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ABSTRACT Given the above trends, it is increasingly important for

More and more applications and services move to the web netvyork administrators to mon!tor and charac.terize web
and this has led to web traffic amounting to as much as 80% traffic for operational and security purposes. First, under
of all network traffic. At the same time, most traffic classi- Standing traffic is important for managing and provisioning
fication efforts stop once they correctly classified a flow as N€’S network. Second, such capabilities are important for
web or HTTP. In this paper, we focus on understanding what S€cUrity, since modern malware spreads via websites and
happens “under the hood” of HTTP traffic. One of our key botnet command & contro! c_hannels utilize HTTP. Overa!l,
contribution is ReSurf, a systematic approach to recogstru the more mformauon administrators have about thg traff_|c,
web-surfing activity starting from raw network data. Even the more effectively they can manage the network, identify
when HTTP traffic is unencrypted, this problem is far from 2@nomalies and prevent attacks. In addition, analyzing web
trivial. A key challenge is that websites are complex: a sin- traff|c_|s important for researc_hers tha_t want to study moder
gle user request (think user click) creates many networdlev Websites and understand their evolution [8, 6]. _

flows to many different websites. ReSurf overcomes these 1 he overarching problem we address in this paper is the
challenges and reconstructs on average 91% of user request9/loWing. Given web traffic collected at a network link, we
with more than 95% precision. Our second contribution is Want o be able to look “under the hood” and reconstruct
an extensive analysis of web activity over four differen:ne (€ user behavior. ‘Here is a list of motivating questions:
work traces, including a residential ISP, a large univgrsit (8) Whatwebsites (e.d.acebook. com  cnn. com are
campus, and mobile data from a cellular provider. By uti- €XPlicilly requested by a user as opposed to being accessed
lizing ReSurf, we study the user behavior in terms of user automatically in the background? (b) How much traffic is
requests issued and transitions between websites (e.g. thgenerated by each request? and (c) What are the typical
click-through history of following hyperlinks). In terms o We_b surfing user patterns and the typical referral relatlo_n-
user requests explicitly issued towards a site, Facebomk do  SNiPS across websites? We want to answer these questions
inates in our mobile trace with 38% of user requests com- Starting from raw network traffic, such as@dumptrace,
pared to 11% for Google. A surprising result is the “shal- ©F Web-proxy records [8]. , o
lowness" of the click-through stream with a median of one  SUrPrisingly perhaps, answering these questions is chal-
website transition. Finally, we find that mobile user reqsies  1€N9ing even when HTTP headers and payloads are not en-
download one third of the objects and generate one tenth ofcrypted. First, users often browse multiple websites at the

the traffic compared to user requests on the wireline traces. S&Me time, which causes flows and HTTP requests to inter-
mingle. Second, modern web pages are fairly complex [6];

1. INTRODUCTION often érenderigg g_ﬁsingle pa%e generatesht_e(r;s of HTTPbre—
. . ) quests towards different web servers. Third, many web-
.HTTP Is the new IP in the Web 2.'0 world, an_d trafflc anal- sites, such as content distribution networks (CDNs), wetb-a
ysis methods need to adapt to this new reality. First, web

browsers are being used as the ubiquitous interface to@ larg o~ >’ and web analytics services are used by many web-
©ing he ubig ) A9 sites and shared across several services. All the above make
number of services and applications, such as Email, gaming,

i ) X . ; . . the problem of attributing individual HTTP requests to aruse
file sharing, video streaming, and social networking sites. P 9 q

) . request and to the correct primary website quite complex.
tS%C(:.nd’ toc:aé;;ﬂ?t'ﬁ t?efrpOSt widely usted pliotit;ol,gon- We discuss the challenges of this problem and the limita-
riouting up to oofthefratlic on some networ s[12]. One tions of previous efforts in Sections 2 and 5.
implication of these trends is the limited relevance and ap-

plicability of traditi_onal traffic analysis and characteation 'Each HTTP request corresponds to a web-object such as image
tools [9, 19]. Assigning flows to an HTTP category today video, or javascript. The initial HTTP request is typicaflyweb

conveys very limited information with regard to the usage of page (e.g. *html), which can include other objects, whiahthen
websites/services and web users behaviors. acquired by separate HTTP requests.
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Figure 1. Web-surfing activity: (top) A single user request
first generates an HTTP requesttion. com and then mul-
tiple subsequent HTTP requests to other web servers (e.g.
doubl ecl i ck. com); (bottom) An example of click-
through stream of user requests over different websites.
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To illustrate the complexity of the task, we show visually
the technical questions we address through the toy example

towardswww. cnn. com which then triggers a sequence
of requests towards a CDN servakamai.coma web-ad
server doublecklick.com a web analytics sevegoogle-
analytics.com and others. The requests and responses
are numbered based on how they occur over time. For
simplicity, only the first response from thenn.com
website is shown. Looking at each of these requests in
isolation, it is hard to identify the primary website or sees
that triggered them. For example, it is hard to say that

the request towards the CDN server actually serves the

rendering of thecnn. comwebsite. In fact, we find that

The problem, as defined here, has not received much at-
tention. Most existing web traffic studies focus on differ-
ent problems and most traffic classification efforts stopeonc
they identify a flow as web traffic [9, 19], which is our start-
ing point. Several studies [2, 6] focus on understanding the
complexity of popular websites by analyzing their homepage
and their evolution [8], but but its focus was not real user
surfing behavior. Other work [5, 16] just focuses on how
users interact with specific online social network websites
We discuss and compare with previous efforts in Sections
3.2and5.

In this paper, we make two main contributions: (a) we
present ReSurf, an effective approach to reconstruct web-
user behavior, and (b) we conduct an extensive measurement
study with four real network traces. Our datasets include a
residential ISP in Europe, a mobile provider offering 3G and
4G services inthe US, a group of users from aresearch lab in
the US, and a large university campus network in China. Our
datasets have up to 19 billion HTTP transactions, and range
in duration from a three hours to six months. For evaluating
and comparing ReSurf, we also use a synthetic data set and
a dataset based on accessing the most popular Alexa sites.
We explain our two contributions in more detail below.

(a) ReSurf: reconstructing web-surfing activity. We
develop a systematic methodology that operates in two:steps
(i) we reconstruct user requests (e.g., clicks, refreslaes)

; Rii) we determine the click-through behavior of the user. To
of Figure 1. The graph at the top shows a user request

achieve this, we combine information from the HTTP header
with timing information at the network level. In a nutshell,
ReSurf uses the referrer relationships between relatedHTT
requests to trace back the user request that generated it. It
then uses the size and type of the download objects, as well
explicit timing information between successive requests i
order to achieve the desirable precision. We provide the de-
tails of ReSurf, discuss limitations, and describe oureal
tion in Section 3.

