traffic and what
is advertised in its HTTP header. All this previous work
is complementary to our work, as they focus on different
problems, and not the reconstruction of web-surfing at the
user requests level and the target websites.

There are three categories of user requests reconstruction
methods in the existing literature. The first category assumes
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that any HTTP request for an HTML object is considered as
the head HTTP request of a user request. The second cat-
egory is based on the timing information of HTTP requests
[18, 4, 14]: if the idle time between two HTTP requests is
smaller than a predefined threshold, they belong to the same
user request. Both these two categories of methods were
effective in the early days of the web, but are not longer ef-
fective due to the complexity of the web 2.0 world. The most
relevant work to ours is the one that focuses on the evolution
of web traffic [8] starting from logs of web proxy servers. To
understand modern web traffic and measure web page com-
plexity, they propose a method,StreamStructure, to
detect “primary” web pages requested by users. A key limi-
tation ofStreamStructure is its dependence on Google
Analytics beacons, which seem to form the basis of their re-
construction algorithm without which accuracy drops signif-
icantly. Recall that about 80% of user requests do not have
web analytics beacons.

In tangentially related work, [10, 11] study the privacy
issues arising from the use of web analytics beacons in web
pages. Finally, Xu et al. [20] study the diverse usage patterns
of general smartphones applications from mobile network
traces. Beisdes the different focus of this work, our study
further compares various web-traffic characteristics across
mobile and wireline traffic.

6. CONCLUSIONS
Web traffic dominates current network traffic, with HTTP

being ubiquitous across different applications. We frame
and address a relatively novel problem: reconstructing web-
surfing behavior from network data. The problem is far from
trivial given the complex and interconnected websites of to-
day. As a key contribution, we develop ReSurf which can
reconstruct user requests with more than 95% precision and
91% recall. As our second contribution, we showcase inter-
esting results that one can obtain from raw network traffic
by analyzing a number of network traces including a resi-
dential ISP and mobile user data. A surprising result is the
“shallowness” of the click-through stream of users accessing
websites with a median of two transitions. Considering the
recent trends of web browsing through custom applications,
we expect this shallowness to be the norm of user browsing
patterns in the future. We also quantify differences between
mobile and wireline web-access patterns: mobile user re-
quests download one third of the objects and generate one
tenth of the traffic compared to user requests on the wired
trace. Such findings are just a sample of the results and anal-
ysis that ReSurf can enable.

In the big scheme of things, ReSurf and similar future al-
gorithms, represent an enabling capability for ISPs and net-
work administrators, that want to manage their networks ef-
fectively, as well as for network researchers that want to an-
alyze and study modern web traffic.
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