
1

Metropolis Seminar Series
September 2003 1

Xi Chen, Guang Yang, Harry Hsieh,
Felice Balarin and Yoshi Watanabe

Elaborator and Runtime Library
– A Metropolis Backend Tool

2

Outline

• Elaborator and the elaboration process

• Implementation

• Network elaboration

• Constraint elaboration

• Runtime library

• What is runtime library

• How to use runtime library

• Applications of elaborated constraints

• Annotation trace generation

• LOC checker generation

2

3

What is Elaborator?

• A backend tool that can be called by the user or
other backend tools

• Input: MMM source code/abstract syntax trees

• Output: the structure of the network

• Object nodes in the network (e.g. processes)

• Connections between objects

• Refinement hierarchy

• Constraint instances (constraint elaboration)

• Resolved runtime structural keywords, e.g.
getconnectionnum, getconnectionsrc, …, etc

4

The Elaboration Process

Back - ends

Elaboration

Meta model language

Output

Front - end

ASTs

Network Structure

ASTs

Java code

JVM

Network Structure

Elaboration
Translation

Execution

M
P

AST

P
P

3

5

Implementation of Elaborator

• Translate MMM objects (e.g. process, medium) to
Java classes

• Top-level netlist is instantiated, and all the other
objects are instantiated in turn

• Only constructors of the objects in the network are
executed

• The network is built using the runtime library by
executing the Java code

• Location:
metropolis.metamodel.backends.elaborator

6

An Example of Network
Elaboration

public netlist IwIr {
public IwIr(String name) {

…
int numP = 2;
for (int i = 0; i < numP ; i++) {

XX p = new XX("P"+i);
addcomponent(p, this, "P"+i);
connect(p, port1, m);
connect(p, port0, r); }

…
}

}

MMM Source Code

public class IwIr extends metamodel.lang.Netlist {
public IwIr(String name) {

super(name);
…
int numP = 2;
for (int i = 0; i < numP ; i++) {

XX p = new XX("P" + i);
Network.net.addComponent(p, this, "P" + i);
Network.net.connect(p, "port1", m);
Network.net.connect(p, "port0", r); }

…
}

}

Java Code

4

7

An Example of Network
Elaboration (cont’d)

P1
port1 port0

P0
port1 port0

rm

IwIr

Network structure generated by Java execution
and represented by runtime library classes

netlist test.IwIr {
o Instance name: top_level_netlist
o component name: null
o Components:

- P0 (instance name: P0)
- P1 (instance name: P1)
- m (instance name: m)
- r (instance name: r)

o Not refined by a netlist
o Does not refine any node
o No constraints

}
process test.XX {
o Instance name: P0
o component name: P0
o Ports:

test.IntWriterport1
test.IntReaderport0

o Not refined by a netlist
o Output connections:

- P0 --(test.IntWriter port1)--> m
- P0 --(test.IntReaderport0)--> r

o No constraints
}
…

The print-out of the elaborated network

8

An Example of Constraint
Elaboration

• If m = 2, there are actually 2 different constraint instances

publicnetlist sumnet {
…
constraint{

event Wevent = beg (…);
event Revent = end (…);
for(j = 0; j < m; j ++)

loc(forall (int i) k[j]@(Wevent,i) == k[j]@(Revent,i));
}
…

}

MMM Source Code

public class sumnet extends metamodel.lang.Netlist {
public IwIr(String name) {
…
/*constraint block*/ {

Constraint __tmpConstraint;
Event Wevent = new Event(…);
Event Revent = new Event(…));
for(j = 0; j < m; j ++) {

// loc(forall (int i) k[j]@(Wevent,i) == k[j]@(Revent,i));
tmpConstraint = new Constraint(Constraint.LOC);
Network.net.getNode(this).addConstraint(__tmpConstraint);
tmpConstraint.addEvent(Wevent);
Network.net.addAnnotation(Wevent , “k[“ + i + ”]”);
tmpConstraint.addEvent(C_start);
Network.net.addAnnotation(Revent , “k[“ + i + ”]”);

}
…

}}

Java Code

5

9

An Example of Constraint
Elaboration (cont’d)

netlist test.sumnet {
o Instance name: top_level_netlist
o component name: null
o Components:

…
…

o Not refined by a netlist
o Does not refine any node
o Constraints:

- LOC Constraint (# 0)
o Container: top_level_netlist
o Event references:
- beg(datagen1, y2bf1.tokenLabel)
- beg(sum1, bf2y1.tokenLabel)

- LOC Constraint (# 1)
o Container: top_level_netlist
o Event references:
- beg(datagen1, y2bf1.tokenLabel)
- beg(sum1, bf2y1.tokenLabel)

}

*** List of annotations ***
o beg(sum1, bf2y1.tokenLabel) k[0]
o beg(datagen1, y2bf1.tokenLabel) k[1]
o beg(sum1, bf2y1.tokenLabel) k[0]
o beg(datagen1, y2bf1.tokenLabel) k[1]