(b) Extensive measurements and validationOur exper-
iments with real data traces and our validation with bott rea
and synthesized data provide the following highlights:

simply using the host name of the server to map requests to

websites results in less than 40% accuracy.
Making the problem more specific, we can identify two

sub-tasks: (a) we want to group HTTP requests generated by

a single user request, such as a click, and associate them wit
the primary website requested by the user, exgn. comin
Figure 1; and (b) we want to reconstruct #tlek-through
stream, i.e., the referral relationship of the web-surfing, to
capture if a user’s request to a website is from a hyperlink
clicked on an earlier website or from within the same web-
site. A toy example of a click-through stream is shown at
the bottom of Figure 1. Here, the user clicks from website A
to website B and she also clicks from website A to website
C. The graph also shows the user issuing two clicks inside
website A and two clicks inside website B. Understanding
web traffic at both the user request and click-through level
provides visibility into the user’s web-surfing activity.

e ReSurf can reconstruct web-surfing accuratelyWe
show that our approach can identify and reconstruct
user requests with more than 95% precision and
91% recall on all our traces. Our validation further
highlights weaknesses in the current state-of-the-art
methodologies that rely on web analytics beacons [8].

The wusual suspects dominate: Google/Baidu,
Facebook/Renren, and adult sitesWe quantify the
presence of the dominant players of web traffic. In our
traces from Europe and the US, adult sites contribute
40% of the traffic. Google is the top referrer website in
all our traffic traces, with 34% and 49% of all inter-site
referrals in our ISP and mobile trace, respectively.
Facebook leads the way with 38% of user requests
in our mobile trace, although Google has a small



lead in user request in the ISP trace. In our Chinese () Initial request to cnn.com
trace, Baidu and Renren are dominating, followed by GET / HTTP/1.1
Taobao, an online shopping portal. Interestingly, even Host: W cnn. com

in the Chinese dataset, Google is the second mos
active referrer site. Surprisingly, filesharing sites like
bitshre.com fil esoni c.comand115. com
account for 30-35% of the traffic in volume in both the
European residential ISP and the Chinese University
campus traces.

tAccept -Language: en-us,en; g=0.5
Connection: keep-alive

(2) A advertisement request caused by (1)
GET /htm . ng/site=cnn&nn_pagetype=nmin...
Host: ads.cnn.com
Referer: http://ww.cnn.conl
e Web caching reduces the number of downloaded
web-objects by three times. When accessing the  (3) Request to a CDN server caused by (2)
same website several times we observe that on averageseT /cnn/.../advertisenent.gif HTTP/ 1.1
2/3 of the objects are cached. Therefore, using syn- Host: i.cdn.turner.com
thetic traces that accesses popular Alexa websites [6],Referer: ads. cnn. com
can overestimate the generated network traffic.

e Click-through streams are “shallow.” Surprisingly,
the median number of websites in a click-through Figure 2: An example of some HTTP requests issued by
stream is just one. Moreover, we observed that only a web browser during a visit teww. cnn. com For sim-
5% of the click-through streams have more than three plicity, only parts of the HTTP headers are shown. The first
websites. request directly reflect the action of the user to requegt,(e.
. click on) thecnn. comwebsite; and we call this the “head
o Mobile user requests generate one tenth of the traf- request.” The second and third requests are “embedded re-

f'r(]: compared to wir ehnebglser requestsOn averaghe_, q fquests," which are automatically initiated by the user'dwe
the user requests in mobile trace generate one third of J |\ <o s fiware.

the HTTP requests and generate an order of magnitude
less web traffic compared to user requests in the wire-
line trace. This reflects the convergence of online ser-
vices to mobile equivalent services that are sensitive to this first request as thieead HTTP request which typi-
the Ul limitations of mobile devices and corresponding cally retrieves an HTML or XML file. Usually, this HTML
data charges. file includes other embedded objects, which are, in turn, ac-
) , quired by separate HTTP requests initiated automaticglly b
The rest of the paper is struc_:tured as follows: In Section 2, ine web browser. We call these subsequent reqeested-
we present the problem, provide the necessary backgroundgey HTTP requestsand they are usually transparent to the
and describe our data sets. In Section 3, we explain ReSurfy;ser itimately, our goal is to assign each HTTP transactio
and evaluate its classification performance. The observa-ghserved in the network to the user request that generated it
tions extracted from data traces are presented in Section 4Doing so enables us to measure traffic generated by different

Finally, we discuss related work in Section 5. user requests and helps us understand web users behavior in
the network.
2. PROBLEM DEFINITION AND TRACES In Figure 2 we present an example of three HTTP requests

The goal of this section is to present the problem in more generated by a visit tonn. com Following the above ter-
detail, describe its challenges, and define the terminology minology, the first HTTP request is theead requesto the

We also present the datasets that we use here. primary webpagéi.e.,cnn. con) and the other two are em-
N bedded HTTP requests. For each HTTP request, the domain
2.1 Problem definition and background name of the web server is located in thest field of the

Web traffic is composed of a sequence of HTTP requestsHTTP header. Even though all three requests are caused
and responses occurring over time. We will refertoan HTTP by the visit tocnn. com in this example, only one has
request and its corresponding response adERP trans- WWw. cnn. comas the host name. From this example, we
action. Throughout this paper, we use the terms HTTP re- see that by looking at an HTTP transaction in isolation, it is
guest and HTTP transaction interchangeably. When a userhard to know which visit generates the HTTP transaction.
requests a website, it causes many HTTP transactions trans- Referrer:  Thereferrer field in an HTTP header
ferred across the network. Each HTTP transaction corre- provides information as to which web-object led to the re-
sponds to aveb-object such as an image, video, HTML quest for the current web-object. This previous web-object
file, flash file, javascript, etc. The main website requested b is called the referrer. For example, in Figure 2, we see that
the user is called therimary website, e.ggoogl e. com the second HTTP request towards the advertising server
facebook. com cnn. comto name a few. We referto  ads. cnn. comhas the main web pagesmw. cnn. com



Name LAB ISP-1 MOB SYN ALE CAM
Starting date] Oct 3 2010| Aug 25 2011| Jan 7 2011 Aug 11 2011| Aug 11 2011| Mar 92012
Duration 6 mon 24 h 3h 1 mon - 2 mon
# of HTTP transaction 1.2M 1.7M 22.9M 186K 973K 19B
Ground truth available No No No Yes Yes No
Payload Full Full Full Full Full HTTP header

