UNIVERSITY OF CALIFORNIA
RIVERSIDE

Verification and Analysis of System Designs With Functional and Performance Constraints

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Xi Chen

August 2005

Dissertation Committee:
Dr. Harry Hsieh, Chairperson
Dr. Felice Balarin
Dr. Laxmi N. Bhuyan
Dr. Frank Vahid

Copyright by
Xi Chen
2005

The Dissertation of Xi Chen is approved:

Committee Chairperson

University of California, Riverside

ACKNOWLEDGMENTS

First and foremost, | would like to express my gratitude to Prof. Harry Hsieh, who has
led me to the research field and guided me throughout the entire graduate career with his
constant enthusiasm and patience. Harry has taught me almost everything about being a
gualified researcher. Without his invaluable encouragement and support, | would not have
been able to finish this work.

| am also grateful to Dr. Felice Balarin and Dr. Yosinori Watanabe from Cadence Berke-

ley Laboratories for their important advice and contributions to this work. | have benefited

significantly from the collaboration and discussions with them. Their suggestions and com
ments have always substantially influenced and improved the final results.

| must also thank team members of the Metropolis project led by Prof. Sangiovanni-
Vincentelli from University of California at Berkeley. The work presented here has mostly
been done within the framework of the Metropolis project, and it has benefited greatly from
many discussions with team members.

Thanks also go to the computer architecture group led by Prof. Laxmi Bhuyan for pro-
viding me with their network processor simulator NePSim, a comprehensive and realistic

experimental platform for several case studies presented in this thesis.

To my wife and parents.

ABSTRACT OF THE DISSERTATION

Verification and Analysis of System Designs With Functional and Performance Constraints

by

Xi Chen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2005
Dr. Harry Hsieh, Chairperson

With the increasing complexity and heterogeneity of today’s embedded systems, design
methodologies at higher levels of abstraction become a necessity. It is expected that the
next major productivity gain will come in the form of system level design since designing
at the register transfer level or sequential C-code level is no longer efficient. It follows that
new verification and analysis technologies have to be developed in each and every step of
the design flow in order to catch design errors as early as possible and to reduce the overall
design cost.

Simulation remains a major means of verification for complex system level designs, espe-
cially when designs are refined with more design details realized. In this work, a simulation
verification methodology is proposed based on trace analysis and automatic trace checker
generation. From formal specification of design constraints with mathematical logics such

as Linear Temporal Logic (LTL) and Logic of Constraints (LOC), i.e. formal assertions,

Vi

monitors or checkers are automatically generated and used to verify simulation traces dur-
ing or after simulation. As a major contribution, LOC formalism is extensively studied, and
an efficient checking algorithm is proposed. LOC is also used in automatic generation of
distribution analysis tools, which have been exercised on low power techniques in network
processor architectures. By utilizing formal assertions, a designer can easily verify both func-
tional and performance constraints of a design in simulation. In addition, a deadlock analysis
mechanism is proposed with built-in simulation monitors. This approach is demonstrated in
the Metropolis design framework.

For small but important designs or library modules that will be instantiated many times,
exhaustive verification is possible and useful. A formal verification methodology for system
level design is therefore proposed, where an existing software formal verification tool (e.g.
Spin) is utilized as the back-end verification engine, and an automatic translation mecha-
nism from system specifications to verification models is developed. Furthermore, automatic
abstraction propagation algorithms can be used to simplify the verification models. In this
study, Metropolis is used as a major experiment platform, where a designer is allowed to
formally verify design constraints specified with LTL and LOC within the integrated design

framework.

vii

Contents

[List of Figures| Xiii
List of Tables XVi
(1__Introduction| 1
(1.1 SystemLevelDesign L 2
1.2 VernficationMethods e 3
nd Performan nstraints 5
[I.4 Metropolis Design Framewark 10
[I.4.1 Framework and Design Methodolpgy 10
[1.4.2 Metropolis Meta-Model Langudge 11
[I.5 ThesisOverview 15
[2 Logic of Constraintg 18
2.1 Introductionto LOC 18
2.2 LOC Syntaxand Semantics 22

viii

[2.3 Expressivenessof LOC

[2.4 Checking LOC Formulas with Simulatijon 27
[2.4.1 Runtime Monitoring 30
[2.4.2 Dealing with Memory Limitation 31
243 ACaseStudyof FIRFilter 32

2.5 Formal Verification of L Formulas, 35

2.6 Complexity of Veritying LOC Formulas 38

Simulation Verification and Analysis Based on Formal Assertions 50

[3.1 Methodology of Simulation Verification and Analysis 50

[3.2 Simulation Verification in Metropolis 52
[5.2.1 A Picture-in-Picture Design 53
[3.2.2 A Function-Architecture Mapping Modlel 56

(3.3 Verification for Network Processor Architectures 58
[.3.1 Introduction to Network Processors 59
3.3.2 Network ProcessorModlel 61
[3.3.3 Experimental Settings oo 63
.34 Verification Studiés 65

[3.4 Performance and Power Analyis for Network Processor Architectures
[.4.1 Experimental Settings 75

77

[3.4.2 Dynamic Voltage Scaling,

[.4.5 PowerAnalysjs

[3.4.4 Design ExplorationforDV(S

4 Deadlock Analysis with Bullt-in Simulation Monitors|

[4.1" Tntroduction to Deadlock Analyéis

[4.2 Synchronization in Metropolis

42,1 Synchronizafion Consfructs

4.2.2 Deadlockin Metropolis.

[4.3 Synchronization Dependency and Deadlock Anglysis

4.3.1 Deadlock Analysis Methodology

[4.3.2 Dynamic Synchronization Dependency Graph

[4.3.5 Deadlock Detection Algoritim

4.3.4 Implementatign

[4.4 Case Studies of Deadlock Analysis

4.4.1 A Function Model for Video Processing

[4.4.2 A Function-Architecture Mapping Modglel

[0 Formal Verification for System Level Designs

1 Intr lon to Formal Veritication

[2.2 Formal Verification Methodology

0.3.1 MMM Processes

[0.3.3 DynamicObjects 124
[°.3.4 Function-Architecture Mappihg L. 125
5.4 Producer-ConsumerNetwork 126
[0.4.1 Verification of Data Integrity 126
[0.4.2 Assumptions and Schedulers Lo oL 129
5.4.3 Transformation and Refinement 130
[5.5 Automatic Abstraction and Propagation 132
[(.5.1 Controland Data Dependency Gfjaph 135
[0.5.2 Abstraction Propagation Algorithims 137
6.6 Formal Verification for TTL Channel 140
£5.6.1 ADeadlockFree Constrdint 141
[0.6.2 Checking Data Consistenpcy 143
nclusion 146
Bibliograp 149
A Formal LOC Syntax and Semantic$ 154
[A.1 Representing System Behaviors, 154
A2 TOCSyntak 156
A3 TOCSemantids i i i 158

Xi

B Proof of LOC Veritication Complexity | 161

Xii

List of Figures

(1.1 System level design methodology 3
[I.2 Metropolisdesignframework 11
1.3 Anexample of MMM specificatipn 13
(1.4 Function-architecture mapping« v oo 15
2.1 AFIR design and its simulationtrace. 32

[2.2 A system generating 1 for every third valuergiand every fifth value of,| . 44

[3.1 Simulation verification and analysis based on formal asseftions 51

[3.2 Picture-in-Picturedesign. oL 53
B3 PiPsimulationtrack 54
[3.4 Afunction-architecture mappingmofel 56
B5 IXPI200architectute. oo 62
3.6 NePSim simulationtrace 65
[3.7 Distributionof IPpackets 76
[3.8 NePSim simulation trace for performance and power anglysis 78

Xiii

[3.9 Power distribution graph for4 benchmatks 80

[3.10 Power under different design points with TDVS. 84
[3.11 Throughput under different design pointwith TDVS 84
[3.12 Power under different design points with TDVS. 86
[3.13 Throughput under different design points with TDVS. 86
[3.14 Power and performance distributionfor EDVS 88
[3.15 Energy comparisons for employingDQVsS. 89
[4.1 Anexampleofsynchconstraint. 97
[4.2 Deadlock analysis methodolagy 101
M3 DSDGexamplés o v i 103
[4.4 Picture-in-Picturedesign. o 108
[4.5 RESIZE unit and its synchronization dependencies 110
[4.6 A mapping model and its synchronization dependepcies 111
[>.1 Metropolis formal verification methodology 118
[5.2 Example of a bytelink meta-mofdel 119
[0.3 Translations of MMM functions 122
[>.4 Translation of an await statement. 123
[65.5 Verification error trace produced by Spin. 129
[5.6 Example ofadesignrefinement 131
[5.7 Metropolis compiler architecture with abstraction propagation. 134

Xiv

XV

List of Tables

[2.1 Costs of checking formulas (2.1)-(2.5)onFIR. 33
[2.2 Time usage of simulation and checking formula (2.2) onkIR 33
[2.5 Costs of checking constrait (2./)onkIR 34
[3.1 Power and performance of Intel IXPNPUs 60
[3.2 List of events for verification. 64
[3.3 Verification results for functional assertigns. 70
[3.4 Veritication results for performance assertipns 74
[3.5 List of events and event annotations for performance and power analysis 77
[3.6 Powervaluesforthe4benchmarks 79
[3.7 Voltagescalingvalués. 83
[4.1 Summary of deadlock analysis case studies 112
6.1 Summary of verification for the producer-consumer netwark 128
(.2 Summary of formal verificationfor TTL chanpel. 142
[2.3 Summary of formal verification for data consistency 145

XVi

Chapter 1

Introduction

The increasing complexity of embedded systems today demands more sophisticated design
and verification methodologies. Systems are becoming more integrated as more and more
functionalities and features are required for products to succeed in the market. Embed-
ded system architectures likewise have become more heterogeneous as it is becoming more
economically feasible to have various computational resources (e.g. microprocessor, digi-
tal signal processor, reconfigurable logics) all utilized on a single ¢hip [62]. Designing at
the register transfer level [38] or sequential C-code level is no longer efficient. More than
ever, design and verification methodologies at higher levels of abstraction are required to fill
the gap between the increasing semiconductor manufacturing capabilities and the lag-behind

design productivity.

1.1 System Level Design

The system level design methodology, based on orthogonalization of design concerns, as
well as pre-defined platforms, has been proposed for the next major productivity gain [47].
To combat complexity and to explore design space effectively, it is necessary to represent sys-
tems at multiple levels of abstraction. Initial specification of the function and the architecture
of a system is done at a high abstraction level without particular lower level implementa-
tion details. The function is then mapped onto the architecture after iterations of refinement
procedures (see Figure [1.1). Significant advantages in design flexibility, as compared to the
traditional fixed architecture aralpriori partitioning approach, can result in significant ad-
vantages in the performance and design cost of the product.

Synthesis (i.e. steps taken toward implementation) is applied systematically to transform
high level specifications to manufactured products. Synthesis steps may include structural
transformations, a design is partitioned, composed, or otherwise altered; formal refinements,
where possible behaviors of a design are formally refined through the use of constraints or
implementation annotations; and mapping, where the functional specification at a particular
abstraction level is mapped to an architectural specification at a particular abstraction level.
There therefore exist multiple levels of abstraction in a design flow, which also indicates ne-
cessity for suitable verification techniques to be applied at each level. A formal grounding for
all system representations and operations is essential for the ability to perform analysis and

optimization with high degree of automation. Furthermore, abstraction is an effective oper-

System Architecture
(Platform)

\ /

v

Function on Architecture

v

Implementation

System Function

Figure 1.1:System level design methodology

ation to manage complexity during verification procedures. The tendency is to abstract (or
simplify) the design for verification purposes and to refine the design as more implementation

details are determined.

1.2 \Verification Methods

In general, verification is a process to make sure if a design is what a designer intends to
design. Due to the increasing complexity of today’s embedded system designs, errors are
likely to happen at all stages in the design flow. It has been reported that more than 70%
of the development time is spent on design verification, and verification is becoming the
bottleneck in the semiconductor industry according to International Technology Roadmap for
Semiconductors (ITRS) [11]. This number is even expected to grow in the future and imposes
yet unsolved challenges on tomorrow’s design automation industry. Therefore, verification

of system designs (embedded hardware/software systems) is one of the most important tasks

in the design process. To cope with the increasing complexity, various attempts have been
made to increase design productivity.

Traditionally, most verification techniques have been based on simulation and testing
methods|[15, 40, 31]. At high levels of abstraction, executable simulation models are built
from design specifications. Since it is usually prohibitive to exhaustively simulate all the
possible execution paths of a simulation model, test cases are carefully designed or selected
to achieve as much coverage as posﬂbl’éesting is done at a lower abstraction level once
a product prototype is available, and random test cases are automatically generated and used
to check if the execution of the prototype is correct.

More recently, formal methods such as temporal property checking or symbolic model
checking have become increasingly popular|[51, 27]. Formal verification techniques attempt
to overcome the weakness of non-exhaustive simulation by proving the correspondence be-
tween some abstract design specification and the original design. The abstract model of a
design is represented symbolically or with efficient data structures such as hash tables, and
then the entire state space is searched for any design errors or property violation. The com-
plexity of searching the entire state space is at least exponential to the number of states, so
formal verification techniques are expensive, and their applicability is currently restricted to
small or medium sized designs or to a specific phase in the design cycle.

To make the practice of designing from high level system specification a reality, verifica-

tion methods must accompany every step in the design flow. Specification at the system level

Lverification coverage is the percentage of a design that is checked in the verification

makes formal verification possible. Designers can prove a property of a design by writing
down the property they want to check in some logic (e.g. CTL [36] and LTL [59]), generate
verification models from the design specification automatically or semi-automatically, and
use a formal verification tool (e.g. the model checker SMV [55] and Spin [42]) to run ex-
haustive verification. Then the entire state space of the design can be searched to verify the
specified property without any uncertainty.

As designs are refined with more implementation details realized, however, the complex-
ity can quickly overwhelm the automatic tools, and simulation becomes the primary means
for verification. The confidence of a simulation verification mainly depends on the design or
selection of test cases. In order to uncover bugs of designs during simulation, designers can
insert embedded assertions, i.e. formally specified design properties or constraints, into their
design specifications in hardware description languages or high level modeling languages.
Today'’s assertion languages capture those simple logics as language or platform specific li-
brary blocks. A set of extended temporal connectives or regular expression operators are
then used to operate on those blocks for expressing more complex assertions. Examples of

assertion languages include PSL [6] and OpenVera [4].

1.3 Functional and Performance Constraints

In this work, Linear Temporal Logic (LTL) [59] and Logic of Constraints (LOC)|[19] are two

main logics used for specification of design constraints. It will be shown that LTL and LOC

have different domains of expressiveness and indeed complement each other quite well. At
the verification stage, both static and runtime verification techniques can be used to check the
design constraints and to report design errors if there is any constraint violation.

LTL is suitable for specifying functional constraints, such as mutual exclusion, liveness,
and safety, and can effectively describe the temporal patterns of system state transitions. LTL
is defined oveexecution®f a system, i.e. linear sequencestaite transitionsLTL formulas
are constructed using terms, i.e. Boolean expressions on variables or system states, classical
Boolean operators such as(not), vV (or), A (and), and— (imply), and the linear temporal
operatorss (always),F (eventually) X (next), andJ (strong until). For exampléxA) is true
if A'is true for all statesF(A) is true if A eventually becomes true in a future sta@d) is
true if A is true in the following state, and A B is true if B eventually becomes true in a
future state and A is true from the current state to that future state.

It has been proved that LTL formulas can be translated to equivalesttiButomatz [63].

Based on this theory, formal techniques like model checking are developed and utilized for
verification of both digital designs (e.g. SMV [55]) and software protocols(e.g. Spin [33]).
LTL is also used as the basis for the formal constraint specification for simulation verifi-
cation [4]29], which is important to assure the integration and correctness of reusable IP
(Intellectual Property) blocks. LTL has been a very popular and well studied logic for more
than a decade, so its details will not be covered in this thesis.

We believe that the existing logics or hardware assertion languages are not natural to ex-

press more abstract constraints such as transaction level constraints, where only the events

observable from a system and their annotations are considered. Nor are they convenient
to directly express performance constraints that are quantitative in nature (e.g. latency or
throughput). To this end, we propose a constraint formalism: Logic of Constraints (LOC).
LOC is designed for specification of performance constraints such as rate, throughput, and
latency, as well as quantitative functional constraints such as I/O data consistency at the trans-
action level, where system events and their annotations are considered. It is very well-suited
for analyzing traces from execution of higher, transaction level system models. LOC consists
of all the terms and operators allowed in sentential lggi¢ [30], with additions that make it pos-
sible to specify quantitative constraints without compromising the ease of analysis. The basic
components of an LOC formula include event names (@;g/ine andsram_eng), instances

of events (e.gpipeline[4]), indices of event instances (e.g. 0, 1, ..., etc), the index variable

7, and annotations (e.g:ycle, pc, andaddr). LOC can be used to specify many important
system level performance constraints that are inconvenient, and sometimes impossible, to

specify with other logics. For example, the rate constraints:

cycle(pipelineli + 1]) — cycle(pipeline[i]) = 10 (1.1)

requires that the difference between the values of annotatiaa for any two consecutive
instances opipeline event should equal to 10. A complete study of LOC will be presented
in Chaptef .

Constraint definition is central to many methodologies. A general approach is taken by

the Rosettd [16] language: different domains of computation are described declaratively and

constraints can be expressed as predicates on some defined quantities. Constraints are then
applied by combining the different domains. In this work, we restrict the scope of constraint
definition in favor of a representation that is more natural to the designer and that is more
computationally tractable.

Object Constraint Language (OCL) [1], part of the Unified Modeling Language (UML),
takes a more restricted approach. OCL supports invariants, pre- and post-conditions, and
guards, applied to classes, operations of classes, and states, respectively. Another related pro-
posal is the Design Constraints Description Language (DCDL) [2] sponsored by Accellera,
which is intended mostly for low-level (i.e. chip-level) constraints like clock slew, operating
voltages, and port capacitances. In both of these approaches, constraints are specified for a
collection of entities that represent a system (classes and their operations and states in case
of OCL, and physical objects in case of DCDL). This facilitates specifying constraints asso-
ciated with the system as a whole, e.g. area, yield, testability, and time to market. In contrast,
we focus on specifying constraints for particular executions of a system, like response time,
energy consumption, and memory usage. OCL also supports this, to some extent, through
pre-conditions, post-conditions, and guards. However, while these constructs naturally ex-
press constraints on a single transition, LOC makes it easy to express constraints that span
several transitions. In fact, in our approach, it is easy to specify constraints for which it is
impossible to bound in advance the number of transitions needed to check them.

Many constraint formalisms have been proposed that are at most as expressive as

regular languages (and in some case strictly less expressive). An incomplete list includes

S1S [22], LTL [59], PSL[[6], HAAD [24], and many variants of finite-state automata on
infinite words, e.qg./[17,37]. MONA [39], on the other hand, is based on regular languages
and finite-state automata on finite words. It is believed that LOC is a good complement to all
these approaches, as there are certain natural constraintsl@éagconsistencthat are not
w-regular, but can be expressed and verified (both formally and by simulation) using LOC.
Real-Time Logic (RTL)|[45] is a formalism for expressing timing constraints in real-time
systems. With RTL, the constraints are specified by means of timing relations on occurrences
of events. RTL was primarily intended for formal reasoning, while LOC is more biased to-
ward simulation monitoring. For example, RTL allows any number of index and time vari-
ables which can be arbitrarily quantified. This makes it very unsuitable for verification by
simulation. In contrast, LOC allows only one index variable and no time variables or quan-
tification. This choice is made precisely for the purpose of efficient simulation monitoring.
Also, arithmetic in RTL is limited to Presburger arithmetic (i.e. linear inequalities), to ease
formal reasoning, while LOC allows more complex expressions, because they can be handled
quite easily in simulation. This separation of purposes is not total. When we consider a subset
of LOC suitable for formal verification, we restrict LOC to Presburger arithmetic. Similarly,
Mok and Liu have proposed a subset of RTL suitable for simulation monitaring [56,57], and
that subset indeed resembles LOC. However, they have not proposed any automatic formal
verification technique for that subset. A subset of LOC suitable for formal verification can be
seen as a generalization of the subset of RTL suitable for simulation monitoring, as it allows

specification of constraints related to annotations other than time. In fact, data consistency,

one of the constraints that distinguish LOC from formalisms based-megular languages,

also distinguishes it from RTL, as it does not involve time at all.

1.4 Metropolis Design Framework

Metropolis is developed as an integrated and unified design framework for next generation
system level design [20]. Metropolis allows designers to represent and manipulate their
designs at multiple levels of abstraction and with multiple models of computation (MoC).
Central to the design framework is a high level modeling language, Metropolis Meta-Model
(MMM), and a set of back-end tools are integrated into the framework, with which one can
simulate, synthesize, and verify a design at hand. Metropolis is used as the main experiment

platform throughout this thesis.

1.4.1 Framework and Design Methodology

The integrated design environment consists of a design specification language, Metropolis
Meta-Model (MMM), a front-end that constructs intermediate representations and analyzes
static network structures, and a set of back-end tools that are responsible for simulation, syn-
thesis, verification, and other tasks. Different high-level languages, models of computation,
design constraints, as well as specifications of system functions, architecture platforms, and
function-architecture mappings can be represented in MMM while retaining their precise

semantics. Constructs in MMM are designed to facilitate transformations and refinements

10

Design Architecture
Constraints Specification

P

Metropolis Infrastructure

Function
Specification

e Design methodology

® Base tools
- Design imports
- Simulation

® Meta-model of Computation

Metropolis Point tools: Metropolis Point tools:
Synthesis/Refinement Analysis/Verification

Figure 1.2:Metropolis design framework

between different abstraction levels. Different design aspects are orthogonalized, such as
computation versus communication, function versus architecture, and specification versus
implementation. The design complexity can therefore be effectively reduced, and the de-
sign space can be efficiently explored. Figurg 1.2 shows a flow diagram for the Metropolis

framework.