The print-out of the elaborated constraints

• Constraints are indexed in an node

• Event references are saved

• A list of annotations are saved in
the network

10

Advantages of Elaboration

• Get the network structure before doing anything else

• Resolve runtime keywords or variables

• Useful to many other backend tools

• Simulation – SystemC

• Verification – Promela

• Constraint monitoring or checking

… etc

6

11

How to Use Elaborator

Another backend

Elaboration

Meta model language

Output

Front - end

ASTs

Network Structure

• Elaborated network is normally utilized by
other backend tools

• Call elaborator and get the elaborated
network

• Use runtime library API to access and
manipulate the elaborated network

• Example: SystemCBackend class is defined as
a subclass of ElaboratorBackend class

ASTs

12

Runtime Library

• Represent and manipulate the elaborated network structure

• A set of Java classes located in metropolis.metamodel.runtime

• Java classes in runtime library:

• Network – describe the whole elaborated network

• MMType – specify a particular node type, e.g. a process
type or a netlist type

• INode – represent an object node, e.g. a medium
instance

• INetlist – represent an object of netlist, e.g. a netlist
instance

7

13

Runtime Library (cont’d)

• More Java classes in runtime library:

• MMPort – specify a port type

• IPort – represent a port instance

• Connection – specify a connection between 2
nodes through ports

• Event – represent an event reference, e.g.
beg(process, medium.label)

• Constraint – represent a constraint instance

14

Runtime Library (cont’d)

• The network structure can be accessed by calling runtime
library APIs, for example:

• Network.getNodes() – get a list of nodes in the network

• Network.getNetlist() – get a particular netlist by name

• Network.show() – return a string that describes the
network

• The network structure can also be modified by calling runtime
library APIs, for example:

• Network.flatten() – flatten the elaborated network into
a network where refined nodes and connections are
replaced by their refinements

8

15

LOC Constraints in MMM

• LOC is a transaction-level quantitative constraint
language

• Directly supported by MMM syntex

• Using MMM keywords constraint and loc

• For example (a latency constraint):
constraint {

event P0_start = beg(p0, p0.start);
event P0_finish = beg(p0, p0.finish);

loc(forall (int i) t@(P0_finish,i) - t@(P0_start, i) <= 20);
}

16

Annotation Trace Generation

• An application of elaborated
constraints

• Utilize elaborated constraints and
annotations

• Trace generation – insert “print”
statements into SystemC code

SystemC Backend

Elaboration

Meta model language

Front - end

SystemC code w/
trace generation

Elaborated network &
constraints

ASTs

ASTs

9

17

An Example of Annotation
Trace Generation

constraint {

event P1_start = beg(p1, p1.start);
event C_start = beg(c, c.start);

loc(forall (int i) w@(P1_start,i) == w@(C_start, i));

}

A Constraint in MMM

*** List of annotations ***
o beg(p1, p1.start) w

o beg(c, c.start) w

Elaborated annotations

SystemC Backend

SystemC Simulation w/
trace generation

Trace from SystemC Simulation

BEG_Consumer_Consumer_start 0
BEG_Producer1_Producer1_start 0
BEG_Producer1_Producer1_start 1
BEG_Producer1_Producer1_start 2
BEG_Consumer_Consumer_start 1
BEG_Producer1_Producer1_start 3
BEG_Consumer_Consumer_start 2
BEG_Producer1_Producer1_start 4
BEG_Consumer_Consumer_start 3

18

LOC Checker Generation

• Another example of elaborated
constraints

• Utilize elaborated constraints and
annotations

• We are still working on it

LOC Backend

Elaboration

Meta model language

Executable LOC
Checkers

Front - end

Elaborated
Constraints

ASTs

10

19

A Complete Example of
LOC Checking

publicnetlist IwIr {
public IwIr(String name) {

…
constraint {

event P1_start = beg(p1, p1.start);
event C_start = beg(c, c.start);

loc(forall (int i) w@(P1_start,i) == w@(C_start, i));
}
…

}
}

MMM Source Code

public class IwIr extends metamodel.lang.Netlist {
public IwIr(String name) {
…
/*constraint block*/ {

Constraint __tmpConstraint;
Event P1_start = new Event(Event.BEG, p1, p1, "start");
Event C_start = new Event(Event.BEG, c, c, "start");

// loc(forall (int i) w@(P1_start,i) == r@(C_start, i+1));
tmpConstraint = new Constraint(Constraint.LOC);
Network.net.getNode(this).addConstraint(__tmpConstraint);
tmpConstraint.addEvent(P1_start);
Network.net.addAnnotation(P1_start, "w");
tmpConstraint.addEvent(C_start);
Network.net.addAnnotation(C_start, “w");

}
…

}}

Java Code

20

A Complete Example of
LOC Checking

Elaborated Network

SystemC Backend LOC Backend

Executable Checker

Trace from SystemC Simulation

BEG_Consumer_Consumer_start 0
BEG_Producer1_Producer1_start 0
BEG_Producer1_Producer1_start 1
BEG_Producer1_Producer1_start 2
BEG_Consumer_Consumer_start 1
BEG_Producer1_Producer1_start 3
BEG_Consumer_Consumer_start 2
BEG_Producer1_Producer1_start 4
BEG_Consumer_Consumer_start 3

Error Report

Trace Checker

11

21

To Be Done

• Integrate LOC monitors into SystemC simulation

• Resolve runtime structural keywords, e.g.
getconnectionnum, getconnectionsrc, …

• Check or monitor LTL constraints

