
1

1

Xi Chen, Guang Yang, Harry Hsieh,
Felice Balarin and Yoshi Watanabe

Metropolis Verification
Backends

2

Outline

• Promela Backend in Metropolis

• Formal Verification Methodology

• Model Checker SPIN

• Implementation

• Case Study

• Constraint Checking for Simulation in Metropolis

• Constraint elaboration

• Annotation trace generation

• LOC trace checker generation

2

3

Formal Verification Methodology

Modify original
design

No

Feed to SPIN

Promela
Description

Pass
Verification?

Yes

Translation

Metropolis
Design

Done

Synthesis
procedures

Add constraints
or schedulers

Property
Checking

4

Model Checker SPIN and Promela

Promela is a C-style procedural format with simple
constructs suitable for protocol verification

• Promela language elements
• Concurrent process

• Communication channels

• Atomic statement

• Flow control statements

• Case selection statements

(Holzmann, TranSE’97)

XSPIN Front-End

Promela Parser LTL Parser and
Translator

Syntax Error Reports

1.

Verifier Generator

Optimized Model
Checker

Executable On-
The-Fly Verifier

3.

Interactive Simulation

2.

3

5

Translation from MMM to Promela

• Processes/media

àProctypes with functional inlining

• Dynamic objects, e.g. dynamic arrays

àRestricted and static objects, e.g. static arrays

• Function-architecture mapping

àUsing rendezvous channels to synchronize
functional processes and mapping processes

6

Translation of “await”

“await” statement
• Synchronize concurrent processes

• Multiple critical sections

• Guard and semaphores

• Non-deterministic selection of critical sections

pass ?

await

Guard Test 1

exit await

No

Non-deterministically select
one critical section to enter

Yes

Guard Test k

atomicawait {

(guard1; testlist1; setlists1) {stmts1}

(guardk; testlistk; setlistsk) {stmtsk}

}

4

7

Case Study – Producer/Consumer

Property: “Whenever the producer starts
to write an item into the medium, there
must be some space in the medium”

A typical producer- consumer network

M1

P 1

P m Cn

C1

Environment

When m = 2, n = 1 and M1 has single space, source code: 120 lines, Promela
code: 650 lines. Verification is passed within 1s CPU time and 13MB memory.

LTL: •((P1_write … Pm_write) M1_not_full)∨ →∨

8

Case Study – YAPI and TTL

To check if there is a deadlock situation
within the YAPI and TTL channel, use:

“once the writer starts writing data into
the channel, it will finish it eventually”.

•(datagen_start à (<> datagen_finish))

• This property is verified on the YAPI level with exhaustive
verification within 9 hours.

• A deadlock situation is found in the TTL channel.
• After the bug in TTL channel fixed, the property is passed within

4 hours.

5

9

Future Work

• Safe abstraction

• Automatic Abstraction propagation in Metropolis

Simplified
ModelOriginal Design

Safe abstraction

Properties preserved

Automatically apply the abstractions throughout the
entire design according to initial abstraction specifications

10

Outline

• Promela Backend in Metropolis

• Formal Verification Methodology

• Model Checker SPIN

• Implementation

• Case Study

• Constraint Checking for Simulation in Metropolis

• Constraint elaboration

• Annotation trace generation

• LOC trace checker generation

6

11

LOC Constraints in MMM

• LOC is a transaction-level quantitative constraint
language

• Directly supported by MMM syntax

• Using MMM keywords constraint and loc

• For example (a latency constraint):

• Constraints can be extracted and instantiated
during network elaboration

constraint {
event P0_start = beg(p0, p0.start);
event P0_finish = beg(p0, p0.finish);
loc(forall (int i) t@(P0_finish,i) - t@(P0_start, i) <= 20);

}

12

Constraint Elaboration –
An Example

• If m = 2, there are actually 2 different constraint instances

publicnetlist sumnet {
…
constraint{

event Wevent = beg (…);
event Revent = end (…);
for(j = 0; j < m; j ++)

loc(forall (int i) k[j]@(Wevent,i) == k[j]@(Revent,i));
}
…

}

MMM Source Code

public class sumnet extends metamodel.lang.Netlist {
public IwIr(String name) {
…
/*constraint block*/ {

Constraint __tmpConstraint;
Event Wevent = new Event(…);
Event Revent = new Event(…));
for(j = 0; j < m; j ++) {