1.4.2 Metropolis Meta-Model Language

Metropolis Meta-Model is a system representation formalism capable of representing designs
at different levels of abstraction. A description of a system (function and/or architecture) can

be made in terms of computation, communication, and coordination.

11

Processes, Media, and Netlists

In Metropolis Meta-Model, systems are represented as netwogk®oésseshat communi-

cate throughmedia[18]. Processes and media are used to describe computation and commu-
nication respectively. The syntax of MMM is similar to Java but includes many system level
modeling extensions. A process defines an active object and always includes a method called
threadas the top-level method, where its behavior is specified. A communication medium
implements a set of methods that are declarethierfaces Processes connect to media
throughports. Each port has a type that must be an interface implemented by the medium
to which the port is connected. Processes communicate to each other by invoking interface
methods implemented in the shared media through these ports.

In MMM, objects such as processes, media, and their connectivities can be grouped in a
netlist which is used to model a complete network. Fidure 1.3 shows an example of a func-
tional netlistFuncNet The netlist defines two processpg,andp2, communicating through
a mediumml A netlist can also contains other netlists to form a hierarchical network. In ad-
dition, refinement constructs are available to specify that one netlist is the formal refinement

of another within a network.

Coordination

Processes run concurrently, each at its own pace. The relative speed of processes may arbi-
trarily change at any time, unless they synchronize with each other using the synchronization

primitive calledawait, or if constraintsare specified in the system. The await statement can

12

e B\
process P{ FuncNet medium M{
port pX, pZ; int[] storage; int space;
thread(){ void write(int[] Z) {...}
//condition to read X int[] read() {...} }
1 2
//an algorithm for f(X)| || P c @) P c
/lcondition to write Z pX pZ pX pZ netlist N {
} Ppl, p2; M ml;
1 //connections
L) //constraints }
Computation Coordination Communication
*X-—>Z * constraints on * state
* firing rule concurrent actions * methods to
* algorithms to enforce — store data
the constraints — retrieve data
process constraints or await medium

Figure 1.3:An example of MMM specification

be used to make a process wait until some condition holds and establish critical sections that
guarantee mutual exclusion among different processes. To limit the behavior of processes,
a designer can also specify high-level LTL (Linear Temporal Logic) [59] or LOC (Logic of
Constraints)|[19] constraints and leave the implementation of these constraints to the detail
design stage.

The await statement is used to establish mutually exclusive sections and synchronize
processes. It contains one or more statements catlgdal sections,each controlled by a
triple (Quard testlist setlis), where the guard is a Boolean expression, and the testlist and
setlist denote sets of interface methods that other processes can call. A critical section is
said to beenabledif its guard is true, and none of the interface methods in the testlist are
being executed at that moment. A critical section may start executing only if it is enabled.

In addition, while the critical section is being executed, no interface methods included in

13

the setlist can begin their executions. Whenever an await is encountered in the execution
flow, one and only one of the enabled critical sections is executed. If no critical section is
enabled, the execution blocks. If more than one critical sections are enabled, the choice is

non-deterministic.

Function, Architecture, and Mapping

The function-architecture separation and mapping are natively supported in the Metropolis
Meta-Model language. The function and architecture of a system are defined independently
at a high level of abstraction. The function is then mapped to the architecture in order to
arrive at a given implementation.

Both the function and architecture of a system are modeled as separate networks of pro-
cesses communicating through media. In an architectural network, resources are typically
modeled with media, services that the architecture can provide are modeled with so called
mapping processeand arbitrators among multiple architectural resources are modeled with
guantities A third network can be defined to encapsulate the functional and architectural
networks and teelatethe two by synchronizing events between them wsithchconstraints.

Figure[4.6 shows a mapping netwadvkapNetlistthat correlates the functional network
FuncNetlistwith the architectural networkrchNetlist The functional network includes two
processepl andp2 communicating through medial andenv. The architectural network
contains medi£PU, BUSandMEM, and the corresponding mapping processes. The synch

constraints are used to synchronize the events from the functional processes and the mapping

14

(.
MapNetlist

(e
FuncNetlist ArchNetlist

o
E 7

(S J/

synch(beg(pl, pl.write), beg(MapP1, MapP1.CPUwrite));
synch(beg(pl, pl.read), beg(MapP1, MapP1.CPUread));
synch(beg(p2, p2.write), beg(MapP2, MapP2.CPUwrite));
synch(beg(p2, p2.read), beg(MapP2, MapP2.CPUread));

Figure 1.4:Function-architecture mapping

processes. ScheduleddsSchedndBusArbiter which are modeled with quantities, coordi-
nate the architectural resources and provide performance models to the architectural network.
During execution, architectural media and mapping processes can request the quantitative an-

notations from the quantities.

1.5 Thesis Overview

In this thesis, we present a complete study of system level verification and analysis techniques
based on formal specification of design constraints. The focus is to automate the verification
and analysis process at different stages of the design flow. The rest of the thesis is organized
as follows. In the next chapter, a complete study of LOC formalism is presented. The syntax,
semantics, and verifiability of LOC are discussed in detail. In addition, the verification and

analysis algorithms for LOC formulas are proposed.

15

In Chaptef B, we focus on assertion-based simulation verification and analysis for system
level designs. We discuss how assertion languages based on mathematical logics such as
LOC and LTL are used in simulation verification for both functional and performance design
constraints. Furthermore, LOC formulas are shown to be useful in design exploration with
performance and power trade-off analysis by automatically generating quantitative distribu-
tion analyzers. The techniques are demonstrated with case studies of a network processor
architecture design.

A simulation-based deadlock analysis mechanism is presented in Chapter 4. We show
that, for certain common design constraints such as deadlock or starvation, a built-in detec-
tion and analysis method based on simulation is more efficient to use than general assertion
languages or formal methods. The causes of deadlock problems are analyzed, and data struc-
tures and algorithms are proposed for simulation time deadlock monitoring and analysis. The
experiments are done within the Metropolis framework and used to show the effectiveness of
the approach.

In Chaptef b, we propose a formal verification methodology for system level designs. In
this approach, an existing software formal verification tool is utilized as the back-end veri-
fication engine, and system specifications are automatically translated into lower level veri-
fication models. A designer is then allowed to verify formally specified design constraints,
and to refine the design or the constraints according to the verification results. In addition, an
automatic abstraction propagation technique is proposed to simplify verification models. By

implementing this methodology, a verification back-end tool is integrated in the Metropo-

16

lis framework, and its usefulness and effectiveness are demonstrated through several case
studies.

Chaptef b concludes the thesis and summarizes the contributions of this work.

17

Chapter 2

Logic of Constraints

In this chapter, we introduce our quantitative constraint formalism, Logic of Constraints
(LOC). LOC is particularly suited for specification and simulation analysis of performance
constraints at the transaction level, where only the events observable from the system and

their annotations are considered, as will be shown later in this chapter.

2.1 Introduction to LOC

The LOC formalism is compatible with a wide range of functional specification formalisms
that describe a system as a network of components communicating through fixed intercon-
nections. The observed behavior of the system is usually characterized by sequences of
values observed at the interconnections. LOC is a formalism designed to reason about traces
from the execution of a system. It consists of all the terms and operators allowed in sentential

logic, with additions that make it possible to specify system level quantitative functional and

18

performance constraints without compromising the ease of analysis. LOC can be used to

specify many common and useful real-time performance constraints.

e rate, e.g. Display’s are produced every 10 time units”:

t(Displayli + 1]) — t(Display[i]) = 10 (2.1)

e latency, e.g. Display is generated no more than 25 time units aftgmuli”:

t(Display[i]) — t(Stimuli[i]) < 25 | (2.2)

e jitter, e.g. “everyDisplay is no more than 4 time units away from the corresponding

tick of the real-time clock with period 10

| t(Displayli]) — (i +1) %10 | <4 | (2.3)

e throughput, e.g. “at least 10Display events will be produced in any period of 1001
time units™

t(Display[i + 100]) — t(Display[:]) < 1001 (2.4)

e burstiness, e.g. “no more than 100@splay events will arrive in any period of 9999
time units”™:
t(Display[i + 1000]) — t(Display[i]) > 9999 . (2.5)

19

In addition, LOC can also be used to specify quantitative functional constraints such as

the data consistency, e.g. “the input data should be the same as the output data”:

data(inputi]) = data(output[i]) . (2.6)

It should be emphasized that time is only one of the possible annotations. Any value that
may be associated with an event (e.g. power, area, data value) can be used as an annotation.
In the case of concurrent events, the values of time annotation should be the same. The
indices of instances of the same event denote the strict order as they appear in the execution
trace. There is no implied relationship between instances of different events. LOC can be
used to express relationship between the annotations of the different instances of the same
event (e.g. rate), or instances of different events (e.g. latency).

The latency constraint above is truly a latency constraint only it /i and Display
are kept synchronized. Generally, we will need an additional annotation that denotes which
instance ofDisplay is “caused” by which instance of th&imuli. If the cause annotation is

available, the latency constraint can be more accurately written as:

t(Displayli]) — t(Stimuli[cause(Display[i])]) < 25 , (2.7)

and such an LOC formula can easily be analyzed with simulation. However, it is the respon-
sibility of the designer, the program, or the simulator to generate such an annotation.

A constraint formalism is not meaningful unless there exists a clear and efficient path to
verification. An efficient simulation-based approach is proposed for analyzing LOC formulas

20

(see Sectiop 2]4). C++ trace checkers are automatically generated from LOC formulas. The
checkers analyze the simulation traces and report any constraint violations. In most cases,
the traces are scanned only once and memory usage is very low. The automatic checker
generation is parameterized, so it can be customized for fast analysis for specific verification
environments (e.g. memory limitation). The choice of C++ for the checkers is a matter of
convenience. It allows us to tightly integrate the checkers with the SystemC [7] simulator for
runtime monitoring. No major difficulty exists to generate checkers in HDLs for integration
with hardware simulators, or in Java for concurrent execution with the software simulators.

A simulation-based approach can only disprove the LOC formula (if a violation is found),
but it can never prove it conclusively, as that would require analyzing the design space ex-
haustively. However, for small but important designs or library modules that will be instan-
tiated many times across different designs, it may be necessary to formally prove the desired
properties. Formal verification is more expensive though the designers can be more confi-
dent about the result. It should be used only for small but important design modules (e.g.
Task Transition Level (TTL) channel [32]), possibly in concert with simulation verification
of the entire system. An exact verification algorithm exists for a broad class of LOC formu-
las (see Sectign 2.5). However, due to the high complexity of this algorithm, an alternative
is provided in this study. We propose a formal verification approach where LOC formulas
are translated into verification models in Promela (Spin’s modeling language [42]) and LTL
formulas. This approach is complete for a restricted subset of LOC. It can also be applied to

a wider subset, but results might then be inconclusive, i.e. the verification is only partial.

21

While similar in spirit to the hardware embedded assertion languages, our LOC formal-
ism and simulation verification approach are indeed useful in at least three fundamental as-
pects. First, Logic of Constraints is designed for specifying all quantitative performance
and functional constraints, not just functional ones. This means that one can easily specify
requirements on timing or power consumption of the systems being designed, in addition
to those on the functional correctness. Second, LOC can be used to specify performance
constraints effectively, while many LOC properties cannot be expressed with LTL directly.
Third, system level functional and performance constraints written in LOC can be automati-
cally and efficiently synthesized into static checkers, runtime monitors, or formal verification

modules.

2.2 LOC Syntax and Semantics

Here we give an informal overview of LOC syntax and semantics. Full details are given in

AppendiX A. The basic blocks of LOC formulas are terms, which can be either:
e constants, or
e integer variable (the only index variable that can appear in an LOC formula), or

e expressions of the form(e[n]), wherea is an annotation name,is an event name,

andindex expression is an integer-valued term, or

e combination of simpler terms using usual arithmetic operators.

22

We interpreta(e[n]) as the value of annotatianof then-th occurrence of event All other

terms are interpreted naturally. Terms can be combined using relational operators to create
atomic LOC formulas. Finally, LOC formulas are standard Boolean expressions over atomic
formulas.

LOC formulas may contain only one index variable, namelyHaving only one index
variable may seem very restrictive, but so far we have not found a natural constraint that
required more than one. In effect, the ability of defining annotations allows one to specify
formulas that otherwise require more than one index variable. On the other hand, having only
one index variable enables efficient simulation monitoring.

Models of LOC formulas contain a sequence of occurrences for each event name in the
formula. Such structures are calladnotated behavior€EEach occurrence may be annotated
with some annotation, but we do not require each annotation appearing in the formula to be
defined. This feature is important for our design methodology, where performance require-
ments are specified early in the process, even though they can be evaluated much later, when
many implementation details are set.

Given an annotated behavior, the formula is evaluated for each value of index variable
7. This is done in quite a standard fashion, except that we need to consider the fact that
some terms may not be defined (either because there are only finitely many occurrences of an
event, or because an annotation is not defined for an existing event occurrence). To deal with
this, the third logical valuendef is introduced. In general, all operators (including Boolean)

returnundef if one of their operands arendef. The only exceptions are conjunction with

23

false (which is false), and disjunction withtrue (which is true). Finally, the annotated

behavior satisfies the formula if it does not evaluatg:fec for any value of;.

2.3 Expressiveness of LOC

In this section, we discuss the expressiveness property of LOC especially in its relationship
with the well known Linear Temporal Logic (LTL). It should be noted that LTL is defined on
the state transition level where any change at the system state is accounted for, while LOC
works on a higher abstraction level, in which only the events observable from the system and
their annotations are considered. This apparent difference, however, is just a technicality,
because it is not difficult to hide state transitions so that LTL and LOC are defined over the
same kind of objects.

Through several examples and claims, it is concluded that LOC and LTL are incompara-

ble and have different domains of expressiveness.
Claim 1 There are LOC formulas that can be expressed with LTL.

Since both LOC and LTL contain basic Boolean expressions, a subset of LOC constraints
that specify simple global Boolean conditions can be expressed in LTL also. For example,
the constraint, “the annotatiotuta of the eventDisplay is always greater than 1007, is
expressed in LOC as:

data(Displayli]) > 100 . (2.8)

24

If we use a variabl@isplay_data to store the value oflata in the design, and use a flag
Display_occur to indicate that an instance of the evéntplay occurs, this constraint can be

easily expressed in LTL as:

G (Display _occur = (Display_data > 100)) . (2.9)

Claim 2 There are LOC formulas that cannot be expressed with LTL.

Many quantitative constraints that can be easily expressed by LOC are not suitable for
LTL. Specifically, when more than one events need to be compared in the same constraint
(e.g. the latency constraint), LTL is not expressive enough to be used. For example, the data
consistency constraint:

data(inputi]) = data(output[i]) (2.10)

requires comparing each instanceaftput with the instance ofnput with the same in-
stance index. After the-th input occurs, it is unknown when the-th output will occur,
i.e. the number ofnput instances that may occur before thwh instance obutput is arbi-
trarily large. Therefore, this constraint cannot be modeled by a finite-state system, and it is
impossible to express it using any formalism based aegular languages, such as LTL or
PSL.

It is interesting to note that there are simple LOC formulas that cannot be expressed by
LTL even though they are-regular. For example, the property “the value of evdnbn
every even occurrence is 17, can be expressed by LOC formwtia A[2i]) = 1, as well

25

as with a simple two-state automaton, but it is well known that it cannot be expressed by
LTL [B4].

To show that some LTL formulas cannot be expressed in LOC, we first recall that any
property can be expressed as a conjunction sdfatyand alivenessproperty. Safety prop-
erties are those which can always be shown violated by a finite trace. For example, any
execution that does not satisfy the property “the valud &f neverl” must have a finite pre-
fix which ends with the value oft being 1. On the other hand, liveness properties can never
be violated by a finite trace. For example, the property “for every request there is a response”
can never be violated by a finite trace because there is always a chance that a response may

come some time in the futurg.

Claim 3 LOC can express only safety properties.

Indeed, if a trace does not satisfy an LOC formula, then there must exidbamvhich
the formula is false. We can evaluate all index expressions for that valueShce there
can only be finitely many of these expressions, there must exist some point in the execution
such that, for that particular the formula does not refer to any event occurrence beyond that
point. Clearly, the execution prefix up to that point is sufficient to disprove the property.

On the other hand, LTL is capable of expressing some liveness properties, for example
GF(A), i.e. “A occurs infinitely often”.

Conclusion:From claims (2) and (3), we conclude that LOC and LTL are incomparable.

1To disprove a liveness property, we need to show that the system can enter an infinite cycle in which there
are unfulfilled requests.

26

Generally, LOC is designed for the specification of quantitative performance and func-
tional constraints at the transaction level where system events and their annotations are con-
sidered. Because of the use of index variableOC is beyond the finite automata domain.

On the other hand, LTL is suitable for the specification of functional constraints, and can
effectively express the temporal patterns for system state transitions. Because of this differ-
ence, LOC can express important properties that cannot be expressed with LTL, on which the
traditional property specification languages are based.

In fact, it has been shown that LOC is incomparable with any formalism capable of ex-
pressingu-regular properties. From the theoretical point of view, it may be interesting to es-
tablish whether LOC can express all regular properties, i.e. whether LOC is more expressive
than WS1S. However, for the methodology proposed here, that question is hardly relevant,
because LOC is proposed as a complement to and not a replacement for existing property

languages capable of expressing regular properties.

2.4 Checking LOC Formulas with Simulation

In simulation verification, we automatically generate simulation trace checkers from LOC
formulas. In the LOC checker, we use a linear-time algorithm to check the simulation trace,
which could be infinite, and see if an LOC formula can be satisfied for all possible values
of indexi. Although the algorithm is linear in time, memory space usage is dependent on

the formula heavily. To reduce the running time, we try to scan the whole trace only once

27

and store the annotation information that is expected to be useful in the future. Therefore,
a memory recycling procedure has to be invoked frequently to release unnecessary memory
space to obtain space efficiency.

The algorithm of LOC checking progresses based on the index varialfach LOC
formula instance is checked sequentially with the value leéing 1, 2, ... etc. A formula
instance is a formula withevaluated to some fixed positive integer value, &gplay[30] —
Display[29] = 10 is the 29th instance of the formula (2.1). Starting witbqual to 1, the
LOC checker scans the trace sequentially. If any relevant data is read in, the checker stores it

into a queue and checks the formula in the following manner (Algorithm 1).

Algorithm 1 Check an LOC formula.
procedure CHECK LOC_FORMULA()
while can evaluate formula instancda
evaluate formula instance i;
i++;
memory recycling
end while
end procedure

The time complexity of the algorithm is linear in the size of the trace since evaluating a
particular Boolean expression takes constant time. The memory usage, however, may become
prohibitively high if we try to keep the entire trace in the queue for analysis. As the trace file
is scanned in, the checker attempts to store only the useful annotations, and in addition, to
evaluate as many formula instances as possible, and to remove from the memory parts of the
annotations that are no longer needed (memory recycling).

For many LOC formulas (e.g. constraints (2.1), (2.3) - (2.5) in Seftign 2.1), the algorithm

28

uses a fixed amount of memory no matter how long the traces are (seeMErIDory
efficiency of the algorithm comes from being able to free stored annotations as their asso-
ciated formula instances are evaluated. This ability is directly related to the choice made in
designing LOC. From an LOC formula, we can conservatively identify what annotation data
will not be useful anymore once all the formula instances with indices less than a certain

number are all evaluated. For example, consider an LOC formula:

t(Displayli + 10]) — t(Stimuli[i + 5]) < 300 |, (2.11)

and let the current value obe 100. Because the valueiohcreases monotonically, we know
that eventDisplay’s annotationt with index less than 111 and eve$timuli's annotationt

with index less than 106 will not be useful in the future, and their memory space can be
released safely. Each time an LOC formula is evaluated with a new valijehaf memory
recycling procedure is invoked, which ensures minimum memory usage.

As described in Sectidn 2.2, the LOC semantics allows us to evaluate an LOC formula
even if some of its expressions are not defined. When an annotation with a particular index
value is not yet available from the trace, or when the index has an invalid value (e.g. nega-
tive value), the Boolean expression that contains this annotation is evaluatedefo The

entire LOC formula could then be evaluated according to the standard three-valué logic [54]

2The verification of the constraint (2.2) may also have constant memory usage if the given trace has a certain
regular structure.

29

evaluation. For example, given the following LOC formula:

t(A[i + 10]) > 100 V ¢(Bi — 5]) < 300 | (2.12)

let the current value ofbe 10. If we know, from the trace, that the valuet@l[20]) is 200,

the formula can already be evaluateditoe even if the value of(B[5]) is still not available

at this point in the simulation (trace). Thus LOC formula instances can be evaluated as soon
as possible, which further minimizes the memory usage. Also, if we let the current value of
be 4, -1 is then an invalid index for annotatioaf eventB. The expressiof(B[—1]) < 300

is evaluated taindef, and the whole formula can be evaluatedtoe if the evaluation of

t(A[14]) > 100 is true, or undef otherwise.

2.4.1 Runtime Monitoring

The static trace checking technique, as described above, assumes that a simulation trace is
first generated and the subsequent LOC checking parses the trace and looks for constraint vi-
olation. How the trace is generated is immaterial as long as the format is correctly specified
in the definition file. The trace file for a realistic design, however, can frequently occupy sev-
eral gigabytes of disk space. It may be desirable to compile the checker as a runtime monitor
to run concurrently with the simulator through a Unix pipe. Alternatively, the checker can

be compiled into the compiled-code simulator for higher efficiency and tighter integration.