Table 1: An overview of the web traffic traces used in our stddhe LAB, ISP-1, MOB, and CAM traces contain real-world
web activity from thousands of users over different coastriThe SYN and ALE traces are traces that were specificalftect
to evaluate ReSurf in a controlled environment.

as its referrer. Similarly, the third HTTP request to the CDN trolled and uncontrolled environments, which allows us to
server came from the advertising server and has the nameboth examine user browsing activities in the wild as well as
of the advertising servera@ls. cnn. com as its referrer.  verify the correctness of our methodology. The users in our
As we explain in Section 3 in more detall, the referrer field traces are also diverse, covering academic users in an uni-
can help in our task of attributing HTTP requests to their versity lab, residential ADSL users, students and academic
primary website. The referrer field has one additional key staff from a large university campus, as well as mobile de-
utility. It captures the clicks by the user from one web page vice (smartphone and tablet) users. This allows us to com-
that lead to another. For example, when a user visits web pare the browsing pattern difference between differentuse
pageB by clicking a link in web paged, the web browser Next,we provide details for each trace. For all traces, we
will place the URL of web paged in the referrer field use the same collection methodology: We collected all the
when generating the HTTP request for web pageBelow, IP packets (both header and payload) on TCP ports 80, 443,
we explain how this helps in identifying the click-through 8000 and 8080. Due to privacy concerns, the campus (CAM)
streams of different users in a trace. trace is the only one that contains just the header part of the
User Requests: Typically, a user request happens in HTTP requests, without their payload.
the form of clicking hyperlinks, opening and refreshingweb  LAB: We collected this traffic trace from a research lab in
pages, writing a URL in a browser’s address bar, submitting a university in the US. In the lab, there are about 15 graduate
forms and so on. A user request generates a series of HTTRstudents and 20 laptops/desktops. The collection duration
transactions. As we explained before, the first HTTP requestcovered six non-consecutive months over the period of De-
is referred to as the head requestclick-through stream cember 2010 until September 2011.
is a series of consecutive user requests which have raferrin  ISP-1: The trace was collected from an edge link of a
relationship between them. Figure 1 shows an example of European residential ISP. We were given access to only the
a user request (top) and a click-through stream (bottom). In first five packets of each unidirectional TCP flow. Given that
the click-through stream of Figure 1, we see two clicks (user most flows only transfer few HTTP transactions, we did not
request) inside website A, two inside website B, and one in observe this to be problematic for our study.
website C. In addition, we see that the user moved fromweb- MOB: We collected this trace from from a 3G/4G mobile
site A to websites B and C by clicking on hyperlinks from service provider in the US. The vast majority of the traffic

inside A. is generated by the applications on mobile devices, such as
smart-phones and tablets.
2.2 Datatraces CAM: The CAM trace is collected from a university cam-

The six web traffic traces used in our study are summa- PUS in China. Approximately, the trace contains the activ-
rized in Table 1. Our data cover several thousands of mil- Ity Of about 28.2K users.  Our monitor point sits on the
lions HTTP requests, over long periods of time, and at dif- €d9€ gateway connecting the campus to the public Inter-
ferent locations. Details regarding the exact locationd an net. All downloading and uploa}dlng tr-afﬂc from the \{vhole
the names of the providers for all our traces are intention- €3MPUS 9O€s through the monitor point. We '99 all impor-
ally kept anonymized due to privacy concerns and businesst@nt HTTP header fields for all HTTP transactions on TCP
agreements. We collected our data from a variety of sources:POrt 80. Specifically, the fields we log are the following:
(a) from monitoring the web activity of users inside a uni- timestamp of each request, client/server IPs, URL, referre
versity research lab over the length of six months and over aCONtent-type, content-length, HTTP response code and user
large university campus over two moths; (b) a 24-hour trace agents. To preserve privacy, chgnt IPs are anonym|;ed. We
collected at a residential ISP network: (c) a 3 hour tracmfro @Pplied our method to several different days of traffic. The
a 3G/4G mobile service provider: (d) a trace generated by trends extracted from different day of traffic are very sanil
replaying the browsing history from nine users over a pe- So we only show the results for one workday in the rest of
riod of one month in a controlled environment; and (e) a PaPer- , , ,
trace generated by issuing requests to popular websites in SYN: The trace is gene_rated in a controlled environment
a controlled environment. We collected traces in both con- 10 the purpose of evaluating ReSurf. We generated the traf-



gamestop.com/
(2000.0s)

fic by replaying a users’ browsing history from their Google | User Request 1 w

Chrome browser. We use the web browsing history from ;
nine users that volunteered for our experiments. We ex- o —
tracted the timestamp, referrer and URL field of each visit (1000.55)
from their browsing history. Then, we replayed each visit ad.doublecﬂifnel/moij
using the procedure described in Figure 3. The replay of a
URL works as follows. We remotely instruct the browser

google-analytics.com/__utm.gif
(1000.3s, 2000.9s)

ads.cnn.com/id:ZlO‘

facebook.com/likebox.php
(1000.4s, 2001.1s)

fbedn.net/138.jpg
35.0s (1000.75,2001.3s)

User Request 2

(Google Chrome) to open each URL separately. At the same /
time, we use a packet capturing software9dunp) to col- User Request 3
lect all the traffic on TCP port 80, 443, 8000 and 8080. Next, (209209

0.1s 0.2s
gamestop.com/hplib-min.js
(2035.1s)
‘sO.Zmdn.nel/300x250.swf
(2035.25s)

we close the browser after 60 seconds and save the collected
HTTP traffic to an individual file. As the final step, we ar-
tificially adjust the time stamps and referrer fields to simu-
late how the traffic would be like if it came directly from
the user’s surfing activity. Both the timing information and Figure 4:  An example of an HTTP referrer graph show-
referrer relationships are directly extracted from Chrisme ing three user requests, one tmn. com and two to
browsing history records (see Figure 3). After replayirig al 9amest op. com We represent the web-objects from head
visits, all these individual files are merged to form a com- HTTP requests with circles and the web-objects downloaded
plete traffic trace. Since each user activity was collecteti a  from embedded HTTP requests with rectangles.
stored separately, we effectivity have the ground truth for
each HTTP request in the trace. -