// loc(forall (int i) k[j]@(Wevent,i) == k[j]@(Revent,i));
tmpConstraint = new Constraint(Constraint.LOC);
Network.net.getNode(this).addConstraint(__tmpConstraint);
tmpConstraint.addEvent(Wevent);
Network.net.addAnnotation(Wevent , “k[“ + i + ”]”);
tmpConstraint.addEvent(C_start);
Network.net.addAnnotation(Revent , “k[“ + i + ”]”);

}
…

}}

Java Code

7

13

Constraint Elaboration –
An Example (cont’d)

netlist test.sumnet {
o Instance name: top_level_netlist
o component name: null
o Components:

…
…

o Not refined by a netlist
o Does not refine any node
o Constraints:

- LOC Constraint (# 0)
o Container: top_level_netlist
o Event references:
- beg(datagen1, y2bf1.tokenLabel)
- beg(sum1, bf2y1.tokenLabel)

- LOC Constraint (# 1)
o Container: top_level_netlist
o Event references:
- beg(datagen1, y2bf1.tokenLabel)
- beg(sum1, bf2y1.tokenLabel)

}

*** List of annotations ***
o beg(sum1, bf2y1.tokenLabel) k[0]
o beg(datagen1, y2bf1.tokenLabel) k[1]
o beg(sum1, bf2y1.tokenLabel) k[0]
o beg(datagen1, y2bf1.tokenLabel) k[1]

The print-out of the elaborated constraints

• Constraints are indexed in an node

• Event references are saved

• A list of annotations are saved in
the network

14

Annotation Trace Generation

• An application of elaborated
constraints

• Utilize elaborated constraints and
annotations

• Trace generation – insert “print”
statements into SystemC code

SystemC Backend

Elaboration

Meta model language

Front - end

SystemC code w/
trace generation

Elaborated network &
constraints

ASTs

ASTs

8

15

An Example of Annotation Trace
Generation

constraint {

event P1_start = beg(p1, p1.start);
event C_start = beg(c, c.start);

loc(forall (int i) w@(P1_start,i) == w@(C_start, i));

}

A Constraint in MMM

Elaborated annotations

*** List of annotations ***
o beg(p1, p1.start) w

o beg(c, c.start) w

SystemC Backend

SystemC Simulation w/
trace generation

Trace from SystemC Simulation

BEG_Consumer_Consumer_start 0
BEG_Producer1_Producer1_start 0
BEG_Producer1_Producer1_start 1
BEG_Producer1_Producer1_start 2
BEG_Consumer_Consumer_start 1
BEG_Producer1_Producer1_start 3
BEG_Consumer_Consumer_start 2
BEG_Producer1_Producer1_start 4
BEG_Consumer_Consumer_start 3

16

LOC Checker Generation

• Another utilization of elaborated
constraints

• Generate checkers from elaborated
constraints and annotations

LOC Backend

Elaboration

Meta model language

Executable LOC
Checkers

Front - end

Elaborated
Constraints

ASTs

9

17

A Complete Example of LOC
Checking

publicnetlist IwIr {
public IwIr(String name) {

…
constraint {

event P1_start = beg(p1, p1.start);
event C_start = beg(c, c.start);

loc(forall (int i) w@(P1_start,i) == w@(C_start, i));
}
…

}
}

MMM Source Code

public class IwIr extends metamodel.lang.Netlist {
public IwIr(String name) {
…
/*constraint block*/ {

Constraint __tmpConstraint;
Event P1_start = new Event(Event.BEG, p1, p1, "start");
Event C_start = new Event(Event.BEG, c, c, "start");

// loc(forall (int i) w@(P1_start,i) == r@(C_start, i+1));
tmpConstraint = new Constraint(Constraint.LOC);
Network.net.getNode(this).addConstraint(__tmpConstraint);
tmpConstraint.addEvent(P1_start);
Network.net.addAnnotation(P1_start, "w");
tmpConstraint.addEvent(C_start);
Network.net.addAnnotation(C_start, “w");

}
…

}}

Java Code

18

A Complete Example of LOC
Checking

Elaborated Network

SystemC Backend LOC Backend

Executable Checker

Trace from SystemC Simulation

BEG_Consumer_Consumer_start 0
BEG_Producer1_Producer1_start 0
BEG_Producer1_Producer1_start 1
BEG_Producer1_Producer1_start 2
BEG_Consumer_Consumer_start 1
BEG_Producer1_Producer1_start 3
BEG_Consumer_Consumer_start 2
BEG_Producer1_Producer1_start 4
BEG_Consumer_Consumer_start 3

Error Report

Trace Checker

10

19

Future Work

• Integrate LOC monitors into SystemC simulation

• Check or monitor LTL constraints

20

Thank you!