As an example of such tight integration, the checker generator has been extended to gener-

30

ate LOC checkers as SystemC modules [7]. During the simulation, other SystemC modules
(representing the design) can pass the events and annotations directly to the monitor modules
through channels. A case study of this approach is reported in Sgctioh 2.4.3. Runtime mon-
itoring is more efficient than static checking, but then obviously the simulation need to be
repeated if some new formula need to be checked later. Furthermore, the trace is no longer

kept so any debugging has to rely solely on the error report.

2.4.2 Dealing with Memory Limitation

Despite the memory efficiency for most LOC formulas, some LOC formulas may require
high memory usage that the verification environment cannot support. To deal with the case
of preset memory limitation, another extension has been added to the checker generator. Gen-
erally, the checker tries to read the trace and store the annotations only once. However, if the
preset memory limit has been reached, it stops storing the annotation and instead, scans the
rest of the trace looking for needed events and annotations for evaluating the current formula
instance (with the current value df After freeing some memory space, the algorithm re-
sumes storing annotations and reading the trace again from the same location. The analysis
time can certainly be impacted (see the case study in Sectiof 2.4.3) and may no longer be of
linear complexity. However, the verification can continue and the constraint violations can

be checked under the memory limitation of the verification environment.

31

2.4.3 A Case Study of FIR Filter

We use a register transfer level model dirate impulse response (FIRj)ter written in Sys-

temC to show how LOC can be used to efficiently check real time performance constraints.
Figure[2.] shows a 16 tap FIR filter that reads in samples when the input is valid and writes
out the result when output is ready. The filter design is divided into a control FSM and a data

path. The test bench feeds sampled data of arbitrary length, and the output is displayed with

the simulator.

Stimuli : O at time 9

FIR Display : 0 at time 13
FSM Stimuli : 1 at time 19
Stimuli 1 Display Display : —6 at time 23
DATA Stimuli : 2 at time 29
Display : —16 at time 33

Figure 2.1:A FIR design and its simulation trace

We use our automatic trace checker generator to verify the properties specified in con-
straints (2.1) - (2.5) (in Sectioh_2.1). The same trace files are used for all the analyses, and
each constraint is checked one at a time. The time and maximum memory usage are shown
in Table[2.1. We can see that the time required for analysis grows linearly with the size of
the trace file, and the maximum memory requirement is formula dependent but stays fairly
constant. Using LOC for common real-time constraint verification is indeed very efficient.

Given the large file size, runtime monitoring (see Sedtion 2.4.1) may reduce the total veri-

fication time (simulation and checking) since no trace file needs to be actually generated. For

32

Table 2.1: Costs of checking formulas (2.1)-(2.5) on FIR

Lines of Trace| 10° 10° 107 108
c1 Time(s) | 1 8 89 794
Memory | 28B 28B 28B 28B
c2 Time(s) | 1 12 120 1229
Memory | 28B 28B 28B 28B
c3 Time(s) | 1 7 80 799
Memory | 24B 24B 24B 24B
ca Time(s) | 1 7 77 803
Memory | 0.4KB 0.4KB 0.4KB 0.4KB
c5 Time(s) | 1 7 79 810
Memory | 4AKB 4KB 4KB 4KB

the latency constraint (the formula (R.2)), we implement the checker as a SystemC module,
and the simulation trace is no longer written to a file but passed to the monitoring module
directly. Tablg 2.p lists CPU times used for simulation, trace checking, and simulation with
runtime monitoring for the formulg (2.2) on the traces of different lengths. For the trace size
of 100 million lines, the static checking approach requires 1404 seconds of simulation time
and 1229 seconds of checking time for a total of 2633 seconds. Runtime monitoring requires
only 1420 seconds for both simulation and monitoring. If a simulation trace is really long
(e.g. hundreds of gigabytes), runtime monitoring can significantly save CPU time compared

to off-line trace checking.

Table 2.2: Time usage of simulation and checking formula (2.2) on FIR

Lines of Trace 10° 10° 107 108

Simulation w/o Runtime Monitoring (s)) 1 14 148 1404
Static Trace Checking Only (s) 1 12 120 1229
Simulation w/ Runtime Monitoring (s)| 2 14 145 1420

33

We also verify constrainf (2.7) to illustrate verification with memory limitation since this
constraint is particularly expensive to check in terms of memory usage. [Table 2.3 shows
that the simulation time grows linearly with the size of the trace file. However, due to the
use of an annotation in an index expression, memory can no longer be recycled and we see
that it also grows linearly with the size of the trace file. Indeed, since we will not know what
annotation will be needed in the future, we can never remove any information from the queue.
If the memory is a limiting factor in the simulation environment, the analysis speed must be
sacrificed to allow the verification to continue, as discussed in Sectior} 2.4.2. The result is
shown in Tabl¢ 2]3 where the memory usage is limited to 50KB. We see that the analysis
takes more time when the memory limit has been reached. Information about trace pattern
can be used to dramatically reduce the running time under memory constraints. Aggressive
memory minimization techniques and data structures can also be used to further reduce time
and memory requirements. For most LOC formulas and simulation traces, however, the

memory space can be recycled and the memory requirements are small.

Table 2.3: Costs of checking constrairjt (2.7) on FIR

Lines of Trace k10*) (2 3 4 5
Unlimited | Time(s) | <1 <1 <1 1

Memory | Mem(KB) | 40 60 80 100
Mem Limit | Time(s) | <1 61 656 1869

(50KB) | Mem(KB) |40 50 50 50

34

2.5 Formal Verification of LOC Formulas

Although our trace analysis enables efficient verification of LOC formulas in a simulation
environment, formal verification may still be valuable and sometimes even necessary. We
propose to apply formal verification to small designs that are re-used many times, such as
library modules. Because they are small, formal verification is practically possible. On
the other hand, they are intended to be used in many environment, some of which will be
designed long after the module itself is designed and verified. Therefore, it is hard to imagine
all simulation scenarios that need to be verified. It is better to characterize the modules with a
set of constraints that it satisfies. This will not only increase the confidence in the correctness,
but these constraints can be used as a precise specification of a design’s behavior as well. The
lack of such a specification is a major source of design errors, because informal specifications
of library modules are often ambiguous and misunderstood.

Unfortunately, it is undecidable whether a system satisfies an LOC formula, even if some
strong restrictions are placed on the system specification and the formula (see [Seftion 2.6).
On the positive side, for a significant subset of LOC, it is possible to decide whether a finite-
state system satisfies an LOC formula. The decision procedure is based on constructing a
formula of Presburger arithmetic that is satisfied if and only if the formula is violated by
some behavior of the system. The LOC subset that can be verified in this way includes all
formulas described in Sectipn 2.1, except the latency constraint (2.7).

Manipulating Presburger formulas is very expensive in practice, so we propose an alter-

35

native formal verification approach based on existing finite-state model checking tools. Our
approach represents a complete verification procedure for a subset of LOC that defines
regular properties. We will show in the next section that raig (2.1), throughpit (2.4), and
burstiness (2]5) belong to this subset, but other formulas in S¢ctipn 2.1 do not. The proposed
approach may still be applied to these formulas, but the procedure is incomplete in this case,
because it can terminate with an inconclusive result.

The simulation approach described in Secfiorj 2.4 suggests our formal verification ap-
proach. A trace checker can be interpreted as an automaton accepting executions. We could
thus use existing model-checking tools to verify that each execution of the system is accepted
by the trace checker. In the example shown in this chapter, the translation was manual. How-
ever, there is no technical difficulty in automatically generating such descriptions in a lan-
guage understood by a model checking tool through modifying our trace checker generator.

The only significant difference between a simulation trace checker and an automaton
description suitable for model checking is that the former can rely on dynamic memory al-
location to store trace data that may be needed, while the latter must have all memory space
statically allocated. Unfortunately, as we have shown in Seftign 2.3, for some LOC formulas
itis not possible to determine memory requiremenpsiori. Our approach is to fix the mem-
ory size anyway and to designate special states where checking the formula would require
allocating additional memory, but none is available. Such a state may or may not be reached
during the reachability analysis. If it is, the result of the formula verification is inconclusive.

More precisely, the verification of an LOC formula can have one of three outcomes:

36

e a counter-example is found showing that the system does not satisfy the constraint,

e the constraint is satisfied, all reachable state are searched without finding a counter-

example, or reaching a state where memory is exhausted,

e inconclusive, analysis finds no counter-examples, but states where memory is exhausted

are reachable.

For example, the latency constraint:

t(Display|i]) — t(Stimuli[i]) < 25 (2.13)

cannot be modeled by any finite automata because there can be arbitrarily many occurrences
of Stimuli beforez-th occurrence oDisplay (intuitively, we assume thalisplay[z]| always
occurs afterStimuli[z]). However, if we limit the number of stored time stampsSofmuli

to, say, 50, then we can simultaneously check the following two constraints:

P1: There are never more than 50 occurrencesswiuli betweenz-th occurrences of

Stimuli and Display.

P2: If P1holds, then[(2.1]3) holds.

Obviously, if P1 and P2 both hold, then so doe§ (2]13), andPR is false, so is [2.1B).
However, ifP2 holds, butP1 does not, the result is inconclusive.

To specifyPlandP2, assume that the trace checker keeps 51 most recent time stamps for
Stimuli and Display in arraysDisplay_t and Stimuli_t such thate-th time stamp is stored at

37

position(x mod 51) of the array. Also assume that varialidsplay i and Stimuli_i (which

take values from 0 to 50) keep the index of the most recent time stamps in the arrays. Finally,
assume that binary variablé®splay_occur and Stimuli_occur are true when Display and
Stimuli occur, respectively, and that integer variabll§f counts the difference between the
numbers of occurrences of tit#imuli and Display events, i.e. it is initialized to O, incre-
mented on eacltimuli_occur, and decremented on eaéhisplay_occur. Then,P1can be

specified with the following state predicate:

diff <51 . (2.14)

Constraint|[(2.13) can be expressed as follows:

Display_occur = Display_t|Display_i] — Stimuli_t[Display_i] < 25 | (2.15)

and finallyP2 can be expressed as follows:

Assumption (2.14) = Formula (2.15) . (2.16)

2.6 Complexity of Verifying LOC Formulas

In this section, we address the following fundamental question: How hard is it to check if a

system satisfies an LOC formula? This question has many versions, depending on how the

38

system is represented, and what subset of LOC formulas is being considered. We present
answers for several versions. Some versions of the problem are undecidable, and some are
decidable, but with very complex algorithms. These “negative” results are used to justify the
development of efficient algorithms which may not always give the full answer. These al-
gorithms, based either on simulation, or partial formal verification, are described in previous
sections.

In the most general case, systems are represented by arbitrary programs, and annotations
can be of any type. This case is clearly expressive enough to encode the halting problem [44],
so checking LOC formulas is undecidable in this case.

The first restriction we consider is to limit system specification tofanitely-valued
finite-state system, where the number of states of a system is finite, but value domains of
annotations can be infinite. Unfortunately, this case is also undecidable. To show this we can
encode two counter machines using a finite-state system, two integer annotations to repre-
sent counters, and an LOC formula to ensure that counters are incremented or decremented
as necessary.

The next restriction we consider are so-callieitely-valuedfinite-state systems, where
annotations and event values are required to be finitely valued. With regards to annotation

specification, three cases will be considered:
(1) annotations completely undefined,
(2) annotation must satisfy certain axioms, expressed by an LOC formula,
(3) annotations defined by a finite state system.

39

The third case is typical of later design stages. At that point annotations can be considered
as part of event values, so we will not study it separately.

The first case is typical at the beginning of the design process, where constraints on
annotations are stated, but nothing is yet known about their actual values. At that point,

annotations are uninterpreted functions, but they still have to satisfy constraints of equalities.

For example, the formuld(e[3i]) = f(e[i + 2]) is not satisfied by any behavior in whieh
occurs at least 3 times.

We consider the second case because, even if the values of annotations are not known,
some constraints, captured by axioms, may be. Consider, for example, time annotations.
All possible timing annotations share certain constraints, e.g. time can never decrease. Just
from these basic constraints of time, we could deduce some system constraints, which are
then valid for any timing. Therefore, it is useful to be able to express constraints that all
annotations of certain type must have. Specifying axioms could be done in many ways. For
example, an extended version of LOC is used for this purpose in Metropolis [18]. However,
the following results state that checking an LOC formula is undecidable even if annotation

axioms are restricted to the basic LOC.

Theorem 1 It is undecidable whether a finitely-valued finite-state system with LOC axioms

satisfies an LOC formula with a single event indexed by expression

As usual, the proof proceeds by reducing a known undecidable problem to LOC checking.

The details are given in AppendiX B.

40

At first glance, it may appear that checking an LOC formpileor a finite state system
with annotation axioms: may be reduced to checking that the system satisfies implication
of ¢ by a without any axioms. Unfortunately, this approach does not work, and to see why
we will for a moment make quantification oveappear explicitly in the syntax. Thus, the
axioms can be written a& : «, and the formula can be written'ds: ¢. Solving the problem
requires checkingvi : «)=— (Vi : ¢), but LOC can only express : (a=¢), which is not
the same. In fact, this seemingly minor restriction makes the problem decidable, as stated by
Theoreni2.

We now turn our attention to the case without axioms, where annotations are either com-

pletely unconstrained or folded into event values.

Theorem 2 It is decidable whether a finitely-valued finite-state system without annotation
axioms satisfies an LOC formula, in which all index expressions are of thezforh, where
a and b are integer constants, and variableappears only in such expressions and linear

inequalities.

The proof consists of a decision algorithm. To describe the algorithm, we need some
notation. Anevent expressiois an LOC term of the form vét[r]), or of the formf(e[7]),
wherer is an integer-valued terng, is an event name, anfl is an annotation. Note that
conditions in Theorern| 2 restrictto be a linear expression, i.e. it must be of the farim- b,
wherea andb are constants. Thealue domairof an event expression is the set of values it
can take, i.e. it is the value domain ©if the expression is of the form v@l[7]), and it is the
value domain off if the expression is of the fornfi(e[7]).

41

Given an LOC formulap, we usef, to denote the set of event expressions appearing in
it. An interpretationof a set of event expressions is a function that assigns to each expression
in the set a value from its value domain. Since Thedrem 2 requires the system to be finitely-
valued, there can be only finitely many distinct interpretationS,0fGiven an LOC formula
¢, and an interpretatiohof £;, we usep; to denote the formula obtained fraprby replacing
each event expressierin ¢ by the valuel (¢). We call¢; an interpretation of. Note that
because; contains no event expression%’A) [¢:] actually depends only on and must
be eithertrue or false.

The conditions of Theorelr 2 also insure thatis a formula inPresburger arithmetic
Such formulas consist of linear inequalities of integer variables combined with usual Boolean
connectives and quantification of variables|[30]. Presburger formulas can be evaluated to
true or false by choosing values for all free integer variables. LOC formula interpretations
can have only as a free variable, and we will ugg(n) to denote the value af; wheni is
set ton.

Assume, for example, a system with two binary eventsandz,, and a formulap:

(val(z,[31]) = val(@s[i])) = (i > 5) . (2.17)

It has two binary event expressions, (al3i]) and valz.[i]), hence it has four interpreta-
tions. To denote interpretations, we use 00, 01, 10, and 11, where the first number represent
the value of valr,[3i]), an the second number represents the value ¢fya)). It is easy to

check thatbm = ¢10 = true and¢00 = ¢11 = (Z > 5)

42

It is not hard to check that LOC formula interpretations have the following property:

(Ve € E: Vi e = 1(6)) — (v(”ﬁ’A) [6] = Vi o l61] = ¢1(n)) . (2.18)

In words, if behaviof 3, A) and integer. agree with interpretatiohon the values of all event
expressions, then they agree also on the value of the whole formula. In addition, farmula

is both a Presburger formula (because it has no events nor indexing) and an LOC formula
(because it has no quantifiers and its only free variabli 0 it may be evaluated in both
ways, but the two values are always the same.

To check whether a system satisfies an LOC formula, we will combine formula interpre-
tations with Presburger formulas characterizing the system, and we will reduce the original
problem to checking satisfiability of the combined formula. That will complete the proof, as
there are known algorithms to check satisfiability of a Presburger formula. In the following
Lemma, we establish that it is indeed possible to construct a Presburger formula characteriz-

ing a finitely-valued finite-state system. The construction is described in Apgendix B.

Lemma 1 For a given finitely-valued finite-state system with no annotation axioms, and a
given LOC formulag, it is possible to construct, for each interpretatiérof £,, a Pres-
burger formula SY'S; in which i is the only free variable, such that for all integens
SYSr(n) is true if and only if there exists an annotated behayiorA) of the system such

that Vi, 4 [e] = I(e) forall e € &;.

43

Figure 2.2:A system generating 1 for every third valuergfand every fifth value of,

Consider, for example, the system shown in Figuré 2.2. It has eight states, two binary
valued eventsy; andz,, and no annotations. A transition label of the foem : v indi-
cates thatr;, is generated with value on that transition. The system in Figdre]2.2 satisfies
formula (2.17), because, [3i] is always1, andz,|i] is O for all: < 5. With respect to in-
terpretations 07), one can easily verify that S,y = SY Sp; = false, becauser [3i]
is never0, and SY'S;; and SY Syp aré (3j > 0 : i = 55) and(i > 0) A (3j:i = 5))

respectively, because every fifth valuescofi] is 1.

Theorem 3 For a given finitely-valued finite-state system with no annotation axioms, and
a given LOC formulap, let formulasSY S, satisfy the property from Lemma 1, for each
interpretation/ of £,. The system satisfiesif and only if the the following Presburger

formula isnot satisfiable:

\/ SYS;né, (2.19)
I

where the finite disjunction ranges over all interpretationgnf

3We usedj > 0 : ¢ to abbreviatedj : (j > 0) A ¢.

44

To show one direction, assume that the system does not satisfy the property, i.e. assume

that there exists an annotated behayiarA), and an integen such that)(j ,, [¢] = false,

or equivalentiyV(; , [¢] = true. LetI be the interpretation induced lgy, A) andn, i.e. set

I(e) to Vij; 4 [€] for all e € &;. By Lemmﬂ,SYSI(n) is true, and by|(2.18) so 5 ¢)(n),

so the formula is satisfiable.
For the other direction, assume that the formula is satisfiable, anddetin be such

that bothSY S;(n) andI(¢)(n) are true. By Lemm@ 1, there exists an annotated behavior

(8, A) such thad/j; , [e] = I(e) for all € € &, and by [(2.1B)(j; 4 [¢] = 1(¢)(n) = true,

implying thatV(’l@A) [¢] = false, i.e. the system does not satisfy the property.
For example, the negation formu.l?) has the following interpretatigns= ¢,, =

false andgoy = ¢11 = (i < 5), so for the system is Figufe 2.2, formula (2.19) becomes

(3j>0:i=5j)A(i <5)

which is clearly not satisfiable.

Theorenj B provides a constructive way of reducing the original problem to satisfiability
of a Presburger formula. Theorgrn 2 then follows as a simple corollary. The described algo-
rithm proves decidability, but it has a very high complexity. The number of interpretations
may be exponential in the size of formula, and the best known algorithm for checking satis-
fiability of Presburger formulas is doubly exponential in the worst case. There may be cases

in practice that are much better than the worst case, but it is still unlikely that the proposed

45

algorithm will have a wide-spread use. It is therefore reasonable to search for alternative,
more efficient verification algorithms, applicable to some reasonable subset of LOC. In Sec-
tion[2.3, a couple of approaches along these lines has been proposed. But here we show that
several approaches that one may consider are in fact not feasible.

Each LOC formula defines a language consisting of annotated behaviors that it satisfies. If
we could construct an automaton with the same language, we could reduce LOC verification
to the language containment problem, which has known algorithms linear in the number of
states of the system and the property automaton. Indeed, this approach is possible for a
very limited subset of LOC (as shown in Sectjon|2.5), but languages of many simple LOC

formulas cannot be represented by a finite-state automaton. Here are a few example:

e two events, all index expression juse.g.

val(z[i]) = val(y[i]) ,

e asingle event, all index expressions linear, e.g.

val(z[i]) = val(x[2i]) ,

e asingle event, and a single event expression, e.g.

val(z[i?]) =1 .

46

In the examples above we assume all events to be finitely valued. Still, it is not hard to show,
using the pumping lemma for regular sets|[44], that none of the formulas above define a
regular language. Note that first two examples satisfy the conditions of Thgprem 2 and could
be checked with the proposed algorithm.

Another approach might be to use a class of automata that is more expressive than finite-
state ones. For example one may consider pushdown automata that can define context-free
languages. Unfortunately, this is not possible in general, either. For example, ifretadaeis

values from{0, 1, 2, 3}, the formula:

(val(z[i]) = 0 = (val(z[i +1]) = 0V val(z[i + 1]) = 1))A
(val(zfi]) = 1 = (val(zfi +1]) = 1V val(z[i + 1]) = 2))A
(val(z[i]) = 2 = (val(z[i + 1]) = 2 v val(z[i + 1]) = 3))A
(val(zfi]) =3 = (val(z]i + 1]) = 3))A
((val(zfi — 1]) = 0 Aval(z]i]) = 1) =

(val(z[2i — 1]) = 1 Aval(z[2i]) = 2 A

val(z[3i — 1) = 2 Aval(z[3i]) = 3))

defines the language:

{s: sis a prefix 0f0"1"2"3" for somen > 0} ,

for which it is easy to show that it is not context-free (e.g. see Example 6.1/in [44]).

a7

One approach to generating an automaton for an LOC formula is to buffer event values.
Once all the values needed to evaluate the formula for a particular valweein the buffer,
the formula can be evaluated for that valuei.oOnce all values of that need a particular
event value are evaluated, the event value can be removed from the buffer. The results above
indicate that the buffer sizes cannot be bounded in general. However, one may hope that for
a specific finite-state system, a suitable bound can be found. Ideally, a bound may be found
for any finite-state system.