ALE: The ALE trace is also artificially generated using _ Referrer Graphs:  To facilitate our methodology, we
the same methodology as described above. The only differ-first represent all HTTP requests from the same client IP ad-

ence is that here we only visit the URLS of the home page of dress as a graph. For generating the graph, we use the refer-
the top 80,000 ranked websites in Alexa [1], and we do not "' and host fields from the HTTP requests (see examples in

artificially add any referrer fields or modify the timestamps ~ Fi9ure 2). Using these fields, we generate a directed graph
that captures the referring and timing relationship betwee

downloaded web-objects. Figure 4 shows an example of the
3. THE ReSurf APPROACH HTTP referrer graph of a single user accessimgm. com
andganest op. com For the purpose of exposition, we
simplify the example and keep only a subset of nodes and
edges. In reality, even within few minutes the size of the
referrer graph reaches several hundreds of nodes. For exam-
ple, in the CAM trace, the median size of the referrer graph

over a ten minute interval is 200 nodes for an IP address.
3.1 The ReSurf Methodology The nodes in the HTTP referrer graph are web-objects an-

The goal of ReSurf is to group HTTP transactions into notated with their complete URI. Inside each node we also

user requests (see definition in Section 2.1). Our approachadd the timestamp of it corresponding HTTP transaction to
works in two steps. First, we identify theead HTTP re-  help us understand the ordering of the different requests in
questsby using different features from each HTTP transac- our trace. The directed edges capture the referring relatio
tion. These features include: the size of the web-objeet, th ship between nodes. The directed edge fréo B means
type of the object, the timing between successive requests,4 is B’s referrer. The label of a directed edge represents
and others. Second, we use the referring relationships (seehe timestamp difference between the requests for the two
definition in Section 2.1) to assign all the embedded HTTP objects.
transactions to their corresponding head request. Weiexpla  We provide an intuitive explanation of how our method
the methodology in more detail below. works using the example of Figure 4. In the figure, we rep-
resent head HTTP requests with circles and the web-objects
downloaded from embedded HTTP requests with rectangles.

In this section, we present our ReSurf methodology, and
we evaluate and compare it with existing solutions. In sec-
tion 3.3, we discuss the practical issues and limitations of
our method.

Chrome | URL | ol Traflic | Traffic | _ Synthesized In Figure 4, we have three user requests with their corre-

history dump file web traffic sponding head HTTP request and different embedded HTTP
transactions. Note that, initially, the referrer graphsloet

Timestamp and referrer distinguish between head HTTP requests, and has no infor-

) _ _ mation of which groups form User Requests. This informa-
Figure 3: The diagram shows the steps we tak’e 10 geneér-jon js the outcome of ReSurf. To detect the head requests,
ate synthesized web traffic by replaying a users’ browsing regyrf exploits the following characteristics. First, tead

history. requests of user requests are HTML or XML objects, have



very few incoming edges and many outgoing edges in the
referrer graph. At the same time, the nodes in the same
user request are very close together in time. On the other
hand, HTTP transaction from different user requests are fur
ther away from each other in time. Finally, head requests
are connected with an edge, if there is referring relatignsh
among them. In more detail, our approach has the following
steps:

Step 1. We form the HTTP referrer graph. ReSurf
builds an HTTP referrer graph for each host over a period
of time (e.g., every five minutes). The creation of the HTTP
referrer graph was explained earlier in this section, and an
example is shown in Figure 4.

Step 2. We identify all the head HTTP request candi-
dates. ReSurf selects head request candidates according t
following rules:

(@) The candidate should be an HTML/XML obiject.
Specifically, its content-type should be one of following:
“text/htm”, “text/xhtm” “text/shtm” and
“text/xm

(b) Since most web pages are fairly complex, the size of
candidates should be larger thErbytes.

(c) Candidates should have at leAsembedded objects.

(d) The time gap between candidates and their referrers
should be larger than a predefined threshold

(e) As an optional refinement requirement, ReSurf filters
out candidates based on the keywords in their URI. That
is, candidates’ URI should not contain the keywords:
adserver,ads,w dget, andbanner.

We observed this keyword heuristic to boost the classifi-

cation accuracy between 2-3% depending on the trace. We

provide specific values for the paramet&fsk, 7' next in
our validation section.

Step 3. We finalize the identification of the head re-
qguests. We utilize the referring relationship between the
head request candidates. Specifically, a candidate is clas

sified as a head request if its referrer is also a head request o

if it does not have any referrer. In the referrer graph, nodes
with no referrers have no incoming edges. In Figure 4, the
cnn.com in “User Request 1” is an example of such a node
with no referrer. Such nodes occur when a user, for example,
opens a web pages from a browser bookmark or by directly

typing the URL in the browser’s address bar. If the referrer

Heuristics for detecting head HTTP requests
Its content-type should be one of: “text/html|’
“text/xhtml”, “text/xml”, “application/xhtml”, or “ap-
plication/xml.”

Its object size should be larger thinbytes.

It should have at leadt” embedded objects (out-degr
in the referrer graph).

The time gap between the request under question
its parent request (i.e.g, its referrer) should be m
thanT'.

Its URI should not contain any of the keywordad-
server, ads, widget, embeat,banner

Its referrer is a head request or does not exist.

e

f

Table 2: The heuristic rules that ReSurf uses to identifghea

AHTTP requests given a referrer graph. The default values

for the above parameters used in ReSurfiare 0.5s,V =
3,000 bytes, and K = 2.

transaction (node) has more than one incoming edges, we
follow the edge with the smallest time difference (i.e.,
smaller weight on the edge). In this way, the path will
eventually lead back to the head request that was triggered
by the user request.

To summarize, the head request of an user request should
meet all the requirements in the Table 2.

3.2 Evaluation

We evaluate the accuracy of ReSurf using two different
sources of ground truth: (a) our synthetically generat@cktr
SYN, and (b) using the web analytics beacons as proposed in
StreamStructurB8]. We also examine the sensitivity of our
approach to its parameters of ReSurf, and justify the values
we choose. Finally, we compare ReSurf to the state of the
art [8].

Evaluation metrics: We use the standard classification
metrics of precision and recall. Precision is the number of
true positives (TP) divided by number of TP and false pos-
itives (FP),P = TP/(TP + FP). Recall is the num-
ber of TP divided by the number of TP and false negatives,
R =TP/(TP + FN). We also use the F1 score which is
the harmonic mean of P and R, specifically, = 2 x £x£&

P+R"
To evaluate the performance of ReSurf, we ask the follow-

is not empty, it means that the user navigated to a web page"d complementary but slightly different questions.

by following the links from a referrer web pages. Following
this logic implies that the referrer of a head request should
also be a head request itself.