For example, any implementation of a FIFO queue needs to satisfy the data consistency
property [2.6) , i.e. the-th value retrieved from the FIFO must match ththe value put
into it. Clearly, we cannot represent this property with a finite-state automaton, as we can-
not bound in general the difference between the numbeénait events and the number of
output events. However, for any particular FIFO implementation, this bound can be eas-
ily established, it is just the size of the FIFO. Thus, the size of the buffer in the checking
automaton need not be bigger than the size of the FIFO. One may hope that this reasoning
generalizes to any similar property and any finitely-valued finite-state system.

To the best of our knowledge, it is not known whether a bound on buffers can be found for
any finite-state systems. However, we will use an example to show that even if such a bound
can be found, it will sometimes be too big for an efficient verification algorithm. In general,
the example is a finitely-valued finite-state system that may geneditierent binary events
x1,...,%,, and hap; + - -- + p, states, where,, ..., p, are firstn primes. The system has

n loops, and the&-th loop hasp, states. The system first circles through the firsstates,

48

generatinge; with value Op; — 1 times followed by generating, with value 1 once. At the
end of the loop there is a choice of repeating it or moving to the next loop. The system in
Figure[2.2 is actually a part of such a systemyfpe= 3 andp; = 5. The language generated

the system with loops consists of all prefixes of strings defined by regular expression:

(1 : 0" P)Y (2 0Pyt)T (s 0P g,)T

Now, consider the LOC formulaal(z,[i]) = val(zs[i]) = - - - = val(z,[i]) = 1. (For read-

ability and conciseness, we abbreviate formulas of thetype» AN m=mton =7m =

73.) Itis not satisfied, but the smallest valueidhat violates it ig; * py * - - - % p,,. Since the
system generates al|’s before generating any other eventsgalk ps - - - x p,, values ofz;

(andz,, . .., z,_; for that matter) would have to be buffered. Therefore, the size of the buffer
have to be at least exponential in the number of states of the checked automaton, implying
that the number of states of the checking automaton has to be at least doubly exponential.

More practical approaches are needed.

49

Chapter 3

Simulation Verification and Analysis

Based on Formal Assertions

Simulation is the primary verification method at all the stages of the design flow, from the
system level down to the transistor level. With formal specification of design constraints (i.e.
assertions), designers are allowed to precisely specify what they want to check or analyze for
a design in verification, and the simulation verification and analysis process can therefore be

automated. This chapter focuses on assertion-based simulation verification.

3.1 Methodology of Simulation Verification and Analysis

Figure[3.1 illustrates the methodology of the simulation verification based on formal asser-
tions with automatic trace checker generation. Designers are responsible for the specification
of design constraints with certain formal languages such as LTL and LOC. Automatic tools

50

! 1

Design Constraints

System Design)
in LTL/LOC
Automatic
Checker Generation
Trace Checker/

Simulation Trace

Simulation Monitor

Trace Checking
& Analysis

Error Report

Figure 3.1:Simulation verification and analysis based on formal assertions

are utilized to generate simulation monitors or static checkers for trace analysis. Simulation
traces can then be checked during or after simulation, and design errors are reported if there
is any constraint violation. According to an error report, designers can either correct the
original design or revise the constraint specifications until the trace analysis passes the ver-
ification. In this simulation verification and analysis methodology for system level designs,
the state transitions are modeled as event occurrences. This is consistent with transaction
abstraction since only the events ordering are considered, not their tick-by-tick cycle level
behaviorf]

As shown in Sectiof 2|3, LTL and LOC have different domains of expressiveness and
indeed complement each other quite well. According to our experience, most functional

constraints, such as mutual exclusion, non-starvation, and safety, can be easily expressed

1To handle cycle level analysis, designers only need to output clock ticks as events.

51

with LTL. On the other hand, LOC is more suitable for expressing quantitative performance
constraints such as rate and latency, and transaction level functional constraints such as 1/0
data consistency. In this study, the formal specification of design constraints are mainly
based on these two logics. We leverage an existing tool FoCs [14] to generate checker cores
for LTL formulas and then use our tool to automatically generate wrappers that are necessary
for simulation monitors and stand-along trace checkers. Since simulation sessions are finite,
the linear temporal operators are interpreted over finite system executions by checking the
conditions only up to the end of executions. An automatic tool set [13] has been developed
to generate trace checkers and simulation monitors for given LOC formulas according to the

algorithms and data structures presented in Sectign 2.4.

3.2 Simulation Verification in Metropolis

The assertion-based simulation verification methodology has been integrated in the Metropo-
lis design framework. From formal specification of LOC or LTL constraints in MMM, run-
time monitors or static checkers can be automatically generated along with simulation mod-
els in the integrated framework. Various functional and performance constraints can then
be checked during or after simulation. In this section, two design examples are used to
demonstrate the methodology implemented in Metropolis. The first is a system level de-
sign for set-top video processingicture-in-Picture (PiP)which is originally specified with

YAPI [49]. PiP is partially respecified and simulated with Metropolis. The other one is a

52

PIP [USRCONTROL j

'

MPEGHRESIZE

'

{TS_DEMUX HPES_PARSER

JdH1ODHNC

Figure 3.2:Picture-in-Picture design

high level model of function-architecture mapping. We use the generated trace checkers to

verify a wide variety of functional and performance constraints.

3.2.1 A Picture-in-Picture Design

Figure3.2 shows the PiP design. DEEMUX demultiplexes the single input transport stream
(TS) into multiple packetized elementary streams (PES). PERSER parses the packetized
elementary streams to obtain MPEG video streams. Under the control of the user (USRCON-
TROL), decoded video streams can either be resized (through RESIZE) or directly feed to
JUGGLER that combines the video frames to produce the picture-in-picture videos. The en-
tire description consists of approximately 19,000 lines of Metropolis and YAPI code. With
the sample input stream we used, it produced 120,000 lines of output representing header
information for the processed frames.

In the transaction-level design of PiP, where time is still not available, we can check both
functional and performance constraints with proper annotations output from the simulation.

In the component RESIZE of PiP, the video frames processed are in interlaced format with

53

WINDOW_DATA_OUT 23483 87000

WINDOW win_params_update x_begin: 12 y_begin: 6
RESIZE field_start field_count: 2 size: 6720
WINDOW win_params_update x_begin: 12 y_begin: 6
USRCONTROL write pixels_out: 144

RESIZE field_start field _count: 3 size: 10368
USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876

RESIZE field_start field_count: 4 size: 14016

Figure 3.3:PiP simulation trace

alternating fields of all odd lines, then all even. The frame size should only change after a
complete frame, each of which has 2 fields, is produced. Therefore, the field sizes of paired

even and odd fields should be the same. This constraint can be specified as an LOC formula:

size(field_start[2i + 2]) — size(field _start[2i + 1]) =

size(field _start[2i + 1]) — size(field _start[2i]) : (3.1)

where field _start is an event, at which RESIZE starts to output a new image field. The
annotationsize is the cumulative number of pixels processed by RESIZE. Figuie 3.3 shows
snapshots of the PiP trace. The generation of the checker for this LOC formula and the actual
checking on the simulation trace take less than 1 minute of CPU time.

Another functional constraint we are interested in is that the number of the fields the

RESIZE component reads in should be equal to the number of fields it produces. Two local

54

counters, one at RESIZE’s input part and one at its output part, provide these annotations.
After a piece of video is processed, these two counters need to be compared to see if the

constraint is satisfied. The LOC formula used to check this constraint is:

field_ent(ini]) = field_cnt(outli]) . (3.2)

The eventsin and out are generated by the input and output parts of RESIZE respectively
whenever they finish processing a whole piece of video. The annofatidncnt represents

the number of fields processed by the input and output parts of RESIZE. The generation of
the checker for this formula and the actual trace checking take less than 1 minute of CPU
time.

We can also check performance constraints such as latency. The latency issue in RESIZE
relates to the timely response to the size specification from the user. Since PiP is specified
at the behavioral level, no detail timing information is available. We therefore specify a
bound (e.g. 5) on the number of fields processed between reading a new size specification

(read _size) and the actual change in the output video image sizer(ge _size):

field_cnt(change_sizeli]) — field_cnt(read _sizei]) <5 | (3.3)

where eventread _size is generated whenever RESIZE reads a new size specification from
USRCONTROL, and eventhange_size is generated whenever the size of the output video
image is actually changed. The annotatfiid_cnt is the value of a global counter that is

55

Func
Fos]
7 channell
channel2 ; 7

Mapping

E ° (Arch
SwTask1 SwTask2 SwTask3 SwTask4
ST

Figure 3.4:A function-architecture mapping model

incremented by one whenever RESIZE processes a new frame field. The generation of the
checker for this LOC formula and the actual trace checking also take less than 1 minute of

CPU time.

3.2.2 A Function-Architecture Mapping Model

In the platform-based design, mapping is the key procedure that correlates the function to
the architecture of a design. In this design example (as shown in Higdre 3.4), two source
processes (S1 and S2) write data into two independent channels. A separate process (Join)
then reads data items from both channels, manipulates them, and then sends the result data to
another process (Sink) through another channel. In the abstract architecture model, there are
two CPU/RTOS units, a bus unit, a memory unit, and a quantity manager (i.e. scheduler) for

each architectural unE] A CPU unit can be shared among several software tasks that may

2An architectural unit is modeled as a medium in Metropolis.

56

request services from it. When more than one service request is issued to a CPU, arbitration
is needed. The mapping procedure synchronizes the processes in the function model and the
mapping processes (representing software tasks) in the architecture model. In this example,
functional processes S1 and S2 are mapped to mapping processes SwTaskl and SwTask2,
respectively, which are associated to CPU1, and the other two processes are mapped to CPU2.
The CPU quantity managers implement a non-preemptive static-priority dynamic scheduling
policy. The two CPU units are connected to the bus, and the bus is connected to the memory
unit. During simulation, the functional events are time-stamped through the architecture
model, and thus various performance constraints can be analyzed. With the sample input we
used, the simulation took 14 minutes and produced a 1.1G trace file witk 2)3@ines.

We analyze the throughput of the model by using an LOC formula:

time(Sink_read[i + 100]) — time(Sink_read[i]) < 5.0 x 107° | (3.4)

where eventSink_read represents the read operation by process Sink. The formula passes
the trace verification in less than one minute, which means process Sink can perform at least
100 read operations in every time period of 5.0 ns.

Similarly, we can check the latency between the source processes and process Sink by

checking their events representing write and read operations respectively:

time(Sink_read[i]) — time(S1 _write[i]) < 1.5 x 1077 | (3.5)

57

and

time(Sink_read[i]) — time(S2_write[i]) < 1.5 x 1077 . (3.6)

We can also analyze the processing delay of process Join using the formula:

time(Join_write[i]) — time(Join_read[i]) < 5.0 x 107" . (3.7)

It should be emphasized that timing is only one of the possible annotations we can use in
LOC to analyze quantitative constraints of a design. Any values associated with events can
be used as annotations to check corresponding constraints (e.g. data value or power).

In addition, LTL formulas can be used to verify temporal constraints of the events gen-
erated by different processes (e.g. the event order). For example, the constraint that process
Join cannot read before both source processes write, and process Sink cannot read before

process Join writes can be verified with the formula:

G((—Join_read U (S1 _write N S2_write)) A\ (—Sink_read U Join_write)) . (3.8)

Given the trace size, all these constraints formulas can be analyzed within one minute.

3.3 \Verification for Network Processor Architectures

We also integrate our assertion verification methodology into the design flow for high perfor-

mance network processors. Based on Intel IXP1200 [3] network processor model, in-house

58

designers have been putting together a new architecture which is capable of higher through-
put, lower latency, and lower cost. The processor model is parameterized, so that a whole
range of different architectures can be explored. Using our assertion verification method-
ology, designers were able to write assertions and automatically generate trace checkers or
simulation monitors throughout the design process to check functionality and performance

characteristics. Bugs were subsequently found and corrected.

3.3.1 Introduction to Network Processors

As Internet gets more and more complicated with the rise of new protocols and services, so
does the cost of new equipment and upgrades. A network processor (NPU) is a base hardware
platform that provides high performance and flexible programming capabilities, which allows

it to address many market segments and a wide range of applications. As a result, the cost
of upgrade can be reduced and developing cycles for new protocols and data types can be
shortened. Therefore, NPUs are poised to replace expensive and inflexible fixed-function
silicon application-specific integrated circuits (ASICs).

A number of challenges for NPU implementation are already evident. Performance and
power dissipation are the most important among them. While high performance is achieved
by increasing the working frequency and the degree of parallelism, power dissipation has
been also increased significantly. For example, in a typical router configuration, there may
be one or two NPUs per line card. A group of line cards, e.g. 16 or 32, are generally placed

within a single rack or cabinet. Thus, the aggregated heat dissipation becomes a big concern,

59

given that each NPU typically consumes around 20 Watts and the operating temperature can
reach as high a%0°C' [10]. On the other hand, with the demand of performance scaling,
NPU's clock frequency is increasing and more computation engines will be put on an NPU.
Table 3.1 shows the power and performance changes in three Intel IXP family NPUs|[3,9,10].
Note that the power dissipation increases as the complexity of NPU increases. This trend
brings significant challenges for the NPU design.

System level modeling with executable languages such as C/C++ or other modeling
frameworks have been crucial in designing large electronic systems. Unfortunately, most
cycle-level accurate simulators only report performance and power data for worst and/or av-
erage cases. These data pose limitation on power/performance analysis. For example, an
NPU’s performance and power dissipation are closely related to the workload, namely the
incoming packet rate. The workload is usually unbalanced, in temporal scale or geograph-
ical scale, which may cause extreme high power dissipation occasionally. The unbalanced
workload provides opportunities for power and performance tuning. Therefore, the power
and performance distribution patterns are important complements to average/worst-case data

in the design exploration.

Table 3.1:Power and performance of Intel IXP NPUs

Description IXP1200 | IXP2400 | IXP2800
Performance(MIPS) 1200 4800 23000
Media Bandwidth(Gbps) 1 2.4 10
Frequency of ME(MHz)| 232 600 1400
Number of MEs 6 8 16
Power(W) 4.5 10 14

60

The methodology proposed in Section|3.1 is implemented for verifying and analyzing
basic functional and performance constraints of an NPU design. It will be shown that the
assertion-based analysis methodology is also very suitable for transaction-level or cycle-level
design exploration, specially in power and performance analysis for NPU designs. From for-
mally specified assertions, trace checkers and distribution analyzers are automatically gener-
ated to validate or analyze simulation traces. Designers do not need to write separate refer-
ence models or scripts to scan through the traces. So it is very efficient in design exploration

for large systems with high complexity and functionality such as NPU designs.

3.3.2 Network Processor Model

Intel IXP1200 [3] is chosen as the reference model due to its overwhelming popularity in the
network processing applications. Given normal-size IP packets, it can achieve up to 2.2 Gbps
routing bandwidth. Being sold commercially, the processor model has been made available
to the public in order to help the designers build systems based on IXP1200. The basic
architecture of the processor is shown in Figurg 3.5. IXP1200 consists of a StrongARM
core, 6 multi-threaded processing units, which are called microengines, and controllers of
peripheral units. The StrongARM core initializes the program store of the microengines
and loads necessary data into memory before enabling the microengines. Each of the six
microengines runs up to four threads concurrently. Thus, a total of up to 24 threads can be
programmed to receive, process and transmit IP packets. The controllers of SRAM, SDRAM

and IX Bus units serve the processor as interfaces to off-chip SRAM, typically used to store

61

sl
cmd FIFQ
PO MEO

Register File

StrongARM core

sram

P4*" ‘\

|

cmd FIFO
PO ME1

I
|
I
I
I
|
I
I
|
I
I
I
|
I
I
|
I
I
I
|
I
I Register File
|
I
| .
‘ .
|
I
I
|
I
I
I
|
I
I
|
I
I
I
|

command|
bus
arbiter

sdram

B -
cmd FIFO
PO MES5

9 ‘

scratchpad IXP 1200 : 1X Bus

Figure 3.5:1XP1200 architecture

forwarding table, SDRAM, typically used to store IP packets, and network devices through
the IX Bus.

The threads in a microengine share common ALU, pipelining, and scheduling units. In-
side a microengine, each thread has an independent set of registers including general purpose
registers, local control registers, SRAM transfer registers and SDRAM transfer registers. The
microengine’s instruction set architecture contains 33 categories of instructions. Because
each instruction may have a number of different operations, the total number of op-codes
implemented is around 120. For example, them instruction has operations suchrasd,
write, push andpop, each of which corresponds to a unique op-code. Each microengine has
a 5-stage pipeline (PO through P4): Instruction Fetch, Instruction Decoding, Operand Fetch,

Instruction Execution, and Write-Back.

62

In each microengine, memory references, which are called commands, are issued to a
two-entry command FIFO. The commands are then sent to the command bus and scheduled
by the command bus arbiter. Based on the priority of commands, the command bus arbiter
selects one or more reference commands among the six command FIFOs and move them to
the corresponding memory controllers. The SRAM controller handles all SRAM reference
commands issued from the microengines. Each SRAM reference command is enqueued,
dequeued, committed and finally done. SDRAM reference commands are handled similarly
by the SDRAM controller.

In this study, the NePSim simulator [|52] is used to model NPU architectures. NePSim
is based on Intel IXP1200 and includes a cycle-accurate architecture simulator and a power
estimator. All the configurations in NePSim are parameterizable. When the architectural
parameters (e.g. number of microengines, number of threads in each microengine, number
and length of FIFO queues, size of the caches, scheduling policies) are set to be that of the
IXP1200, the behaviors of the two processor models are expected to be very similar. When
we vary the parameters, the functional “correctness” is expected to be maintained while the
performance attributes are expected to change, trading off one metric against another. Ulti-

mately, we can arrive at a design that is most suitable to the applications at hand.

3.3.3 Experimental Settings

In order to verify the processor architectural models, a set of architectural execution events

that occur during simulation are generated as simulation traces. They include instructions en-

63

Table 3.2:List of events for verification

Event Type Comments

pipeline an instruction enters the pipeline
sram_enq an SRAM access request is enqueued
sram_deq an SRAM access request is dequeued
sram_done an SRAM access request is committed
sdram_eng an SDRAM access request is enqueued
sdram_deq an SDRAM access request is dequeued
sdram_done an SDRAM access request is committed
bus_issued a bus request is issued

bus_done a bus request is committed
ip_lookup_start | an IP address lookup starts
ip_lookup_done | an IP address lookup finishes

receive an IP packet is received

forward an IP packet is forwarded

tering or leaving the pipeline, memory reference commands being put into or removed from
the command queues in memory controllers, signals being generated from or consumed by
functional units and threads. Talle 3]3.3 lists the events that we are interested in for the veri-
fication studies. To differentiate events generated by different microengine, different threads,
and different architecture models, each event could be appropriately prefixed and suffixed.
For examplem?2 _t1 _pipeline_IXP represents the pipelining event from the microengine 2,
thread 1 of the Intel IXP1200 model. An event is annotated with timing, identification, and
other quantitative information. As presented in this section, each event instance is associated
with four annotations;ycle, pc, addr, anddata, wherecycle is used to measure time in clock
cycles, angc is the PC (Program Counter) value for the current instruction. Depending on
the eventaddr may represent memory address or next PC (NPC) addressicamenay

represent data read from memory or ALU operation result.

64

1731
1732
1733
1733
1733
1733
1733
1734
1735
1736
1736
1737
1737

68
34
19
30
30
30
20
69
34
35
36
72
20

00120100 00000000
0000FFF8 00000000
00000300 00000000
00000300 00000000
00000300 00000000
00000300 00000000
00000300 00000000
0000003F 0000050C
00000300 00000518

m?2_t2_pipeline
m5_tl_receive
mO_t0_sram_enq
m1_t0O_pipeline
m2_t0_pipeline
m3_t0_pipeline
mO_t0_sram_deq
m2_t2_pipeline
m5_t2_pipeline

0000001B 0000051C m5_t2_forward

00178000 00000520
00020100 00000524
00000300 00000000

m5_t2_pipeline
m2_t2_pipeline
mO_t0_sram_done

Figure 3.6:NePSim simulation trace

Traces from NePSim are taken “as is” and fed into automatically generated trace check-
ers. Log traces from Intel IXP1200 are preprocessed in a straightforward manner before
being fed into trace checkers so that each event has the above annotations on the same line,

though there is no difficulty in writing a separate trace format for IXP1200. A snhapshot of

the simulation trace from NePSim is shown in Figurég 3.6.

In the following verification studies, we run a trie-based route lookup benchimark [60] on
NePSim and Intel IXP1200 processor models. The benchmark program is an infinite loop

which continuously look up the route for a list of IP addresses. The trie data structure is

stored in SRAM and accessed through the SRAM instructions.

3.3.4 \Verification Studies

We present three categories of assertion verification throughout the design process in this

section. First, we would like to know whether NePSim, with parameters equal to those of

65

IXP1200, would achieve the same functionality and “similar” performance. We then vary
the design parameters (i.e. number of microengines, number of threads, configuration of the
microengines, amount of caches, ..., etc,) and in each case, check functional correctness of
the new design with functional assertions. Varying the design parameters obviously affect
the performance. We use performance assertion checking to determine the performance of a

particular design given a particular simulation input.

Checking with Reference Model

Using LOC, we can formally and accurately specify both functional equivalence and per-
formance similarity of two design@ We run the same benchmark on NePSim and Intel
IXP1200 models, and use the simulation trace from IXP1200 as the reference trace. First, we
check if the NePSim model is functionally equivalent to the reference model. The primary
function of the model resides in the forwarding table lookup for IP packets being processed,
which involves correct reading from the SRAM. More specifically, we want to check the
following constraint:

“For each SRAM access on NePSim and IXP1200, the associated memory address and
data should be the same, and all the SRAM references are executed with the same order.”

This constraint can be specified with an LOC formula:

addr(sram_enqli]) = addr(sram_enqg_IXP[i])Adata(sram_done[i]) = data(sram_done_IXP][i])

(3.9)

3The requirements for checking functional equivalence and performance similarity are directly from the
designers.

66

We run the benchmark on NePSim and IXP1200 for one million cycles to obtain traces
of about3 x 10° lines. Both models are configured with a single working microengine and
a single working thread so that the packet processing order is deterministic. With the auto-
matically generated trace checker, we show that this formula pass with the given benchmark
trace within 6 seconds of CPU time (see Tdblg 3.3.) All the trace checkings presented in
this section were run on our Athlon 1.5GHz Linux machine with 1GB memory, though the
simulation sessions were run by the designers on their own machines. We report time and
memory usage only for the trace checking operations. In a preliminary version of the de-
sign, the functional equivalence checking was violated. The error report helped the designers
identify a real bug in the SRAM request scheduling algorithm.

Comparing the simulation trace from NePSim to the reference IXP1200, we also want to
make sure that the instruction pipelining behavior of NePSim is “similar” in performance to
that of IXP1200. More specifically, this constraint requires:

“On the two models, all the instructions in the benchmark are executed with the same
order, and the execution time of every pipelining instruction by NePSim is no more than
certain clock cycles away from the execution time of the corresponding instruction by Intel
IXP1200."

This constraint can be specified with an LOC formula:

(pc(pipelineli]) = pe(pipeline_1 X Pli])) A

(leycle(pipelineli]) — cycle(pipeline_ I X P[i])| < A-i+ B), (3.10)

67

where A and B are constants. The second part of the formula holds if and only if, for a
particular pipeline event, the difference in time of occurrence in NePSim and Intel IXP1200
is within A - 7 + B. As simulation progress, the difference accumulates, which is reflected
by A -i. The difference in startup time is accounted for by consfantf the two designs
are truly identical, both values should be zero. The designers decided that, to account for
the differences in the two designs, the acceptable valuglsanfd B should be).05, ands,
respectively. The formula failed almost immediately, and after going through the error report
and debugging the NePSim design, it was found that the SRAM access latency was not mod-
eled correctly. Once the error was fixed, the performance assertion passed (s¢e Table 3.3).
This performance margin is sufficient for designers to declare that NePSim and IXP1200 are
similar in performance.

With the same formuldg (3.10) and substituting for fligeline event, we can check the
performance similarity of other critical events suclyagn_eng, sram_done, andsdram _eng,

with different acceptable values dfand B, determined by the designers.

Functional Verification

Due to the non-determinism in thread handling within the network processor models, it is
difficult to perform deterministic functional equivalence trace checking when there are more
than one thread enabled. For normal multi-thread operations, functional constraint verifica-
tion, based on both LTL and LOC, can be very useful. Designers can write their functional
assertions in LTL or LOC. For LTL assertions, we use FoCs to generate the assertion check-
ing code in C++, and our tool then generates the necessary wrappers for trace checking.

68

To verify the normal operation of the NePSim processor model, We configure it with 6
working microengines (4 of them (mO - m3) used for forwarding table lookup and 2 of them
(m4, m5) used for IP packet transmission) and 4 working threads for each microengine, and
run the benchmark on NePSim for one million cycles. We want to check a non-starvation
constraint for the SRAM controller of NePSim:

“Once an SRAM access request from a thread (e.g. thread 0) of a microengine (e.g.
microengine 0) is enqueued, it must be eventually committed within the next 300 SRAM
related event occurrences.”

This constraint can be specified with an LTL formula:

G(m0-t0_sram_eng — X[1 : 300](m0_t0_sram_done)) . (3.11)

To check this constraint, we only produce the events that are related to SRAM references to
get a trace 0£.8 x 10° lines. The parameterized wrapper generator can easily generate this
assertion for all threads in all microengines, and for SDRAM controller and IX bus controller.
Another important constraint of the memory access scheduler is the correct occurring
order of the eventsram_engq, sram_deq, and sram_done, which requires that “after an
SRAM request by a thread (e.g. thread 1) of a microengine (e.g. microengine 0) is issued
and put into the scheduling FIFO, it cannot be done before it is dequeued”. This constraint

of occurring order can be specified with a formula:

G(mO_tl_sram_enqg — — m0_t1_sram_done Um0_t1_sram_deq) . (3.12)

69

Table 3.3:Verification results for functional assertions

Formula| Formula Instances Trace Lines| Mem Time
3.9) 10267 3 x 10° 40KB 6s
3.10) 295582 3 x 10° 64.8KB | 7s
3.11) 5690 2.8 x 10° 0.4KB 77s
3.12) | 5739 7.0 x 10 | 50 Bytes| 24s
3.13) | 5708 7.0 x 10° | 12 Bytes| 59s

Note that if the simulation trace ends, the verification of the formula will be interpreted on
a finite trace. For example, formula (3112) will not be violateshiim _eng occurs and then
neithersram_done nor sram_deq occurs when the trace ends.

Using LOC, we can specify data consistency constraints for different functional units.
For example, when an SRAM access request is put into to the scheduling FIFO by a thread
(e.g. thread 2) of a microengine (e.g. microengine 1) and then eventually committed, the
memory address it refers to should be the same. We express this constraint with the LOC
formula:

addr(m1_t2_sram_engq(i]) = addr(m1_t2_sram_doneli]) , (3.13)
where the annotationddr is used to represent the referenced memory address. With the
automatically generated trace checkers, formula [3.1T) -](3.13) are checked with no error.

The verification results are listed in Tablel3.3.

Performance Assertions

The goal of design exploration for network processor is to find an architecture which would

perform “better” than the existing model. It is therefore very important to be able to analyze

70

guantitative constraints of a design. With LOC, we can express the performance requirements
or expected quantitative features. In this section, we continue with the parameter setting of
4 microengine for IP address lookup and 2 microengines for IP packet transmission. For
each microengine doing IP address lookup, we experiment with either running 2 threads or
4 threads. As a consequence, we compare the performance metrics for an 8-thread processor
model against the one with 16 threads. We run our benchmark on both configurations for one
million cycles, and get traces of about 3 million lines.

One primary function of the network processor is to perform IP address lookup, which
requires very frequent access to SRAM. Therefore, we want to check the latency between
an SRAM access request enqueued and when it is committed. We first check the SRAM
access latency from a thread (e.g. thread 0) of a microengine (e.g. microengine 2) for the two
configurations. We consider the maximum latency constraint, which can be expressed with

the following LOC formula:

cycle(m2_t0_sram_doneli]) — cycle(m2_t0_sram_eng[i]) <1 . (3.14)

We iteratively search for the smalledt that will allow the traces to pass the performance
assertion (e.g. with a simple bi-partition approach on the range). For the 8-thread config-
uration, we were able to sét = 50, and the assertion can pass the trace checking without
any error. For the 16-thread configuration, in order to make the assertion pass, we have to
increase thél to 100. More threads can cause more memory access contention, and degrade

the latency for individual memory accesses. See Table 3.4 for a summary of the result.

71

The total number of running threads can actually affect the latency for individual IP ad-
dress lookups. The maximum latency of IP address lookups in a thread (e.g. thread 1) of a

microengine (e.g. microengine 0) can be specified with an LOC formula:

cycle(m0_t1_ip_lookup_start[i]) — cycle(m0_t1_ip_lookup_doneli]) <12 . (3.15)

For the 8-thread configuration, we $2to be 900 for the assertion to pass. For the 16-thread
configuration,/2 needs to be 1200. Using the formufa (3.15), we have explicitly shown
that the 8-thread configuration has lower latency for individual IP address lookups than the
16-thread configuration.

Of course, latency does not tell the whole story. Throughput is an equally important
design characteristic for network processors. More threads should achieve better overall
throughput. At the instruction level, we can check the throughput of pipelining instructions

for the processor using the LOC formula:

cycle(pipeline|i + 10000]) — cycle(pipeline[i]) < t1 | (3.16)

which requires that withirt1 cycles, at least 10000 instructions need to be issued to the
pipeline of the processor. For the 8-thread configuration, we need td set200 for the
assertion to pass. This corresponds to a minimum throughput of 2.3 instructions per cycle.
For the 16-thread configuratiotl, need to be set t8500, which corresponds to a minimum
throughput of 2.8 instructions per cycle. The 16-thread configuration has better instruction
throughput according to the analysis using the performance assértioh (3.16).

72

The overall performance of the network processor is measured by the throughput of IP

packet forwarding, which can be expressed with the following LOC formula:

cycle(forward[i + 1000]) — cycle(forward[i]) < t2 . (3.17)

In order for the performance assertion to pass, We need t2set 3.7 x 10° for the 8-
thread configuration, and s&t = 3 x 10° for the 16-thread configuration. If we assume the
NePSim processor is running at 200MHz, we get the throughput for IP packet forwarding of
5.4 x 10° packets/sec angl6 x 10° packets/sec for the 8-thread and 16-thread configuration,
respectively. Given the average packet size of 64 bytes, the routing throughput will be 2.8
Gbps and 3.3 Gbps respectively for the two configurations. Indeed, the designers need to
trade off latency and throughput for any given application to achieve the best design. LOC
assertion checking allows them to quantitatively analyze the performance of a system level
specification. During the design process, the designers can also experiment with increasing
the number of microengines, changing the size of scheduling FIFOs, or putting more caches
between storage hierarchies. All these design space explorations may bring various perfor-
mance trade-offs, which can be easily specified and analyzed by the formal performance
assertions.

The verification results of these LOC performance assertions are listed ifj Tgble 3.4. Since
a typical simulation session can take half an hour or longer, the CPU time and memory usage

for the trace checkers are trivial by comparison. Without them, however, it becomes very

73

Table 3.4:Verification results for performance assertions

Formula| Configuration| Parameters Time | Memory
(3.14) | 8-thread 11 =50 18sec| 12Bytes
16-thread [1 =100 23sec| 16Bytes
(3.18) | 8-thread 12 =900 46sec| 8Bytes
16-thread 12 = 1200 44sec| 8Bytes
(3.16) | 8-thread t1 = 4200 20sec| 40KB
16-thread t1 = 3500 26sec| 40KB
(3.17) | 8-thread 12 = 3.7 x 10° | 44sec| 4KB
16-thread t2 =3 x 10° | 44sec| 4KB

difficult for the designers to conclude anything about the design except in very vague terms
(e.g. “looks good”). Our assertion-based verification methodology is indeed efficient for

dealing with large designs.

3.4 Performance and Power Analyis for Network Processor

Architectures

In this section, we focus on the assertion-based design exploration of dynamic voltage scaling
techniques in NPU architecture models. In order to efficiently analyze the power-performance
trade-offs among different DVS policies with different parameter settings, we use LOC to
specify assertion formulas for power and performance distributions. With automatically gen-
erated distribution analyzers, we can compare their power and performance characteristics
and identify optimal configurations in their large design spaces.

To automate quantitative distribution analysis that is common in design exploration, we

74

extend the LOC assertions by introducing 3 more operatgrs andr. To analyze the
distribution of some quantity over certain ranges, we can use a formula, in the form of
quantity > {min, mazx, step}, to automatically generate a corresponding analyzer. An
analysis periodis specified with a triple{min, max, step, wheremin and maxare lower

and upper bounds, and the interval between these two values is divided into bins of width

step For example, given a formula:

(time(forward|i + 100]) — time(forward[i])) > {40, 80,5} | (3.18)

an assertion analyzer is generated to evaluate the left hand sidebeitig O, 1, 2, ... , and
report the percentage of formula instances whose values fall within the ranges«gf4(],
(40, 45], ..., (75, 80], (80+0). If we replace the operaton with < or >, the ranges become
(—o0, 40], (—0, 45], ..., (oo, 75], (—, 80] or [40,+00), [45, +0), ..., [75,+), [80,

+00), respectively.

3.4.1 Experimental Settings

In this set of experiments, we use the same network processor simulator NePSim described
in Section 3.B and choose four representative networking applications to explore different
architectural features of the NPU model, i.gfwdr, url, nat,andmd4 The application

ipfwdr is an IP forwarding software provided in Intel's SDK. The routing table is stored

in the SRAM, and the output port information is stored in the SDRAM. The progrdm

75

2.5e+08

Max

2e+08
@
12}
d.5e+08
5
o
c
D 1e+08}
o
=

56+07 |, Med

il
0 9:4 110 33

: 13: :
Time (Hour:Minute)

Figure 3.7:Distribution of IP packets

routes packets based on URL requests. It checks the payload of packets frequently, so it
needs a large number of SRAM and SDRAM accessesatfnetwork address translation),
each packet only needs an access to SRAM for looking up the IP forwarding table. The
md4 provides a 128-bit digital signature algorithm. It moves data packets from SDRAM
to SRAM and accesses SRAM multiple times for computation. So it is both memory and
computation intensive. Memory accesses, specially SDRAM accesses, have long latency.
They lead to long idle time for MEs, which in turn shows up as lower power and throughput.
Computation-intensive benchmarks, those that do not wait on memories, will tend to show
higher power consumption.

The simulation data that we use follows IP traffic patterns in a real world edge router from
NLANR [12]. Figure[3.7 shows a day time distribution of IP packet arriving rates. Due to the

limited simulation speed of NePSim, it is too expensive to run the whole trace. We sample a

76

Table 3.5:List of events and event annotations for performance and power analysis

Events Details

pipeline an instruction enters the execution pipeline

forward an IP packet is forwarded

fifo an IP packet is put into the processing queue

Event Annotations Details

cycle number of core clock cycles elapsed from the beginning
time simulated time elapsed from the beginning

energy cumulative energy consumed

total_pkt total packets received or transmitted

total_bit total bits received or transmitted

few seconds of real traffic in high, medium, and low arriving rates as individual inputs to the
simulator.

Traces generated from simulation contain a set of architectural execution events that occur
frequently during simulation and a set of values related to power and performance, which are
called event annotations. In this set of experiments, three types of evénisye, forward,
and fifo, are mainly used, as explained in Taple]3.5. In a simulation trace, the events are
prefixed to differentiate different microengines (MESs), threads, or configurations. For exam-
ple, m2pipelinerepresents a pipeline event from ME2. Each event is associated with five
annotations, also explained in Table]3.5. A snapshot of a trace file generated by NePSim

simulator is shown in Figure 3.8.

3.4.2 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) [23] is a popular low power technique that has been em-

ployed widely for microprocessors, resulting in significant power and energy savings. DVS

1

cycle time energy totabkt totalbit event
365 1.573 0.773932
365 1.573 0.768133
368 1.586 0.794108
368 1.586 0.784506
369 1.590 0.809369

4096 ni2peline
9216 nBpeline
4096 forward
11264 nmipeline
9216 forward

NWEFEDNPR

Figure 3.8:NePSim simulation trace for performance and power analysis

exploits the variance of a processor’s utilization, reducing voltage and frequency (VF in
short) when the processor has low activity and increasing VF when the peak performance is
required. Dynamic power consumption is proportional’toVdd? - « - f, so reducing voltage
(Vdd) and frequency () can significantly reduce power consumption.

Although many DVS algorithms appear in literature, the unsolved difficulty is how to
derive the optimal settings from external observations, for example, by monitoring the work-
load or idle time. In this section, we will use assertion-based methodology to study and find

out optimal DVS parameters in NPUSs.

3.4.3 Power Analysis

We first use our assertion-based analyzer to check the maximum power and power distribu-
tion for the NPU model. We simulate our 4 benchmarks, each of which is executed fot 8
cycles with an unlimited packet arriving rate.

Long period of high power consumption can increase the temperature to the extend of

damaging the chips themselves. Therefore, we check a constraint for the maximum power

78

Table 3.6:Power values for the 4 benchmarks

ipfwdr | md4 | nat | url
MAX | 1.45 1.7 |1.7|1.65
MIN | 0.6 0.3 | 06|03

consumption in the six microengines: “the power consumption within every 5 instructions
pipelined should be smaller than a threshold valtieThe constraint can be specified with
an LOC formula:

eng(pipelineli + 5]) — eng(pipelineli])
time(pipeline[i + 5]) — time(pipelineli])

<a (3.19)

The number of 5 is the window size we used to observe the power. The window is slid-
ing, so all instances will be checked. It doesn’t change the results if the window size is 10
or 100. The checker executes in less than 1 minute of CPU time. The thresholdavalue
in the formula[(3.19) is changed gradually, and we get the maximum and minimum power
consumption in 5-pipeline-event time windows (T&blg 3.6). The characteristics of different
benchmark result in different min/max pow@at has highest maximum and minimum val-
ues. This is because it has no SDRAM accesses, so there is no long latency for memory
access and the MEs are kept busy running.

Besides checking whether the NPU consumes power within a safe range, we are also
interested in how the power values are distributed. We want to know whether it stays close to

the average value, or spreads over a wide range. Formula (3.19) is extended for distribution

79

2.E+06 -

2 E+06 Hipfwdr |
9 2 E+06 M Omdd |
§ 1.E+08 Onat |-
"g' 1.E+06 = m url —
«w 1E06 i I
-g 6.E+05 I
3 4.E+05
z 2 E+05 [I I m B =

0.E+00 II I'II‘ il I_rLI‘lelm_,.l_H_,.h]F r r r

05 06 07 08 082 084 086 088 09 092 094 096 098 100 102 104 106 108 11 12 13 14
Power Value (W)

Figure 3.9:Power distribution graph for 4 benchmarks

analysis as follows:

eng(pipeline[i + 5]) — eng(pipelineli])
time(pipeline[i + 5]) — time(pipelineli])

1 {0.40, 1.40,0.01} (3.20)

Figure[3.9 shows the power distributions for the 4 benchmarks generated from the asser-
tion analyzelﬂ We can see that all the benchmarks show a high percentage of power values
between 1.00W to 0.90W. The benchmaigdsvdr andmd4have 28% and 26% of total for-
mula instances (i.ei’s) with power between 0.90W and 0.92W. Another frequent range is
between 0.98W and 1.00W, which is caused by some frequently used instruction patterns,
e.g. common computation operations. We can also see that the NPU is working around
+10% of the average power for around 70% of the total simulation time. The minimum and
maximum power consumptions rarely appear. This is a favorable situation to the chips since

they will not become too hot by running in high power for short spurts.

“For clearer presentation, infrequent ranges are merged in the graph.

80

3.4.4 Design Exploration for DVS

In a real system with DVS, the frequency and voltage are adjusted dynamically according to
the processing workload. A DVS scheduler relies on the history information of workload to
make decisions. In an NPU design, two types of information can be used for this purpose,
network traffic load and processor idle time. We call the two DVS policies traffic-based
dynamic voltage scaling (TDVS) and execution-based dynamic voltage scaling (EDVS). The
two policies are usually not combined since monitoring both traffic load and processor idle
time on a chip is expensive in terms of area and power.

We analyze the power-performance trade-offs of DVS policies by varying the window
size and threshold for voltage/frequency scaling, and search for optimal points in the design

space. We also compare the two DVS policies under different design requirements.

Traffic-based Dynamic Voltage Scaling

TDVS uses the total traffic load detected at the 16 device ports as the control parameter
for scaling. If the traffic volume in the previous time window is smaller or larger than a
particular threshold value, we scale down or up the VF of the processor by one step, until a
lower or upper bound is hit. The lower and upper bounds of VF, similar to those used in Intel
XScale [8], are from 400MHz to 600MHz and 1.1V to 1.3V. We set the frequency step to
50Mhz and compute the voltage as in XScale. In order to match higher NPU frequency, we
scale the speed of SDRAM, SRAM and ixbus to 1.3 times of those in IXP1200.

To estimate the power in TDVS, we modified NePSim’s power estimation module to

81

include the power overhead, a 32-bit adder. The adder is used to accumulate the packet sizes
in each monitor window, and compare the traffic volume with the threshold. Note this adder

is only used when a packet comes in, much less frequently than the ALUs in ME pipelines.
From the experiment results, we find the overhead is less than 1% of total power.

TDVS reduces the power, but it may adversely affect the performance. The clock cycle
becomes longer ii/dd is decreased, so the NPU takes longer time and possibly more energy
to get the same amount of work done. The trade-off motivates us to analyze both power
consumption and performance of the NPU with different TDVS policies applied. The goal
is to find the optimal points in the design space for each benchmark. We use the following

LOC formula to analyze the power consumption distribution:

energy(forward|[i + 100]) — energy(forward|[i])
time(forward[i + 100]) — time(forward[i])

>{0.5,2.25,0.01} . (3.21)

The left hand side of the formula calculates the average power consumption for each 100
packets forwarded.
To study the performance of the processor with various configurations, we analyze the

distribution of the transmitting throughputs using the following formula:

(total bit(forward[i + 100]) — total _bit(forward]i]))/10°
time(forward[i + 100]) — time(forward[i])

<{100,3300,10} . (3.22)

The left hand side of the formula calculates the average forwarding bit rate in Mbps for each
100 packets forwarded.