Step 4. We assigh embedded HTTP requests to head
requests. ReSurf associates embedded HTTP requests
to head requests by utilizing the timing information and
referring relationship in the referrer graph. In fact, once

Q.1: How accurately can ReSurf identify head HTTP
requests?We want to quantify how effectively ReSurf iden-
tifies the head requests from a large set of requests. Given
that the number of head requests is usually much less than
the total number of requests, this question allows us tofocu
only on head requests. For example, if out of 100 requests
one is a head and the others are embedded, if a classifiers re-

we know the head request of a user requests, it is easy td°OrS all the requests as embedded it would be correct 99%
attribute the rest of HTTP requests to user requests. For®f the times, but would offer limited utility in solving our
each HTTP transaction (node), we traverse the referrerProblem. For this reason, we report the P and R on head

graph backwards until we reach a head request. If an HTTP€duests separately. _
Q.2: How accurately can ReSurf classify head and em-



bedded requestsWe want to quantify how effectively our 100 = N Precision =1
approach classifies each HTTP requests as a head oranem- 80 | Recall ===
bedded HTTP request. Unlike Q.1, we reportresults over all ¢ 60 [ F1 m—
HTTP requests and not only over the head requests. That 40

is, precision represents the number of correctly classified 20 -

HTTP requests compared to the total number of HTTP re- 0

quests classified by our algorithm. Note that ReSurf may Q1 Q.2 Q3

Header Requesi binary Reqﬁest

leave some requests unlabeled (a.k.a unknown). Recall ex- Detection  Classification  Association

presses the total number of classified HTTP requests com-
pared to the total number of existing HTTP requests in the Figure 5: The precision, recall and F1 score in the SYN
trace. trace.

Q.3: How accurately can ReSurf associate HTTP re-

guests to their corresponding user requestThis is amore ] ) ) »
demanding question than the classification for Q.1 and Q.2 ICS beacons to track their web pages and objects. Intujtivel

we want to associate each HTTP request with the generatingn® Web analytics beacons report to the analytics server, an
user request. This is multi-class classificationproblem, ~ thiS helps us detect which is the head request and towards
where each user request is a separate class. For example, f¥hich primary website. We consider web analytics beacons
an embedded HTTP requeRtis correctly identified as em-  [10M three major servicesgoogl e- anal yti cs. com
bedded, but it is associated with the wrong user request, weP! X€! . quant serve. comandyi el dmanager . com[s,

will consider it a misclassification. The precision capture 10, 11]. . ) )

the number of correctly classified HTTP requests compared €re, we give a more detailed explanation of the beacon
to the total number of HTTP requests classified. The recall Method (i.e., StreamStructure), using the google-aralyti

reports the correctly classified HTTP requests compared byP&2con as an example. Once the object or web page tracked
the total number of HTTP requests in the trace. by google-analyticsis requested, a beacon is generated bas

We use the following values for the parameters in ReSurf: N the requested object's URI and sent to a google-analytics
T = 0.5,V = 3000 and K = 2. We justify this selection ~ S€rver in the form of “special” HTTP GET request. Unlike

regular HTTP GET requests, their URIs encode various in-

formation about the user request, including the URI of the
|.requested object/page. Therefore, after some careful pars
ing of the HTTP requests, we can identify the beacons, and
from there we can identify the URL of its main object, which
leads us to the primary website of the user request. We refer

(a) Validation using ground truth from the SYN trace. the reader to [8] for more details abdbireamStructure

To evaluate our approach, we created a synthesized trace un- AS We Will discuss later in this sectiotreamStructure
der a controlled environment. During the creation of this ¢&n b€ used for only a fraction of the requests, since only a

trace, at each point in time we knew exactly which web- small percentage of requests use beacons. However, this set
site was being visited, and what requests were generated b)Pf requests can h_e_Ip us determine the effectiven_ess of _ReSur
the visits to those websites. Details regarding the genera-Providing an additional ground truth set. To achieve this, w
tion of the SYN trace are given in Section 2.2. Even though fIr'St useStreamStructuréo identify as many head requests
we know the ground truth for the ALE trace as well, we do using beacons. We refer to this set of identified head re-
not show results with that trace here since it does not rep- Uests as S. Then, we compare how well ReSurf performs
resent real browsing activity. Figure 5 shows the precision ©Ver the known set S. Figure 6 shows the precision, recall

recall and F1 score when we apply ReSurf on the SYNtrace,and F1 for head detection (Q.1) _using beacons as gr(_)u_nd
for all three questions, Q1-Q3. As we see, all metrics are truth. We observe that ReSurf achieves above 96% precision

above 90%, showing that ReSurf can successfully identify '

in all traces and 91-98% recall. The results show that our
the originating website for the vast majority of HTTP re- approach performs consistently well across all the dataset
quests. Moreover, we see that the precision of ReSurf is

which are collected in different continents and duringetiff
very high, 96% and above, implying high confidence in our ent time periods. Note that we only use web analytics bea-
classification of requests.

cons here to establish the ground truth, ReSurf does not
(b) Validation using web analytics beacons as ground

later in this section.

A key issue in evaluating any classifier is how to deter-
mine the ground truth in the datasets. To address this cha
lenge, we use two different approaches: (a) using a synthe-
sized trace, and (b) using the labels from a classifier that is
based on web analytics beacons.

use beacon informationduring its classification process.
truth. For the LAB, ISP-1 CAM, and MOB traces, we do Evaluating ReSurf over a different range of parame-
not have the ground truth. Therefore, we compare the clas-ters:  We examine the effect of different parameters on the
sification performance of ReSurf based on the predictions Performance of ReSurf. We only show the plots for Q.1 for
given by theStreamStructurd8] method. This method is ~ Previty: the performance for all questions is qualitatvisle

based on the observation that many websites use web analytS2me. We use the SYN trace to set our parameters and then
apply them to the rest of the traces.
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LAB, ISP-1, CAM, and MOB traces. Given the precision
and recall of ReSurf in the controlled datasets, we are con-
fident that this percentage is reasonably accurate estohate
requests in the trace. To further verify this, we used the SYN
trace, for which we have the ground truth. We plot the results
comparing ReSurf with th8treamStructurapproach [8] in
Figure 8. We observe that for the SYN trace, less than 22%
of user requests are detected using beacons. To summa-
rize, we observed that using beacons, we can only success-
fully identify approximately 20% of the user requests, com-
pared to above 91% we achieve with ReSurf. A comparable
statistic in the number of head requests that have beacons of
23.9% is also reported in other studio [8].

An additional complication is that sometimes, one user re-
guest has multiple beacons and could confuse beacon-based
reconstruction solutions.

Figure 8 shows the recall for detecting head requests in
the SYN and ALE traces usirfgtreamStructurand ReSurf.