82

Table 3.7:\oltage scaling values

Frequency (Mhz) 600 | 550 | 500 | 450 | 400
\Voltage(V) 1.3 |1.25/1.2 (115|111
Traffic Threshold(Mbps) 1000 | 916 | 833 | 750 | 666

With the two formulas, we search for the optimal settings of TDVS policies. In TDVS,
two main types of parameters that need to be carefully tuned are the traffic thresholds and
window size. For each TDVS policy, the traffic thresholds are a set of volume numbers that
control the voltage scaling in different VF combinations. With the frequency and voltage
reduced, the traffic threshold is also lowered to match the reduced ME processing capability.
Taking ipfwdr as an example, if we choose a top threshold of 1000Mbps for the normal
frequency of 600MHz and other thresholds for reduced VFs are decided as listed in Table 3.7.
In our experiments, we use the benchmigfivdr to compare the TDVS policies with four
different top thresholds, 800, 1000, 1200 and 1400 Mbps.

The window size decides how long a traffic history is used to make voltage scaling deci-
sions, and it also directly affects the overall performance of the TDVS policy. For example,
if the window size is set to 20k clock cycles, the average traffic volume in the previous 20k
cycles is compared to the current threshold to decide whether the VF needs to be changed.
If a window size is too large, it may smooth the peak traffic with low traffic and miss a good
chance to reduce power; If window size is too small, VF may change too frequently, which
incurs more penalty and eventually hurts the performance. In the experiments, the penalty

for each voltage scaling is 10 [52], which is equivalent to 6000 cycles at the normal fre-

83

CLuNWRUIONDO©=
T T T T T T T
[SREN SR AN NES RO RNT. RN
T T T T T T T

"
" I I T N I |

S
06 0.8 1 12 14 16
Power -- threshold 500Mbps

Normalized # of instances
[eleloleololololole)]
Normalized # of instances
OCOO0OO0OOOOOO

1%} [72]
@ 1 @ 1 T
§ 09 | % 09 335 —t
& 08 & 08 F —-%---
g o7f 2 o07r 60K -
5 06| 5 06| 80K -
05 #* 0.5 noD\l{!S -
FH! !]
s 02 s 02} ey
€ L £ L ~
5 0.(1) N 5 0.(1) N O
P4 zZ ¥

0.6 0.8 1 12 14 16 06 0.8 1 12 14 16

Power -- threshold 400Mbps Power -- threshold 600Mbps

Figure 3.10:Power under different design points with TDVS

(%] [72]
@ 1 - @ 1 =
g 09 fF TToE-T 4 2 09f TToEITR 20K —+—
g 08r T £ 08r & B 40K -
£ 07r 4 £ 07Ff X B0K g
5 06 R 5 06 80K >y
05} 4 = 05¢f DVS _“®- -
° 04+ E ° 04+ AN
& o3t 1 & o3 V-
s 02 B] 0.2 W
E 01 4 E o1f -
g O 1 1 1 1 § 0 1 1 1 1 -
400 600 800 1000 1200 1400 400 600 800 1000 1200 1400
Throughput -- threshold 800Mbps Throughput -- threshold 1200Mbps
(%] [72]
@ 1= @ 1=
e 09 TR -TF . e 09F TR ST, 20K i 4
0 0.8 1 3 0.8 ,:40KA"*><”* —
£ 07rF - £ 07rF ~CRIB0K - * g
s 0.6 B 5 0.6 80K NG .
05 q * 0.5 S A
5 04 r - o 04 r N
& o3t 4 & o3 A
© 0.2 B © 0.2 BN
E 01 - E o1} N A
§ 0 1 1 1 1 g 0 1 1 1 1 oS
400 600 800 1000 1200 1400 400 600 800 1000 1200 1400
Throughput -- threshold 1000Mbps Throughput -- threshold 1400Mbps

Figure 3.11:Throughput under different design point with TDVS

qguency of 600MHz. We compare 4 different window sizesijpdwdr, ranging from 20k to
80k cycles.

We run the simulation 810° cycles for each TDVS configuration. Using the automat-

ically generated distribution analyzer with the formulas (B.21) and(3.22), we compare the

84

power and performance distributions with different TDVS policies or no TDVS enabled. The
distributions for the power and performance are plotted in Figurg 3.10 and fFiguie 3.11 re-
spectively. Each subgraph shows the power or throughput distribution with a particular top
threshold and different window sizes. In the power distribution graphs, the horizontal axis
represents possible power values and the vertical axis represents the percentages of assertion
instances that are smaller than particular power values. Similarly, in the throughput distribu-
tions, the vertical axis represents the percentages of assertion instances that are larger than
particular throughput values.

From Figurg 3.70, we can see that compared with no TDVS policy, the power saving by
TDVS is obvious no matter what threshold or window size is chosen. And in most cases
(except with window size of 20k), the performance degradation is small (from 3.11).
So it is shown that TDVS is a very successful power saving technique. We also see that
TDVS configurations with smaller window sizes have lower power consumption but worse
throughput, regardless the threshold values. When window size is small, e.g 20k, the TDVS
policy becomes very aggressive. The VFs are changed very frequently, and as a result, the
6000-cycle penalties almost consume 30% of the window time. That is the reason why there
is dramatic drop in throughput for window sizes of 20k. On the contrary, for 80k window
sizes, they still achieve certain power savings with almost no performance loss.

To compare the results of different thresholds more clearly and look for a best TDVS pol-
icy for ipfwdr with an optimal threshold-window size combination, we generate 3-D graphs

for power and performance distributions in Figlire 3.12 and Figurg 3.13. A vertex on the

85

o
©
T T T T T T T T

800

1200
Threshold (Mbps) 3%

Figure 3.12:Power under different design points with TDVS

Throughput (Mbps)

Figure 3.13:Throughput under different design points with TDVS

surface shown in Figufe 3.J12 represents that 80% of forrula](3.21) instances are lower than
a power value for a particular threshold and window size. Similarly, a vertex on the surface

in Figure[3.1B represents that 80% of formula (8.22) instances are higher than a throughput

86

value for a particular threshold and window size. As shown in Figurg 3.12, for a particu-
lar window size, the threshold of 1000Mbps has higher power than others, and this trend
becomes more significant as the window size increases. As shown in Figure 3.13, if the win-
dow size is small, the performances for different thresholds are similar; as the window size
becomes larger, the performance for 1000Mbps threshold becomes much better than others.
Based on above analysis, if performance has a higher priority in the design, we should
choose threshold of 1000Mbps and 80k window size with limited power savings. On the other
hand, if saving power is more important, the configuration with 1400Mbps of top threshold

and 40k of window size is preferred.

Execution-based Dynamic Voltage Scaling

In execution based dynamic voltage scaling (EDVS), the idle time of a microengine is used
as the control parameter for voltage scaling. When the idle time is longer or shorter than a
certain percentage of an observed period, the VF of the microengine is scaled down or up by
one step, until a lower or upper bound is hit. Note that in EDVS, each ME changes its VF
independently.

Intuitively, ME idle time is usually seen to be proportional to the workload, which makes
TDVS and EDVS almost the same. However, this is not really the case in the NPU model.
Even if an ME does not process packets during low workload, it will actively execute in-
structions to poll the buffers and status registers to check new packets. In the NPU model,

the idle time of an ME is mainly introduced by long latency of memory accesses since an

87

3 1 3 1
o [$)
5 5
-va 08 ~ N -va 08 N
£ k=
5 06 1 5 0.6 1
* 3+
3 04r E 3 04 —
N N
© 0.2 B ® 0.2 1
IS IS
o 0 — T L L L “m o 0 .
2 2

1 11 12 13 14 15 16 1.7 1000 1100 1200 1300 1400

Power Throughput

Figure 3.14:Power and performance distribution for EDVS

SDRAM access can take as much as 100 clock cycles. If all the threads in an ME are waiting
for memory accesses to be completed, we consider the ME idle.

To analyze EDVS policies, the idle time thresholds and window sizes are the main param-
eters we study and others are configured as those used in TDVS. We use the assertion-based
distribution analyzer to find the good idle time thresholds by analyzing the distribution of the
idle time in simulations. It is observed that for receiving MEs, in around 90% of the total
simulation time, idle time is either under 5%, or between 30% and 40%. For transmitting
MEs, idle time is almost always under 5%. The microengines seem working under only two
statuses, either busy or idle. Here we simply choose the idle time threshold value as 10%, i.e.
if the idle time of an ME is longer or shorter than 10% of an observed period determined by
the window size, its VF may be changed. We study three different window sizes, 20k, 40k
and 60k and still usgfwdr as the example benchmark.

We run the simulation 810° cycles for each EDVS configuration and plot the distribu-
tions of throughput and power in Figure 3.14. From the power distribution graph, we observe

that power dissipation generally drops from 1.5W to 1.15W for most cases with EDVS ap-

88

1 =T T ‘I\\ T T
< 08k | noDVS™< i
o Y " EDVS ---\-
S o06f | TDVS -—}-
=04 | \ e
02 F N e
0 1 | I N I |
040608 1 12141618
1
0.8 .
B < 06
= 0.6 7
(&)
SR oa :
® 02f -
C
= 0 '
) 040608 1 12141618
E=3
8 1 1 \L;\I IDVé 1
N 08 4 o8 v ___1 4 o8
© + |
£ T 06 4 06 . TDVS -—-+ 4 06 F
5SS oaf 1 o4} \ 1 o4}
Z o2t 4 o2} hl 4 o2}
0 0 1 1 1 [0 |
040608 1 12141618 040608 1 12141618 040608 1 12141618
1 \ T I‘. IDVIS T T 1 ‘\I Ily IDVé T T 1 N Il\ IDVé T T
no n n
081 llEDV§S ——- 1 O98r. EDVs - | 08F " Bovs -
— 06 . L|TDVS -—-- 4 06F N !TDVS -—-- 4 06 \L DVS - —-- -
5)
0.4 || ! 4 04 | 4 o04fFf ! i
0.2 -\, \ 4 02F N\, 4 02 ! .
0 RS 1 1 1 0 1 Ay 1 1 1 0 1 L 1 1 1
040608 1 12141618 040608 1 1.21.41.61.8 040608 1 1.21.41.61.8
Power(W)- Min Power(W)- Max Power(W)- Med

Figure 3.15:Energy comparisons for employing DVS

plied, achieving around 23% of power saving. Meanwhile, there is nearly no performance
degradation from the throughput distributions. In EDVS, each ME changes its VF indepen-

dently and the transmitting MEs never scales down their VFs due to their low idle time.

Comparison between TDVS and EDVS

We have shown that both TDVS and EDVS are capable of saving power with little perfor-
mance impact. Now we are ready to compare the two policies, and find which one is better

given a particular power or performance requirement.

89

We sample the real traffic file in three periods with high, medium, and low traffic volumes
respectively. We simulate all four benchmarks with the optimal configurations (from previous
analysis) for two DVS policies and compare the power distributions in Fjguré¢ 3.15. We don't
show the throughput performances and only note that in all cases EDVS has no significant
performance loss while TDVS never drops more than 2-5% compared to the original NPU
model with no DVS applied.

Overall, TDVS has more power savings than EDVS. But as the traffic volume becomes
higher, power savings by TDVS are reduced quickly, while EDVS has a more steady reduc-
tion under every situation. EDVS has better results for memory intensive benchmarks. We
observe thatpfwdr shows the most power savings if traffic volume is medium or high. This
is becausépfwdr needs to check routing tables in SRAM and the output port information in
SDRAM for each packet. There are plenty of opportunities for EDVS. The benchmaark
shows no power savings from EDVS under every traffic patterns due to the faocbtteds
very few memory accesses, and the MEs are kept busy.

In summary, if the power consumption is the dominant design factor, TDVS shall be
a better choice. Otherwise, if performance is more important and packet loss needs to be

avoided as much as possible, EDVS shall be used.

90

Chapter 4

Deadlock Analysis with Built-in

Simulation Monitors

In the design of highly complex, heterogeneous, and concurrent systems, deadlock detection
and resolution remains an important issue. Even with careful methodological guidance, it is
still possible to introduce unintended and undesirable behaviors into function specifications,
high level architecture models, or function-architecture mappings. Foremost among these
are deadlock, livelock, and starvation. Being semantic in nature, their complete and precise
characterization requires formal analysis or verification, which can only be done at a high
level of abstraction due to the state space explosion problem. In this chapter, we look for a
practical solution to deal with these design problems in realistic and complex system designs.
A simulation based analysis methodology is proposed for the detection and elimination of

these “semantic errors”. Designers are responsible for coming up with simulation vectors

91

and scenarios that are important and may lead to undesirable behaviors such as a deadlock.
Our approach automatically analyzes the simulation status and reports deadlocks once they

occur.

4.1 Introduction to Deadlock Analysis

Deadlock detection and resolution techniques have already been extensively studied in the
areas of operating systems and database systemis [28| 61/, 48, 58]. In those domains, dead-
lock prevention is possible if particular resource allocation policies are applied. Deadlock
avoidance is used as a part of scheduling algorithms to choose at least one possible execution
path where no deadlock will occur. A resource allocation graph or state graph is usually
used to analyze and identify deadlock situations for deadlock detection. Though it is possi-
ble to incorporate these techniques in a system design to eliminate deadlocks, they are not
general enough to apply to arbitrary designs due to the design flexibility required by today’'s
platform-based embedded system designs. Our deadlock analysis mechanism is integrated in
the design framework (rather than the designs) to help designers analyze design errors while
allowing full design flexibility.

In communications and concurrent software, various formal verification techniques are
employed to exhaustively search deadlock situations in concurrent protocols|[35| 34, 55, 42].
In essence, synchronization protocols at a high level of abstraction, either extracted from the

design or definea priori, are formally verified. In the latter case, lower level implementa-

92

tions are then developed manually keeping as close as possible to the higher level protocols.
The current approaches suffer from at least three problems. Firstly, abstraction of synchro-
nization protocols from a complex design is non-trivial and error-prone. Secondly, complex
modern synchronization structures are becoming too complex, and their analysis also suffers
from state explosion problem. Thirdly, when a protocol is formally verifegriori, it is

still quite difficult to get designers to follow exactly the verified protocol, not to mention that
the design flexibility is considerably reduced. Our approach is based on simulation, so it can
handle real complex system designs.

In simulation verification, assertions that are based on temporal logics can be used to
check safety properties in a certain period of execution [6]. However, temporal assertions
have to be designed according to particular applications. They are usually used to check the
overall behavior of a system, and not suitable for identifying the causes of those undesirable
behaviors due to their “trace checking” nature. A general deadlock detection mechanism is
proposed in[[50] for discrete event simulation models. However, no implementation on real
simulation models has been discussed in the literature. In emerging simulation environments
for heterogeneous system level designs, an effective and efficient deadlock analysis tool that
can be tightly integrated into the design methodology is needed, which is the main focus of
this chapter.

While our deadlock monitoring approach can apply to any system level design environ-
ment, we focus our effort on the synchronization dependency and deadlock analysis for sim-

ulation in the Metropolis design framework [20]. Metropolis is a system level design frame-

93

work for modern embedded systems. In the modeling language of Metropolis, Metropolis
Meta-Model (MMM), a design is specified as asynchronous processes with communication
specified with media and with its overall behavior limited by the synchronization constructs:
function-architecture mappingawait statements, interface function calls, constraints, and
schedulers. The function and abstract architecture of a system are specified separately and
correlated by synchronization of functional events with architectural everapging. An
await statement can be used to make a process wait until some conditions hold, to establish
critical sections that guarantee mutual exclusion among different processes, and to prevent
interface function calls by other processes. To limit the behavior of processes, designers
can put high-level LTL (Linear Temporal Logic) or LOC (Logic of Constraints) constraints
on the system specification without giving any specific scheduling algorithm, and leave the
implementation to the lower levels of abstraction. Designers can also write their own sched-
ulers in architecture models at a high abstraction level, which are agliadtity managers
in Metropolis. The high flexibility of the design platform allows designers to use differ-
ent modeling constructs freely in a system design. Without a platform-supported systematic
analysis mechanism, this flexibility can lead to vulnerability to design errors that may cause
deadlocks.

We identify and analyze deadlock problems in Metropolis simulation. We propose a
data structure called the dynamic synchronization dependency graph (DSDG) that reflects
the runtime blocking dependencies among processes. We also devise an associated deadlock

detection algorithm to monitor the simulation. The goal of the synchronization dependency

94

analysis is to help the designer identify the components (e.g. processes and media) and
synchronization constructs (e.@wait and synclh) that are causing any deadlock problem

and to provide an error trace or a history of dependency snapshots that show how the system
arrives at this state. We use a real world Metropolis desigrretfizecomponent in a picture-
in-picture (PiP) video processing system, to demonstrate the usefulness and effectiveness of
the deadlock analysis approach. We also use a high level mapping model that includes a
functional specification, an abstract architecture model, and mapping to illustrate how design

problems from the function-architecture mapping can be analyzed.

4.2 Synchronization in Metropolis

In this section, we review the synchronization constructs in Metropolis Meta-Model and dis-
cuss how deadlock situations are caused by the synchronization mechanism in a concurrent

system model.

4.2.1 Synchronization Constructs

The modeling constructs for synchronization in MMM inclugygchconstraintsawait state-
ments, interface functions, quantity managers, and LTL and LOC constraints. Most of these
synchronization constructs are not unique to MMM, and their counterparts are also used in
other concurrent modeling languages.

In Metropolis, the function and architecture of a system are modeled as separate networks

95

of processes communicating through media. In a functional network, functional processes
run concurrently and communicate with each other through media. In an architectural net-
work, computing and storage resources are modeled with media. Services that the architec-
ture can provide are modeled with processes, which are cabgghing processe# function

model is mapped to an architecture model as the events of functional processes and mapping
processes are synchronized wsgmchconstraints. A designer is allowed to implement par-
ticular schedulers aguantity managerso manage architectural resources and services in

an architecture model. Quantity managers are basically scheduling media that implement a
particular set of functions that can be invoked by processes to issue service requests. An ar-
chitectural mapping process may be suspended by a quantity manager if it requests resources
(quantities in Metropolis terminology) from it. The corresponding functional processes that
are mapped to the mapping process can then be blocked thsgnghconstraints.

A synchconstraint is an alternative of a rendezvous used in the concurrent program-
ming [41,25%]. It can specify that two events in two different processes must occur at the
same time. If only one of the two events can be scheduled to occur, the process containing
the event has to be blocked until the other event can occur alsgnétcan also require that
an event cannot occur until any of the other events occur. The execution of a process has to
be blocked at a certain event until all tgnchconstraints containing the event are satisfied.

For example, assume functional procgesand mapping processgs andp, have events,,
e; andes, respectively, and are synchronized bgyachconstraintsynch(ey => e4||es),

which requires that, cannot occur untik; or e; occurs. This scenario may denote that a

96

System Netlist

Function Netlist Architecture Netlist

—————— 7T T T~ _-W P1

PO forfynch (€0 = (el 12

D

~ -
p=

Figure 4.1:An example of synch constraint

functional process can not run until there are free computation resources in the architecture.
The execution of, may be blocked by either, or p,, as illustrated in Figure 4.1.

An await statement is used to establish mutually exclusive sections and to synchronize
processes. It contains one or more statements catlgdal sections each controlled by a
triple (quard; testlist setlist). Theguard can be any Boolean expression, andttstlistand
setlistdenote sets of interfaces, which essentially work as integer semaphores that can be
incremented or decremented. A critical section is said tertabledf its guardis evaluated
to true and none of the interfaces in tiestlisthas been set by other processes in the system.
A critical section may start executing only if it is enabled. While the critical section is
being executed, the “semaphores” specified irstitéstare incremented and can block other
processes that require the semaphores. The interface function calls are also prevented if the
interface is set by aawait If no critical section is enabled, the execution blocks. If more

than one critical section are enabled, the choice is non-deterministic. For examaleaian

97

statement has two critical sections:

await {
(foo(); intfpe; intfp,) { critical _sectiony;}

(true; intfi, intf;r; intfig, intfi;) {critical _section;;}}

The first critical section is enabled only if gugfe() is evaluated to true anaif,, is not set
by otherawaits If a process enters this critical sectionif,; will be set. The second critical
section is enabled only if none of interfacegf;, andintf;; is set by other processes. If a
process enters this critical sectian{f,, andintf;; will be set by the process. Note that an
interface can be set by multiple processes at a given time and must be unset by all of them to
be released.

A designer can also add general LTL and LOC constraints to a system to further restrict
the behaviors of the system. We do not present these constraints directly here since their
specification semantics are not for execution, and it is up to the simulator to make sure that

the execution is consistent with the constraints.

4.2.2 Deadlock in Metropolis

Many different definitions can be found in the literature concerning deadlock. In our ap-

proach, we define deadlock for Metropolis designs as follows:

Definition 1 A deadlockis a situation where two or more processes are blocked in execution
while each is waiting for some conditions to be changed by others.

98

Given the constructs considered in MMM, only the following situations may block the

execution of a running process:

(1) A process has to wait for synchronization from other functional or architectural pro-

cesses as required by one or msyachconstraints.

(2) A process cannot execute an interface function due to the fact that the interface is
included in the setlist of a critical section being executed in another procesais

statement.

(3) Aprocessis blocked at awaitstatement due to the unsatisfaction of all its guard/testlist

conditions.

(4) A mapping process is suspended by a quantity manager when it is requesting some

guantity from it but cannot be satisfied.

The interaction of these synchronization constructs can be quite complicated. A dead-
lock exists if and only if there exist dependency loops among the processes in a system. We
will identify and analyze the deadlock situation and report the processes and the media to
which they are connected. Livelocks and starvations are much harder to identify. Formal
verification [55%| 42] is required to conclusively identify them by searching for infinite cyclic
executions and infinite blocking conditions, respectively. However, synchronization depen-
dency analysis is still useful to provide a guide to the designer to help isolate the problem.

Furthermore, while we do not attempt to analyze a system to make sure it is deadlock-free

99

and only report deadlocks as they occur in a specific simulation, we can give heuristic guide-
lines and suggestions whether or not a deadlock is likely to occur in the future or with other
simulation vectors, by showing the system dependency condition at any given simulation

state.

4.3 Synchronization Dependency and Deadlock Analysis

In this section, we introduce a deadlock analysis methodology for system level designs. We
propose a data structure called the dynamic synchronization dependency graph (DSDG) used
in the Metropolis design environment for deadlock analysis. Though the graph is defined
according to the execution of Metropolis Meta-Model constructs, it represents general syn-
chronization characteristics in today’s system level designs and can be easily applied to other
languages and design environments. Once the synchronization dependencies are captured by

the graph, an algorithm can be used to detect deadlock situations.

4.3.1 Deadlock Analysis Methodology

Our deadlock analysis methodology is illustrated in Fiduré 4.2. By integrating deadlock
analysis tools in a simulation environment for system level designs, designers can efficiently
analyze complex concurrent systems with simulation and quickly identify design problems
that may cause deadlocks. The task of design analysis becomes much easier with the help

of runtime synchronization information combined with regular simulation traces and static

100

Deadlock

update -
DSDG Analysis
« > DSDG
D
Deadlock?
| System Level Detection
Design Output Deadlock
. Dependencies Warnings
Compilation B I
I e
Simulation 1 M -
| e
Model ! e
|
Simulation
Vectors
Simulation Synchronization
Trace Dependencies
\ |
v v

Revise the design .
and/or simulation vectors Analysm Report

Figure 4.2:Deadlock analysis methodology

network structures. They can be used to guide a designer to revise the design to eliminate
problems or modify simulation vectors to explore different execution paths looking for other
design errors. This methodology allows full design flexibility and is able to handle large

models. The details of the deadlock analysis mechanism will be discussed in the rest of this

section.

4.3.2 Dynamic Synchronization Dependency Graph

Definition 2 A DSDG (dynamic synchronization dependency graph) is a directed graph
S=(V, E). V is a set of four categories of vertices representing processes in the network,
or-dependency, and-dependency, and eval-dependency. E is a set of directed edges between

vertices indicating dynamic synchronization dependencies.

101

Algorithm 2 Main procedure to build and update a DSDG.
procedure UPDATE_DSDG()
for each procesg; in the systentdo
if p; is unblocked by one or more synch. construbtn
remove all the dependency vertices and edges frocaused by those synch. constructs;
end if
if p; is blocked by one or more synch. construttsn
UPDATE_PROCESSY;);
end if
end for
end procedure

In a DSDG, each process in the network is represented by a process vertex. Other de-
pendency vertices and edges are added or removed dynamically as dependencies between
processes change in the execution.ahl-dependenagquires a process to be blocked until
all the conditions become satisfied. Andependencyndicates that as long as one of the
conditions becomes valid, a process can be releasedahdependendg used to represent
that a process is blocked by a guard ofaamait or by a quantity manager. Guards are not
analyzed but simply evaluated to get the valuation of “true”, “false”, or “blocked”. Simi-
larly, quantity managers are invoked to decide if processes that are making requests need
to be suspended or not. If a process is blocked by a guard or a quantity manager, it has
dependencies on the processes that may change the evaluation of the guard or the quantity
manager sometime later. A DSDG is automatically built and updated during the simulation,
and it describes the status of dependencies among all the concurrent processes of a system at
a particular execution state. If a process is actively running, there is no outgoing edge from
it in the graph. If it is blocked or released, dependency edges and vertices will be added

to or removed from the graph dynamically. A DSDG is built and updated with dependency

102

@ process vertex -
@ guard (foo())
and vertex @
A or vertex synch @
<3> eval vertex
intf11
A B C

Figure 4.3:DSDG examples

Algorithm 3 Procedure to handle a blocked process.
procedure UPDATE_ PROCESSH;)
for each synchronization construct that bloglsdo
if p,. is blocked by asynchconstraint that requires its waiting for any of processgs, .. .,
andp,, then
add an or-dependency vertex;
CONNECTQ,, 04, {p; : i € [1,n]});
else ifp,. is blocked by an interface functiahthen
add an and-dependency vertex
CONNECT,,, a,, {processes that prevent the interfd¢g;
else ifp, is blocked by a quantity managérthen
add an eval-dependency vertex
CONNECT,,, e., {processes that are managedd});
else ifp, is blocked by arawaitthen
UPDATE AWAIT(p,, {C; : i € [1,n] andC; is a critical sectio);
end if
end for
end procedure

vertices and edges dynamically added or removed using the procedures in Alddrithm 2 to

[B. Initially, V only includes all the process vertices, afids set tof). During simulation,

UPDATE.DSDG() is called to updat& every time the synchronization dependencies of the

system are changed. UPDATFROCESS() is called to update the DSDG for each blocked

process, and UPDATRRWAIT() is called for a blockingawait CONNECT() connects newly

added vertices with directed edges.

103

Algorithm 4 Procedure to connect newly added vertices.
procedure CONNECT src, mid, {dest; : i € [1,n]})
add an edge fromarc to mid;
for i:=1tondo
add an edge fromid to dest;;
end for
end procedure

Algorithm 5 Procedure to handle a blocking await.
procedure UPDATE_ AWAIT(p., {C; : i € [1,n]})
add an or-dependency vertex;
for each critical sectiod’; (1 <1i <n)do
add an and-dependency verigx
if the guard condition is evaluated to fatben
add a eval-dependency vertex
CONNECT;, gi, {processes that may change the gygrd
else ifthe evaluation of the guard is blockduen
recursively call UPDATEPROCESS(;) to add dependency vertices and edges as i$ a
blocked process;
end if
for each prevented interfagetf;; in C;’s testlistdo
add an and-dependency vertgx;
CONNECT(a;, ai;, {the preventing processgs
end for
end for
CONNECTQ,, 04, {a; : i € [1,n]});
end procedure

Figure[4.BA shows an example DSDG of a procgsdeing blocked by a constraint
synch(eg => e1|e2), which requires that, cannot occur untit; or e, occurs. Figuré 4|3B
shows an example of a processbeing blocked by amwait Theawait statement has two
critical sectionsCy andC;. Assume that, irCy, the guard is evaluated to be false and is
accessible by, andps, which is represented by a guard vertex. The interfa¢g, in its
testlist is blocked bys andp,. In C1, the guard is always evaluated to be true, but the inter-
facesintf;y andintf;; are blocked by other processes. Fiduré 4.3C shows an example where

a procesy, is blocked by 2synch constraints at the same time. Note that each dependency

104

Algorithm 6 Deadlock detection.
procedure DETECT_DEADLOCK(S, P)
search for simple cycles ifi from process vertices iF;
letL = {L;=(V;, E;)} be the set of all these simple cycles;
if L. = () then
return NODEADLOCK;
end if
for eachL; € . do
if L; is already markethen
continue;
end if
mark L;;
if each vertex irV/; is either a process or and-dependetimn
the processes ih; are deadlockedgturn;;

else
D = {eval- and or-dependency verticeslinthat have two or more outgoing edges
L' :={L;};
repeat

find unmarked cycles ifu that contains vertices ib;
mark all these cycles;
D := D U {eval- and or- dependency vertices with two or more outgoing edges in these
cycles;
L' := L' U {these cyclek
until I becomes stable
if 3 vertex inD that has an outgoing edge I’ then
continue;
end if
the processes ih' are deadlockedeturn;
end if
end for
return NO_DEADLOCK;
end procedure

vertex is labeled to indicate the exact location in the source code that it is corresponding to.

This information can be made available for the designer to help identify the problem quickly.

4.3.3 Deadlock Detection Algorithm

Given a dynamic synchronization dependency gréph (V, E) and a set of processes

that are blocked from running, we use Algorithnj 6 to detect deadlock situations. Gen-

105

erally, the algorithm traverses the graph, searches for cyclic dependencies, and determines
deadlocked processes according to the and- , or- and eval-dependencies among processes.
The algorithm not only decides if there is any deadlock but also identify all the processes
and synchronization constructs that are involved in deadlock situations. The algorithm works
incrementally, starting from the newly added dependencies, since the part of the graph not
affected by the new dependencies has already been checked to be deadlock-free. In the worst
case, the first step of the algorithm is to find all the simple cycles in the graph. Its complexity
isO(|V|- (V| + |E|)) assuming that the adjacency-list representation is used for the graph.
The rest of the algorithm will traverse all the simple cycles at most twice with a complexity

of O(|V]). If a simple cycle only contains process vertices and and-dependency vertices,
then it is a deadlock. If a simple cycle also contains or- or eval- dependency vertices, there is
a deadlock only if other edges from these or- or eval- dependency vertices all lead to cycles.
Therefore, the complexity of the algorithmd¥(|V| - (|V| + |E|)). |V] and|E|, the num-

bers of vertices and edges in a DSDG, are determined by the number of process instances,

interface instances, critical sectionsavfait statements and quantity managers in a system.

4.3.4 Implementation

The dynamic synchronization dependency graph and deadlock detection algorithm have been
implemented in the simulator of Metropolis framework. During the simulation of a design,
a dependency graph is built and updated as the dependency state of the system changes, i.e.

as one or more processes in the system are blocked from running or released from blocking.

106

Whenever one or more processes are blocked from running, the deadlock detection algorithm
is invoked to search the DSDG for any deadlock situation. Once a deadlock is detected in the
simulation, the history of DSDG updates provides a trace that shows how the system execu-
tion goes into the deadlock. Due to the incremental nature of the DSDG update and deadlock
detection algorithms, this simulation monitoring mechanism will not introduce significant
overhead to the regular simulation.

More complex and hard-to-detect undesirable behaviors in a system are livelock and star-
vation. Informally, a livelock is a situation where two or more processes keep running and
change their states in response to changes in others, but cannot reasonably complete their
jobs. A starvation is a situation where a process is blocked due to some condition being un-
satisfied and depends on other processes to change the condition. The other processes are still
running, but will never make the condition satisfied. Though the DSDG data structure alone
does not capture the complete state of a system, a history of dynamically updated DSDGs
with other system state information kept can help catch livelock and starvation situations.
Specially, a simple algorithm can be used to search any cyclic patterns in the history of DS-
DGs, which can provide a useful guide to designers to look for livelock or starvation. The
simulation deadlock monitoring can also be combined with formal verification techniques to

detect those subtle problems in the design automatically.

107

PIP [USRCONTROL j

'

MPEGHRESIZE

'

{TS_DEMUX HPES_PARSER

JdH1ODHNC

Figure 4.4:Picture-in-Picture design

4.4 Case Studies of Deadlock Analysis

In this section, we use two previous examples, a real design of a complex functional model for
video processing, Picture-in-Picture (see Segtion 3.2.1), and a high level model of function-
architecture mapping (see Sectjon 3.2.2), to demonstrate the usefulness and effectiveness of

our deadlock analysis approach for system level designs.

4.4.1 A Function Model for Video Processing

For convenience, the PiP design is shown again in Figufe 4.4DHBRUX demultiplexes

the single input transport stream (TS) into multiple packetized elementary streams (PES).
PESPARSER parses the packetized elementary streams to obtain MPEG video streams. Un-
der the control of the user (USRCONTROL), decoded video streams can either be resized
(RESIZE) or directly feed to JUGGLER that combines the images to produce the picture-in-
picture videos. RESIZE is the major component of PiP that computes and adjusts the size of

MPEG video frames according to user inputs. It consists of about 9,000 lines of Metropolis

108

Meta-Model source code and contains 22 concurrent processes and more than 300 media.
The video frames and control signals are passed between processes through around 80 com-
munication channels specified with media. The communication channels are modeled at the
task transition level (TTL) with bounded first-in-first-out (FIFO) buffers|[32]. The mutual
exclusion and boundary checking of the bounded FIFO buffer is guaranteed by a central
protocol. To simulate the RESIZE unit, three additional processes are used to mimic user
inputs (USER), send MPEG video streams to the unit (SOURCE) and absorb the data from
it (SINK) as shown in Figurg 4]5A.

In the simulation with our runtime deadlock monitoring mechanism enabled, a deadlock
is reported immediately after TMUXJV and TMEM_CTL_U block each other through two
await statements and their synchronization dependencies are captured in the DSDG as shown
in Figure[4.5C. As it turns out, there is a design error in process TMINXwhich fails to
read all the data sent by TMEI@TL_U[f The data in the bounded buffer of the channel be-
tween the two processes accumulates until the buffer becomes full. Then a deadlock occurs
where TMEM.CTL_U is blocked waiting for the buffer space to be released by TMUNX
while TMUX_UV is also blocked waiting for reading signals from TME®ITL_U. The de-
signer can now focus on the two processes and the communication channels between them
to identify and correct those design errors. A solution is to modify process TNWand
make it absorb all the data from its input channels even if not all the data is useful. We ob-

serve that, without the deadlock detection mechanism, the simulation will continue and the

1As Figurd 4.5B shows, process TMUNV gets video data from both TMEMCTL_U and TMEM.CTL.V,
combines two streams of data and sends them to its successor process.

109

A | USER |

(Y Y Y A
. g N .
o SHSRC SVSRC WINDOW %)
% | | %
9 N e J o
| RESIZE)
B s i S ~
VSRC
— -
— ‘ - - >
n H\\« 1L
=
| >]
e S .
N 7 - R,
c /i
-
await
TMUX_UV

guard

Figure 4.5:RESIZE unit and its synchronization dependencies

regular simulation trace won’t show any apparent sign of deadlock until most of the processes
in the system are eventually blocked. By that time, the simulation trace is long, and a large

number of processes are blocked. Our approach automatically catch the deadlock as it first
occurs. Designers can then focus on solving the deadlock without complicating themselves

by the consequences of the deadlock.

110

A Func
cos
/ channell
/ channel2 p, %

synch synch

y
g - synch
\‘ / el

synch Mapping /,/’

SwTaskl SwTask2 SwTask3 SwTe;,s/k4 Arch
CcPUl > C_CPU2)
ST
'

SwTask2 synch guard CS await

Figure 4.6:A mapping model and its synchronization dependencies

4.4.2 A Function-Architecture Mapping Model

In the platform-based design, the mapping is the key procedure that correlates the function
to the architecture. In this design example (as shown again in Higdre 4.6A), two source pro-
cesses (S1 and S2) write the data into two independent channels. A separate process (Join)
then reads data items from both channels, manipulates them, and then sends the result data to
another process (Sink) through another channel. In the abstract architecture model, there are
two CPU/RTOS units, a bus unit, a memory unit and a quantity manager (i.e. scheduler) for

each architectural urﬁ.A CPU unit can be shared among several software tasks that may

2An architectural unit is modeled as a medium in Metropolis.

111

Table 4.1: Summary of deadlock analysis case studies

Example RESIZE Unit Mapping Model
Code Size 9000 lines 5900 lines
Processes 22 8

Media 300+ 16

Deadlocked Processes| 2 5

Time to Catch Deadlock 2min < 1min

request services from it. When more than one service request is issued to a CPU, arbitration
is needed. The mapping procedure synchronizes the processes in the function model and the
mapping processes (representing software tasks) in the architecture model. In this example
(as shown in Figurg 4.6A), functional processes S1 and S2 are mapped to mapping pro-
cesses SwTaskl and SwTask2, respectively, which are associated to CPU1 and the other two
processes are mapped to CPU2. The CPU quantity managers implement a non-preemptive
static-priority dynamic scheduling policy. The two CPUs are connected to the bus and the
bus is connected to the memory unit.

Our deadlock detection mechanism reports a deadlock within one minute of simulation.
Due to the boundedness of the channels between processes, process S1 can not complete a
task of writing data before Join reads from and releases the channel buffer. Therefore, with
the current CPU scheduling policy, the deadlock occurs when S1 obtains the CPU service
but cannot complete a writing task while Join is still waiting for data from S2 who cannot
get CPU service. The deadlock situation involves five processes, two await statements, two
synchconstraints and a quantity manager as shown in Fjgufe 4.6B. This analysis also suggests

several possible deadlock resolutions. The deadlock can be resolved by making the channel

112

buffer large enough to store all the data from a single writing task, increasing the number
of CPUs, or changing the CPU scheduling policy. We also observe that such deadlocks
only occur in the mapped design and are not inherent in the function specification or in the
architecture model. The simulation and analysis results for this mapping model are also listed

in Table[4.1.

113

Chapter 5

Formal Verification for System Level

Designs

This chapter focuses on formal verification of embedded system designs, especially at higher
levels of abstraction. We develop a verification methodology for designs that may go through
different levels of abstraction and a translation mechanism from system design specifications
to descriptions more suitable for formal verification engines. We devise solutions to many
challenges encountered in semantically translating from an object-based system design lan-
guage (i.e. Metropolis Meta-Model [18]) to a procedural verification modeling language
(i.e. Promela/[42]). In addition, an automatic abstraction propagation algorithm is used to
simplify a design specification for specific design constraints. We use a set of realistic case

studies to demonstrate our verification approach for system level designs.

114

5.1 Introduction to Formal Verification

Formal verification can be very powerful for catching errors early in the design process.
Formal verification tools, notably model checkers (e.g. Spih [42], SMV [55]), are available to
designers. Designers can describe their designs with the given formal language and the design
constraints or properties they want to check with some logics (e.g. [LTL [53,59], [CTL [26]).

If a design constraint or property is found to be false for the design, an error trace is provided
by the model checker to designers to help them modify the design or the constraint. The state
explosion problem restricts the usefulness of exhaustive proof to protocols or other higher
levels of abstraction. Approximate verification (e.g. an option available in Spin [42]) allows
model checkers to automatically check a constraint with only a portion of the state space
explored. Obviously, approximate verification does not prove that a constraint is satisfied
for all conditions. A tool provides the estimated percentage of this partial exploration (i.e.
confidence factor) and reports a bug if one is found on the partial state space searched.

One problem for formal verification is that a verification model needs to be written, often
manually, from a specification model. This tedious process multiplies if designers wish to
verify a constraint of a design as it goes through various abstraction/refinement operations.
Our contribution is to fully integrate formal verification tools into the Metropolis framework.
Verification models can then be automatically generated for all levels of the design, so de-
signers no longer have to manually re-describe their design in a formal verification language

each time a design moves from high levels of abstraction toward implementation. The cen-

115

tral challenge in this approach is that verification languages, such as Promela used by Spin
model checker [42], allow only simple concurrency modeling and are not amenable to system
design specification where complex synchronization and architecture constraints are needed.
Our translator automatically constructs a verification model from a specification model, tak-
ing care of all the system level constructs.

In constraint-driven verification, only a portion of a design may be relevant to passing or
failing of a given constraint. The rest of the design may be simplified or removed, without
changing the outcome of the verification. Based on this observation, a technique of automatic
design abstraction and propagation is developed to abstract the original specification of a
design and to simplify the corresponding verification model. Designers are also allowed
to indicate what elements in the design are not relevant to the constraints being verified.
They can apply these abstraction operations, freeing in particular, to variables, statements,
and components. If the constraints are “safety” in nature (i.e. something bad will never
happen), abstraction can only lead to verification results that are either exact or conservative
(with possibly false negative result). There will never be a false positive result. We propose
an automatic algorithm to propagate this abstraction to the rest of the design exactly (i.e.
without introducing more false negatives or any false positives).

In the rest of this chapter, we introduce our verification methodology for system level
designs, define translation algorithms for the main Metropolis Meta-Model constructs (such
as processes, media, schedulers, await statements, dynamic objects, and mapping), propose

design abstraction and propagation algorithms to simplify verification models, and use a set

116

of case studies to demonstrate numerous aspects of verification before and after synthesis
and mapping procedures. While we focus on a verification methodology in the context of
Metropolis designs, the same approach can be easily applied to other abstraction/refinement

design frameworks (e.g. SystemC [7]).

5.2 Formal Verification Methodology

The task of formal verification is to exhaustively search the state space of a system design
and to check whether a particular design constraint is satisfied. After a system specification
in Metropolis Meta-Model is translated to Promela description, one can use Spin to do model
checking. Spin provides two powerful ways to specify constraints of a design: Assertion and
LTL (Linear Temporal Logic)|[583, 33]. Assertion is an annotation construct in Promela used
to “assert” that a particular condition (e.g. spa& must hold. LTL is strictly a superset of
Assertion. Without loss of generality, we only deal with the LTL here.

The formal verification methodology for Metropolis is illustrated in Figurg 5.1. MMM
description is automatically translated into Promela description, and LTL constraints spec-
ified in MMM are checked using the model checker Spin. It is known that only a subset
of LOC can be translated into equivalent LTL formulas and formally checked with Spin
directly(see Section 2.5). For other LOC formulas, formal verification results may be incon-
clusive, i.e. the verification is only partial. A designer may perform any synthesis step (e.g.

composition, decomposition, constraint addition, scheduler assignment), and a new Promela

117

»| MMM Design w/ -
LTL/LOC Constraints

Synthesis
procedures

y Translation

Promela Description

¢ Feed to SPIN

Modify original Add constraints
design or schedulers
A

Formal Checking

Pass verification?

Figure 5.1:Metropolis formal verification methodology

code can be automatically generated to verify design constraints. If it does not pass, the error
trace may be used to help the designer figure out whether the design needs to be altered. If
a verification session runs too long, approximate verification can be used to explore a subset
of the state space and report the probability that a constraint will pass. Obviously, a partial
exploration cannot prove that a constraint is satisfied. However, it is our experience that a
lot of “easy” bugs can be found within a relatively small amount of time and memory usage.
If a Spin verification session continues to run after a long time, it is highly likely that the
constraint will eventually pass.