As we see, wittStreamStructuréhe recall is 22% and 60%
for the SYN and ALE traces, respectively. The higher recall

Figure 7: The F1 score of detecting head requests (Q.1) asp, the ALE trace is due to the higher popularity of web ana-

a function of parametér and for different values of param-
eter K in the SYN trace.

Figure 7 shows the F1 metric for detecting head requests
(Q.1) using different values for the volumé and the out-
degreeK over the SYN trace. We observe that the precision
increases and the recall decreases as we increase the fralue
V. Intuitively, largeht m / xmi files are more likely to be

the web-page of an actual user request compared to shorter

ones. Shorht M / xm files typically carry advertising re-

lated content and are triggered by embedded requests. At

the same time, by further increasifg we start consider-
ing only very largeht m / xm files and we start missing
requests, which results to lower recall. As we see from Fig-
ure 7, the combined behavior or P and R captured by the F1
score, exhibits good performance fdrin the range of 3000
to 5000 bytes. To achieve both good precision and recall, we
choosel” = 3000. In the same figure, different lines show
how the out-degre&” varies from 1 to 5. We find that the
values 2 and 3 gave the best results, with= 2 performing
slightly better in the range of parametér

RegardingT’, we found that our approach exhibits good

performance as long as T is less than 1 second and more

than 0.1 second. The results are not shown due to space lim
itations. In the rest of paper, we use this parameter setting
T =0.5,V =3000and K = 2.

Using web-analytic beacons is not enoughA natural
guestion is why we don't just use web analytics beacons ex-
clusively for user request reconstruction. Even though the
use of beacons gives good results for those websites that us
them we identify several limitations:

The majority of user requests (80%) do not have a bea-
con in our data traces. We find that less than 20% of the

lytics by very popular websites. By contrast, ReSurf works
consistently well in both traces with recall above 92%. Un-
fortunately, for the LAB, ISP-1, MOB and CAM traces, we
cannot repeat the same experiment since we do not have
ground truth. Overall, we observed that ReSurf identifies
double the number of head requests in these traces compared

to StreamStructure
o)

3.3 Discussion

What about encrypted web traffic?ReSurf uses infor-
mation from the HTTP header, therefore, if the web traffic is
encrypted (e.g., using HTTPS) our approach will not clgssif
those flows. However, by analyzing our real-word traces (see
Table 1), we observed that the encrypted traffic only amounts
for 2% to 8% of the total web traffic. The lowest percentage
corresponds to the mobile trace, suggesting that encryptio
in smartphone applications is not popular. Overall, we ob-
served that unencrypted web traffic is the norm today and we
believe it will continue to amount for a significant portioh o
the traffic in the future. The analysis of encrypted web traffi
remains an interesting, open problem.

How is ReSurf affected by users behind network address
translation (NAT)?Having users behind NATSs is very sim-
ilar to having users with very high activity. Since referrer

graphs are built per IP, NAT users will appear as one “heavy
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Figure 8: The recall for detecting head HTTP requests (Q.1)

user requests that were found by ReSurf have beacons in th!Sing beacons and ReSurf in different traces.
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Figure 9: The CDF of the number of downloaded objects Figure 10: The number of downloaded objects in different
per user requests over different traces. visits towards the top 80,000 websites reported by Alexa.

user” with a complex referrer graph, for user accessesmithi  |oaded objects by all the user requests in the four tracea. As
the same time windows. There are two cases here: If differ- first observation, we see significant differences between mo
ent NAT users browse completely different websites, their pijle and wireline traces. The median number of web-objects
referrer graphs will not be connected and ReSurf will distin per user request is 4 for the mobile trace Compared to 11 for
guish different requests. On the contrary, in the worst casethe three wireline traces. Similar trends are also observed
where two users request the same web page at the same timggr the volume of generated traffic, the number of generated
ReSurf will combine them as one large request. However, it TCP flows, contacted IPs, and autonomous system numbers
will still be able to attribute their traffic to the originatj (ASNs) which are not shown here due to limited space. We
website. Finally, there may be cases where some embedded|so observe that approximately 40% of the user requests in
requests are “multiplexed” between more than one user re-the wireline traces results in the download of 20 objects cor
quests and disambiguating is hard; however, we have not obresponding to 100 KBytes traffic (median). This shows that
served that to be a problem in our study. Note that our goal yser requests to modern websites trigger a fairly large num-
is twofold: i) Group HTTP requests to identify the initial  per of HTTP requests (web-objects) as well as high traffic
user requested page, and ii) identify the user click-thhoug volume. Finally, we observed a significant similarity be-
stream. Hence, having users behind NATs does not affecttween the CDFs in the LAB, ISP-1, and CAM traces, es-
the first goal, while the second is impacted if users follow pecially for the lower 50% of user requests. This shows that
the same stream of pages at the same time. user requests in wireline traces have similar charadtesijst
Can ReSurf classify traffic in real-time®ur currentim-  even when the users are in different countries with differ-
plementation does not support real-time classification. In ent websites being popular. The two most similar traces are
Step 1, we require the collection of traffic for several min- | AB and CAM. This suggests that even with the small num-
utes before we analyze the referrer graph and classify theper of users we have in the LAB trace, it captures behaviors

different requests. Therefore, our approach can classify r - that closely match a trace of thousands of users in a large
quests several minutes after their creation. As mentionedyniversity campus (CAM).

earlier, off-line analysis of web traffic is useful to openat
that want to understand how their network is being used, as 4.1.1  Caveats of using synthesized data

well as for researches that want to study modern trends and 14 further understand user requests towards popular
changes in web activity. Real-time classification can be im-
portant to network operators that want to enforce different
policies and achieving this requirementis left as futurekwo

websites, we compare the properties of the ALE trace with
our other traces that represent real user behavior. The
use of popular Alexa [1] websites has also been used by
other studies [6] that aim to understand the complexity of
4. USING ReSurf ON REAL WEB TRAFFIC modern websites. Applying ReSurf on the ALE trace, we
In this section, we use ReSurf and analyze the four real- observed some significant differences between this trace
world web traffic traces: LAB, ISP-1, MOB and CAM. First, and our real-world traces. Our hypothesis for this diffeen
we group HTTP transactions into user requests with ReSurf.is that the browsers’ local cache may affect web traffic
Then, we analyze web traffic at two levels: (a) website, and measurements significantly. To quantify the effect of local
(b) click-through stream. At the website level, we study how caching, we visit the homepage of the top 80,000 website
much traffic is caused by different user requests and whichin Alexa [1] four times. The time gap between successive
are the most popular websites. At the click-through level, visits is ten minutes.
we analyze how users behave and how they move from one In Figure 10, we show the CDF of the number of down-
website to another. Finally, we present differences batwee loaded objects in different visits. On average, the second
mobile and wireline web traffic. visit only downloads one third of the objects of the first visit,
. . and only generates about one third of the network traffic
4.1 Analyzing requests at the website level other words, about two thirds of objects are cached locally

In Figure 9, we show the CDFs of the number of down- after the first visit. The third visit requests even less ob-
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Figure 12: The top external referrers in different traces.
Figure 11: The top websites in term of user request.

expected, the “usual suspects” are in the top places in the

jects, which suggests additional objects being cached®y th |Sp.1 and MOB traces, e.gGoog! e, f acebook. com
second visit. Interestingly, there is no significant diéiece wi ki pedi a. or g andyout ube. com The CAM trace is
between the third, fourth, and so on, visits in the number of ¢gjlected in China, which explains the differences in wibsi
downloaded objects and network traffic. Even though the popularity. Other top websites represent local preference
number of objects decreases significantly between succesgych as news sites and portals. This is especially visible in
sive visits, we have not observed this to be true about thehe |SP-1 and CAM traces. The specific local websites in
total number of unique server IPs being contacted. In fact, the |SP-1 traces are kept anonymized because of a business
the total number of contacted IPs in the first visit is just 9% agreement. Additionally, Figure 11 shows a large percentag
more than the following visits. As expected, since the num- of traffic in to be cause by “Other” websites, which shows
ber of object downloaded decreases, we observe the averagghat web-traffic does not consists of just a handful popular
number of downloaded objects per server IP to decrease sigyepsites.
nificantly as well. After further investigation, we obsedve Besides popularity, understanding how users reach a par-
that the different IPs often correspond to third-party ghal  ticular website is of interest to both website operators and
ics and advertising servers, which serve content that is notgesigners. Figure 12 shows the top 20 external referrer web-
usually keptin the local cache. Therefore, those IPs are con sjtes in the ISP-1, MOB, and CAM traces. A website is
tacted during every visit. considered as an external referrer if it refers users torothe

Key takeaway: Overall, Alexa-based studies seem to yepsites. It is worth mentioning that we aggregate all in-
overestimate the number of downloaded objects and gener-ernational versions of websites into one, eggogl e. i t
ated traffic by as much as three times, when compared togndgoogl e. br, are aggregated together@sog| e. The
actual user traffiC,due to local-cache effects. On the other |argest external referrer in all traces collected in Eurmm
hand, the number of contacted IPs and domains do not seemp the US isGoogl e. It accounts for over 30% and 45% of
to be affected by local caching. Itis therefore important to || external referrers, respectively. In the LAB trace, iee-
have these two facts in mind when analyzing trends by syn- centage is as high as 80%. The plot for LAB trace is not in-
thesizing requests to popular websites. cluded here because the user population is too small to draw
meaningful conclusions at this level. The second largest ex
ternal referrercel | mani a. com in the MOB trace, is a

We now turn our attention to website popularity in terms portal website for mobile devices. It integrates news, map
of user requests, external referrers, traffic volume, artd ne & weather, wireless search and email for mobile users. Fig-
work flows. Figure 11 shows the top 20 websites in term ure 12(c) shows the referrers for the Chinese dataset (CAM).
of user requests in the ISP-1, MOB, and CAM traces. As In CAM, the largest referrer websitelimi du. com which

4.1.2 Website popularity

10
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Figure 13: The top websites in term of traffic volume. %, %

Figure 14: The top websites in term of flows.

is the most popular search engine in China. Interestingly,
Google is the second most popular referrer site in CAM
summary, major external referrers are search engine,lporta
and social networking websites in both wireline and mobile ~° : X
traces. with Facebook and the extensive use of load balancing
Figure 13 shows the top 20 websites in term of aggregatedt"rough CDNs, results in multiple connections being
traffic volume in the ISP-1, MOB, and CAM traces. Nine out Créated over time. Finally, the popul@oogl e search and
of the top 20 websites in the ISP-1 trace and 16 of 20 in the YouTube video services also rank in the top in both ISP-1
MOB trace are adult websites. In fact, adult websites in both and_ MOB trac_es. In F|gur_e 14(c), the CAM trace shows
traces account for more than 40% of total traffic. The ratio 9@l Some differences with the traces from Europe and

of adult websites in the MOB trace (16/20) is much higher US: The website with the most flows ki du. com a
than the one (9/20) in the ISP-1 trace. One possible eXpla_popular search engine. Furthermore, the social netwa sit

nation is that people prefer browsing adult websites throug " €N" €N comand shopping portal aobao. com (think
personal mobile devices due to privacy reasons. In contrastAMazon) are also. among the top w_eb_snes In terms of flpws.
to the ISP-1 and MOB traces, in the CAM trace, none of the Key t_akeayvay. _Overgll, examining b_a3|c populgnt_y
top sites is an adult site. We attribute this to stricter oant ”e”‘?'s in .th|s sec'.uon highlights that dlffere_nt statstic
and censorship in this network. Finally, we see that the sec-Provide different views.  For example, looking at user
ond group of big players in the ISP-1 trace are online file requests versus generated network traffic or network flows
sharing websites, e.dhj t shre. comfi | esoni c. com results in differences in the popular services, which shows
andf i | eser ve. com which account for roughly 30% of the_ im_por_tance of accurately recon_structing user requests
the total traffic. The site with largest traffic volume in CAM This highlights the advantage of having a methodology such
is the file-sharing websité 15. com which accounts for as ReSurf that can provide such key insights into web traffic.

roughly 35% of total traffic. Online file sharing websites .
are significant contributors of HTTP traffic [3]. Overall,-on 4.2 Click-through streams
line file sharing websites and adult websites seem to be the Having examined the basic properties of user requests and

selves even when users leaweacebook pages in
background. Moreover, the continued interaction of users

top sources of web traffic in our traces. website popularity, we now use the referring relationship
Finally, Figure 14 shows the top 20 websites in term between web pages to better understand user browsing pat-
of flows. In both ISP-1 and MOB trace$acebook terns. We focus on two main questions: (a) How long is a

is the number one. There are two possible reasons.click-through stream in term of user requests, i.e., do user
First, Facebook is highly popular among users. Sec- clicks take them through several websites? and (b) what
ond, Facebook is web 2.0 website and adopts AJAX are the typical transitions in these click-through stredras
techniques: Facebook pages periodically update them- which websites refer other websites?

11
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up to one hour with very similar results which are not shown
where for brevity. Figure 15 shows that the mean (median) Figyre 17: The top website transitions over three traces.
number of user requests in click-through streams is 4.5 (3).
The 95th percentile of the number of user requests is about

11. This implies thatfypically, click-through streams are  tjon across different websites. To this end, Figure 17 shows
short with the users giving up browsing after a small num- the most frequent 20 website transitions in different tsace
ber of user requests The figure shows that transitions depend on the trace exam-
In Figure 16, we show the distribution of the number of jned. This probably reflects both the different type of aoile
websites that are being visited during a single click-tlgtou  tjon environments and locality characteristics. Spedifica
stream. The median number of websites in a click-through i the LAB trace (not shown due to space limitation), most
streams is two for the wireline users and one for the mo- {yansitions are fronBoogl e to academic and programming
bile users. This observation suggests that mobile users argg|ated websites reflecting users that are graduate stigent
less likely to click on links that take them to different web- 3 research lab. As shown in Figure 17, website transitions
sites, which might be due to lower available download rates. i the ISP-1, MOB, and CAM traces are much more diverse
Intuitively, this suggests that mobile users have an applic pecause of the larger user populations. In the ISP-1 trace,
tion in mind when using the Internet and are less likely to most website transitions are froBoogl e, Facebook and
“surf around.” Finally, it is interesting to observe thatfo  gnline forums to video and game websites. In MOB, most
all traces the 95th percentile is only three. Perhaps the useyepsite transitions are from search engine and portal web-
of specialized web services, such as social networking andsjtes to video and news/blog websites. In CAM, there is

search engines, explains this behavior. a considerable percentage (roughly 10%) of website transi-
. ) tions from portal websites lik860. cn,hao123. comand
4.2.1 Transitions between websites 2345. comto other websites, which we did not observe in

Click-through streams also allow us to track the transi- the other traces.
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Not surprisingly, our measurements show that “referrer”

websites are usually search engines, social networking and g o
online forum websites, while “referred-to” websites arae<o EDL’

L | ]
tent providers, likeni ki pedi a, YouTube and News/blog G gg I Brom e e e |
websites. 0 . Applications->FB -

1 10 100 1000
4.3 Characteristics of mobile web traffic The number of objects in one user request

Here, we focus on web traffic generated by mobile users Figure 18: The number of objects downloaded by user re-
and further emphasize on websites that offer dedicatedquests initiated by traditional web browsers towards ragul
smartphone applications for their users [20]. With these and customized Facebook web pages, as well as by Face-
proprietary applications, mobile device users can accessbook smartphone applications.
websites without traditional web browsers. As we explain
below, identifying the traffic from those applications . ) .
requires a less complicated approach compared to ReSurf. timeouts in the range of few second to few minutes.

To analyze mobile traffic, we further decomposed the = FOF Presentation purposes, we focus on the compar-
MOB trace into three categories: (a) traffic generated Ison. of_the traffic ge_zr_werated by Facebook smartphone
by user requests towards regular web pages using Weqf‘;lpphcatlons and tl’?dltloniﬂ web browsers, bot’r’1 for the
browsers on mobile devices, (b) traffic generated by user Browsers—Regular” and “Browsers;Customized™. \We
requests towards customized mobile web pages usingobse.rved qualitatively similar results for other popular_
web browsers, and (c) traffic generated by user re(westsserwces aqd we use Facebook here as a representatlve
using smartphone applications (e.g., FacebookTouch). weexample. Figure 18 shows the CDF of downloaded objects

distinguish the traffic generated by smartphone applinatio in user requests initiated by smartphone applications and
by examining thaiser - agent field in the HTTP headers.

browsers in the MOB trace. We observed that user requests
Further, to distinguish the traffic generated by (a) and Nitiated by smartphone applications (ApplicatiensB)
(b), we first reconstruct user requests by applying ReSurf, @1d by traditional browsers (Browsesustomized FB)
Then, we match the head request's URL against a list of towards to customized Facebook pages are similar in term
keywords. If a head requests URL matches one of the of downloaded objects. However, user requests initiated
following patternsm *, . mobi , */ wap, or mobi | e. *, by web browsers (BrowsersRegular FB) towards regular_
we considered the user request to be towards a mobileFac€book web pages, on average download almost twice
customized web page. Otherwise, it is a regular web more objects, and generate four times more network traffic.
page. For exampld,acebook. comié towards a regular This shows how mobile users can benefit from the use of

web page whilem f acebook. com is the customized such applications when accessing their favorite web servic

version. We will refer to them as “BrowsersRegular” by downloading only relevant content.
gggefrowsers+Custom|zed through the remaining of the 5 RELATED WORK
Identifying the traffic from smartphone applications. The recent trend of network services over HTTP attracted
We observed that HTTP headers generated by these applithe interest of the research community. Labovitz et al. [12]
cations only include the user agent, host, URI, contengityp brought to light the fact that most inter-domain traffic
and length fields. That is, other important fields like the re- is HTTP. Schatzman et al. [15] present a methodology
ferrer and cache control information are missing for the ma- to identify web-based mail servers, and distinguishing
jority of cases. Therefore ReSurf is not applicable here. In between services, such as Gmail and Yahoo mail. Erman et
a nutshell, we classify the flows generated by smartphoneal. [7] analyze traffic from residential users and find that a
applications using the user agent information in the HTTP significant part of HTTP traffic is generated by hand-held
headers. We first extract all user agents present in the MOBdevices and home appliances, while a large fraction is
trace. In total, there are 534 different user agents after re machine generated (e.g., OS/Anti-virus updates, ads). Li
moving version numbers. Then, we manually compile a et al. [13] present methods to identify the type of the
keyword list for all the smartphone applications, which-cov object transferred over HTTP (e.qg., video, xml, jpeg). The
ers 118 smartphone applications’ user agents. Finally, werecent work from Schneider et al. [17] characterize the
classify all HTTP flows into applications by searching for inconsistencies between observed HTTP traffic and what
these keywords in user agents. The most popular applica-is advertised in its HTTP header. All this previous work
tions in terms of the number of networks flows are Face- is complementary to our work, as they focus on different
book, YouTube and Pandora. Finally, we simply use timing problems, and not the reconstruction of web-surfing at the
information to group HTTP transactions into user requests. user requests level and the target websites.
A user request expires if it is idle for more than 30 seconds. There are three categories of user requests reconstruction
We observed qualitatively similar results by using diffare  methods in the existing literature. The first category agsim
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In the big scheme of things, ReSurf and similar future al-
gorithms, represent an enabling capability for ISPs and net
work administrators, that want to manage their networks ef-
fectively, as well as for network researchers that want to an
alyze and study modern web traffic.
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