Figure 5.2 shows a prototypical networkmfroducers and consumers communicating
through a single medium. The producers receive inputs from the environment, process the

data in some way, and then output it to a medium of a single space. The consumers read

118

~
Environment

Figure 5.2:Example of a bytelink meta-model

in the data from that medium, process it, and then output to the environment. It is possible
for all producers and consumers to execute concurrently. If we want to check the constraint,
“whenever a producer writes an item into the medium, there must be some space in the

medium’, it can be specified as an LTL formula:

G((Pywrite V - - -V Py, write) — My not_full) | (5.1)

and be verified with Spin after the specification model is automatically translated into Promela.
The same methodology can also be used for a verification-driven synthesis approach. If
a constraint does not pass the verification, an error trace is generated and examined. Based
on the error trace, the original design may be incorrect, or refinement need be applied to the
original specification for it to have the desired constraint. At a higher level of abstraction,
abstract constraints can be used to constrain the behavior so the design property can pass
verification. At a lower level of abstraction, designers must ensure that these constraints are

implemented. This may be achieved, for example, with schedulers on a particular platform.

119

5.3 Translation from MMM to Promela

The Metropolis|[18] design framework enables designers to represent and to manipulate their
designs at multiple levels of abstraction and with multiple models of computation (MoC).
Central to the framework is the Metropolis Meta-Model (MMM) representation. Different
high-level languages, models of computation, design constraints, as well as specifications
of system functions and architecture platforms can be represented in MMM while retaining
their correct semantics. Constructs in MMM are chosen to facilitate the transformations and
refinements between different abstraction levels. Incorporated into the Metropolis design
environment is a set of back-end tools, with which one can simulate, synthesize, and verify a
design at hand.

In Metropolis, the model checker Spin [42] is utilized as one of its back-end verification
engines. A design specification in Metropolis Meta-Model is automatically translated into a
verification model in Promela, the modeling language of Spin, and constraints of the design
can then be formally verified with Spin. Four main issues in the translation from MMM to
Promela are the modeling of MMM processes, interfacesaavalt statements for coordina-
tions, dynamic objects, and function-architecture mapping. We do not believe that it will be
profitable, at this stage, to develop a new model checker specific to a system level specifica-
tion language. Instead, we rely on automatic translation, both to decouple this very complex
problem and to make it easier for Metropolis to take advantage of the latest advancement

from the formal verification community.

120

5.3.1 MMM Processes

In MMM, communication between processes is made by calling functions defined in the
media. One way to model function calls in Promela is to to use active processes to model
all instances of meta-model functions, which include all the member functions of processes,
media and other objects in the meta-model. Each member function is translated into an
active Promela process, which is instantiated and initiated at the very beginning of the ex-
ecution, and a function call in MMM s translated as invoking an execution of the corre-
sponding Promela process. The invocation is accomplished through message passing using
a rendezvous channel (i.e. FIFO channel of size 0). Figuie 5.3 illustrates this approach.
Figure[5.8(a) shows the function thread() of process P1 making a call to a member function
method1(). In Promela (see Figure |5.3(c)), this is interpreted as the proc#isseRd send-

ing a message to process_Riethodl through a rendezvous channel_sithodl (using
operator !). The function return follows the same paradigm. WhemBthod1 finishes, it

sends back a notification message through the same channethogadl. Plthread receives

the message (using operator ?) and continues its execution. Thus, the sequential execution
flows and control transfers of the MMM processes are assured. Due to Spin’s limitation on
the number of running processes and its resource recycling mechanism [5], dynamically cre-
ating new processes is prohibitively expensive. Instead, all Promela processes, except the
processes representing meta-model constructors and threads, are initialized at the beginning
of execution as active processes blocked waiting for an invoking message from their calling

processes through the corresponding rendezvous channels. Member variables of an MMM

121

@ process P1{ (b) active proctype P1_thread(){
void thread(){
P1_method1()
method1();
})
void method1() { inline P1_method1(){
}
} }
MMM Design Promela Translation with Funcation Inlining

(©

-
chan sP1_method1 = [0] of {bool};
active proctype P1_thread(){

sP1_method1 ! invoking_message;
/ sP1_method1 ? notification;

)

Function
Call

Function
Return

-
active proctype P1_method1(){
do
:: sP1_method1 ? invoking_message;

sP1_method]1 ! notification;
od;

\}

Promela Translation without Inlining

Figure 5.3:Translations of MMM functions

process or medium are represented by global variables of Promela after they are renamed
appropriately.

To further reduce the overall complexity of the verification, we use a translation approach
that inlines all the functions into the process that calls them directly or indirectly. The trans-
lator simply pastes its translated code into the point of the invocation in the calling process
(see Figuré 5]3(b)). No process or channel is needed. In the situation of multiple level func-
tion calls, all the functions are inlined recursively so that one MMM process corresponds

to only one Promela process. Thus the total number of Promela processes can be shrunk,

122

await { do //start of await -
(guardl; testlistl; setlistl) {stmts1} :: atomic { await

(guard?; testlist2; setlist2) {stmts2} if //evaluation of guards and testlists
::(guard]l && intfcl_active == 0 && intfcl_exclusive==0) ...l ...
. . —> intfcl_exclusive ++; /I set setlist 1 . atomic
} (guardk; testlistk; setlistk) {stmtsk} awaitFlag_1 = true; /I select critical section 1 Guard & Test 1
:(guard2 && intfc2_active == 0 && intfc2_exclusive == 0)
—> intfc2_exclusive ++; /1 set setlist 2 : v‘
awaitFlag_2 = true; // select critical section 2 :
:(guardk && intfck_active == 0 && intfck_exclusive == 0) :
—> intfck_exclusive ++; /lsetsetlistk Uy
awaitFlag_k = true; // select critical section k

}
od;

pass one

Critical Sections

if //enter and execute a critical section
::(awaitFlag_1 == true) —>

:: (awaitFlag_2 == true) —>

//stmts2

i (awaitFlag_k == true) —>
//stmtsk
fi;

Figure 5.4:Translation of an await statement

which reduces the inherent complexity of the Promela program. With functional inlining, the
verification becomes much more efficient regarding both time and memory usage. We use
this as our standard translation method.

However, the translation approach without functional inlining is still useful as a debug
mode, because it provides a detailed graphic trace that makes it much easier to trace function

calls.

5.3.2 Interfaces and Await Statements

In MMM, an interface is used to define the 1/0O data ports of the process or medium and the
I/O control points of the process or medium. To implement the control point, the MMM
interface is used as a semaphore inga#istandtestlistof anawait statement. We translate

each interface into a pair of integer variables used as semaphores in Promela. The first vari-

123

able, calledACTIVEis used to indicate whether the interface (and its member functions) are

in active state (whether they are being executed). Another one &€ USIVEindicates
whether this interface semaphore is set (i.e. whether it is included sethstof someawait
statement that is currently executing). We use these variables as semaphores to signal that in-
terface functions appearing iastlists are being executed and to prevent, when appropriate,
interface functions appearing getlists from being executed. Figufe 5.4 illustrates how an
awaitstatement is translated in Promela. Promela constructs satbrag; repetitiondo-od

and case selectiafifi are utilized to guarantee the exact semantics equivalence. Specially, if
the await statement has more than one critical sections that are enabled, one of them will be
chosen non-deterministically and executed. This non-determinism is directly supported by

Promela indo-odandif-fi statements.

5.3.3 Dynamic Objects

Another interesting aspect of MMM is the dynamic object (i.e. the reference type). For
example, an array is a reference type in MMM, and its memory space could be allocated
and changed dynamically at runtime. However, most model checkers (including Spin) only
support static memory allocation, i.e. arrays have to be declared explicitly at design time.
To solve the problem, we have to put some restrictions on the MMM code All the reference
types have to be declared explicitly once and only once, so that they can be translated to
Promela as static objects. An array declaration in MMBit{] « = new int[12];” can be

translated to Promela as a static arrayt“a[12];". After the arraya is declared in MMM, its

124

reference cannot be changed any more. If the dimension of the MMM array is dynamic, e.g.
“int]] a = mnew int [n];” wheren is a variable, it is also translated to Promela as a static
array “int a]ARRAY M AX];", where ARRAY M AX is a constant set by the designer at
compilation time. It is up to the designer to guarantee thARAY M AX is always larger

than or equal to the maximum valueraf Other dynamic objects such as class types in MMM

are similarly translated to static data objects of Promela.

5.3.4 Function-Architecture Mapping

In MMM, the function of a system is specified as processes communicating through me-
dia. The architecture is represented as a set of media and mapping processes. Synchroniza-
tion constraints are used to map the function to the architecture. To translate the function-
architecture mapping, we need to use Promela to implement the MMM synchronization con-
straints that actually relate the function processes and the architectural mapping processes
together. In Promela, we use a rendezvous channel (or synchronous channel) to synchronize

two concurrent processes. An example of a synchronization constraint in MMM is as follows
(see Figuré 4]6):
“Itl synch(beg(P1, P1.write), beg(MapP1, MapP1.CPUWrite));”

The beginning oP1's write and the beginning dflapPIs CPUWriteare synchronized (both
write andCPUWriteare function calls). In Promela, whétl andMapP1lrun to the points
that need to be synchronized, one of them (eR{) sends a synchronization signal to a
rendezvous channel, and wait for the other processiapP1). In this way, the events of

125

the function processes and their corresponding mapping processes are synchronized and the

mapping is realized.

5.4 Producer-Consumer Network

In this section, we present a set of case studies that consider a prototypical network of
producers ant consumers communicating through one or more media (see Figlire 5.2 and
[5.6). Producers receive inputs from the environment, process the data in some way, and then
output it to a medium of a single space. Consumers read in information from that medium,
process it, and then output to the environment. It is possible for all producers and consumers

to execute concurrently. We verify constraints of the design before and after synthesis steps.

5.4.1 \Verification of Data Integrity

Given a network of consumers and producers with one medium(see Fighre 5.2), we want
to check the constraint specified as form{ila](5.1) in Se¢tign 5.2, and we rewrite it here for
convenience:

“Whenever a producer starts to write an item into the medium, there must be some space
in the medium?”

The constraint can be specified with LTL as:

G((P-write V - - -V Py, _write) — My not_full) , (5.2)

126

wherewrite indicates the condition that a producer initiates a write operationnahtlll
indicates the condition that there is still some space in the medium.

Here we consider the case where m=2. This design has 102 lines of MMM source code
and 670 lines of Promela code after translation. The formula is proved by Spin within one
minute on a 1.5GHz Athlon machine with 1GByte of memory. The same setup is used for
all case studies in this section. The detailed resource usage of this verification is listed in
Table[5.1, where the states generated are the total number of unique global system states that
are stored by the algorithm.

Another constraint we want to check is:

“When a consumer wants to read and there is no data in the medium and none of the
producers has started to write, the consumer cannot finish reading until some producer starts
to write”

This constraint can be specified with LTL as:

G((C,_start A My_empty A =(P;_start V - - -V P, _start))

— ((=Cy_end) U (P, _start V - - - V Py, _start))) : (5.3)

wherestart indicates the condition that a consumer initiates a read operation or a producer
initiates a write operation, arehdindicates that they complete the operations. We consider
the case where m=2. The constraint is verified by Spin within one minute of CPU time on

the same machine. All relevant verification parameters are listed in[Table 5.1.

127

Table 5.1: Summary of verification for the producer-consumer network

Constraint formula] (5.2) (5.3) (5.10)

Depth reached 26765 62839 1112111

States generated || 120983 289828 1.49894e+07

State transitions || 234014 561226 6.6521e+07

Total memory used 12.382 MB| 42.584 MB 101.626MB
(Partial Order Reduction) (Graph Encoding

CPU time elapsed| <1s 1.49s 31m:54s

Finally, we want to prove the following constraint:
“If the consumers are able to keep reading data from the medium, then whenever a pro-
ducer initiates a write, it will eventually complete the write”™:

In LTL, the constraint can be expressed as:

GKHCyreadV ---V C,_read) — G P,_start — FP,_end) , (5.4)

wherereadindicates the condition that a consumer completes a read opeatidindicates

the condition that a producer initiates a write operation, amdindicates that the producer
completes this write operation. Specifically, we consider the case where m=2, n=1 and x=1.
Spin reports that the constraint does not hold. From the error trace using the debug mode
(see Figur@, we see that there is possibility of starvation. It is possibleHpto keep

accessing the medium and prevéhtfrom ever be able to write.

The numbers indicate the verification steps, and arrows indicate communications between processes
through channels.

128

P2_thread()

P2_writeByte()

C1_thread() 3D | write start
C1_readByte() 32
37 | readstart SN SE - oend 3P Pl_writeByte) ~ FPl-thread()
4 write start
read end 47 — L4
61 :
write end
| 68 |
77 | Pl stuck from here ||
8
83 | -
189
1935
101 | -
‘/J_lf;

Cycle

Figure 5.5:Verification error trace produced by Spin
5.4.2 Assumptions and Schedulers
In Metropolis, formal assumptions (specified with LTL or LOC) can be used to limit the
possible behavior of a design. However, the downstream synthesis procedure must guarantee
that assumptions are correctly implemented. If we want the consfraint (5.4) (withm =2, n=1,

and x = 1) to hold, i.eP; is not allowed to starve, we may specify the following assumption

in the MMM design:

P, _start \ Py_start — —P,_end U P, _end , (5.5)

129

wherestart indicates the condition that a producer initiates a write operationeadhdi-
cates that it completes the write operation. The assumption is trivially “translated” into Spin
environment as the left-hand-side of an implication. Constraint (5.4) should be proved only

for the cases where the assumption is satisfied. In other word, we prove the LTL formula:

Assumption (5.5) — Constraint (5.4) . (5.6)

Formula (5.6) is proved by Spin within one minute of CPU time.

In an architecture specification, assumptijon|(5.5) can be implemented as a scheduler(or
arbiter) that has a static-priority policy witR; having higher priority. After mapping the
function to the architecture, We use Spin to prove that constfairjt(5.4) (with m =2, n = 1,
and x = 1) holds in the presence of such scheduler. In addition, if we agsitm have
higher priority, the constraint fails. Another scheduling policy that can be proved to allow
constraint[(5.4) (with m =2, n =1, and x = 1 or 2) to hold is round robin scheduling, where

producers take turns accessing the medium.

5.4.3 Transformation and Refinement

Of course, system level synthesis procedures may not always be driven by the result of func-
tional verification. For example, communication media may be combined to reduce the cost.
MMM can be used to formally represent the design before and after a particular synthesis

step. Consider the example in Figlire]5.6. In {a)media are used and producer-consumer

130

(a)

- B\
Environment

(b)

Figure 5.6:Example of a design refinement

data streams are running independently. It is trivial to verify that

G(C,_start N M,_empty N\ =P, _start — —C,,_end U P, _start) , (5.7)

wherez = 1,...,m, startindicates the condition that a consumer initiates a read operation
and a producer initiates a write operation, amdlindicates that the consumer finishes its
read operation. Now, let us consider Figlire] 5.6(b) where a single medium is used. It is

derived from the network in Figufe %.6(a) through a structural composition. The constraint

G(C,_start N My_empty N\ —~P,_start — —C,_end U P, _start) (5.8)

131

is not guaranteed to be satisfied. Indeed, Spin verifies that the constraint does not hold within
one minute of CPU time. The error trace shows that for the constraint to hold, an assumption
must be added such that streams of data do not mix (i.B, Vrite, then no consumer can

read untilC,, read):

G P, write — /\ (=Cy-read UC, _read)) . (5.9)
yF#T

With these assumptions, the constraint may be verified by Spin using the LTL formula:

Assumption (5.9) — Constraint (5.8) . (5.10)

We verify the case where m=2. This design has 113 lines of MMM source code and 836 lines
of Promela code after translation. The verification completes without error. [Table 5.1 lists
the detailed resource usage of the verification.

We also run a verification session with a dynamic scheduler of the following form: “if
P, writes, then no consumer can consume ufitildoes”. As expected, the constraint is
satisfied with similar complexity measurements. Through experimentation, we find that no

round-robin scheduling nor any static priority real-time scheduler allow the constraint to pass.

5.5 Automatic Abstraction and Propagation

Working from a high abstraction level of a design, such as Metropolis Meta-Model, provides
two pivotal advantages. First, an abstraction applied to a higher level specification will also

132

make its lower level verification model more abstract as well. It is therefore advantageous to
apply abstraction operations directly on the higher level model and simplify the higher level
model as much as possible. Second, designers now have opportunities to specify abstraction
operations on their own directly at a specification model according to their knowledge about
the design.

It is obvious that only a portion of a design may be relevant to the passing or failing of a
given constraint in constraint-based verification. The rest of the design may be simplified or
removed, without changing the outcome of the verification. Unfortunately, identifying pre-
cisely what simplification or removal can be made correctly is as complex as the verification
problem itself. Up until now, the process of design abstraction (i.e. the simplification of the
design) is usually done by hand or left to the verification tools as they explore the reachable
states and analyze the constraints. Based on these observations, we propose a technique of
automatic design abstraction and propagation to simplify specification models and to lead to
simpler verification models.

The automatic abstraction propagation consists of two separate operations, designer-
driven propagation and constraint-driven propagation. Designers can specify free-able vari-
ables or statements according to their in-mind knowledge about the design, and then use the
automatic propagation to exactly propagate them and abstract the entire design. Constraints
being formally verified may themselves suggest an exact abstraction as well. The constraint-
driven propagation can automatically free the variables and statements that are not relevant.

No designer’s interaction is required.

133

Revise Abstraction Meta—Model
Operations - Abstraction System Design
Operations) | Specification Properties

\
\
. Meta—Model
Frontend Compiler .
Compiler
Abstract Syntax Tree
(AST)
Abstraction
Propagation
Abstracted AST
v v v v
Meta—Model Simulation Formal Verification Other Backends
Backend Backend Backend
\ \ \ \
Abstracted Simulation
Meta—Model Verification Tool Other Tools

Figure 5.7:Metropolis compiler architecture with abstraction propagation

The implementation of automatic abstraction propagation in Metropolis is illustrated in
Figure[5.7. If a regular verification session cannot complete or takes too much time to com-
plete, a designer can turn on a compile-time flag to enable the abstraction, which can recog-
nize the abstraction keywords and perform the automatic abstraction propagation to simplify
the system design for verification. The abstraction propagation starts from the abstract syntax
trees (ASTSs), the intermediate representation of the Meta-Model language, uses on-demand
traversal method to traverse the ASTs, and identifies the variables and statements that are eli-
gible for abstraction according to the control and data dependencies in the design. Designers
are allowed to specify more abstractions, and the tool will propagate them automatically to
abstract the design as much as possible to speed up verification. The abstracted specification

can then be verified by other verification tools more efficiently.

134

Q Variable Vertex l:l Expression Vertex Q Control Stmt Vertex

GO 2o Cay (b
] <>

i
™ ma
_ . . _ while(i <10){ f1(int a) { f2(int x, int y) {
a=br(c=xTy+2) If(a)lz=x+y, .o Z=X+y; intb=a"*a; intret =x*x +y;
elseif (b) z=x"y; i=i+13 int c=f2(a,b)} returnret*2;}
A B C D

Figure 5.8:CDDG examples

5.5.1 Control and Data Dependency Graph

We use a control and data dependency graph (CDDG), built statically from the language
syntax information of the original design, to automate abstraction propagation processes. The
control and data dependency graph we use is a directed graph that has three types of vertices,
representing variables, expressions and control statements respectively. More specifically,
given an MMM specification, a CDDG is built according to the following general rules:

1) Each variable in the design corresponds to a vertex in the graph. For each assign-
ment expression, there is a expression vertex to represent its right-hand side expression. For
each variable in the right-side expression, there is an edge from the variable vertex to the
expression vertex. There is also an edge from the expression to the left-side variable. Fig-
ure[5.8A shows an example of a complex assignment statement. Note that the operations on
the variables are skipped and only dependencies are captured in a CDDG.

2) Each control statement is represented as a vertex in the graph. If a variable is in

135

the decision part of a control statement, there is an edge from the variable to the control
statement; if a variable may change its value in the execution part of a control statement,
there is an edge from the control statement to the variable. Control statements are further
divided into three categories, branching statements sudh asd switch loop statements

such aswhile andfor, and synchronization statements suclaasit andsynch Figure[5.8B

and Figur¢ 5/8C shows examplesifohndwhile statements respectively.

3) Function calls are generally treated as operations and expressions. The CDDG of a
design specification is built as if all of its functions are flattened. Functions are connected
together through passing arguments and returning values when they invoke each other. For
a function, there is an expression vertex for each of its formal parameters and an expression
vertex for the return value. There are edges between the variable vertices (in both invoking
and invoked functions) and these expression vertices as variables are passed as arguments
and return values are assigned to variables. As F[gufe 5.8D shows, fuyictialis function
f2 by passing: andb as arguments and assigning the return value t8o there are three
expression vertices connecting the variables in two functions.

Note that vertices representing expressions don’t contain any useful syntax information
themselves and are only used to connect multiple variables to a variable or an expression as
intermediate vertices. Though they are eventually removed to simplify the graph represen-
tation and traversal in the implementation, for the convenience of presentation, we still keep
them in the illustrations. We define that a vertexdependsn a vertexy; if there exists a

directed path from; to v; in a CDDG, wherey; andv; represent either variables or control

136

Algorithm 7 Designer-driven abstraction propagation
1. D':=D
for eachw € D do
D' := D'U{u; € V: there exists a path fromto v, }
end for
Remove all the variables (including their operations) and statemerisfiom the de-
sign.

statements. In Figufe 5.8A, variabledepends on variablés ¢, =, y andz. In Figure/5.8C,
variablei and the while loop depend on each other.

The number of vertices in a CDDG is the total number of variables, assignment expres-
sions, formal parameters of functions and control statements. So the size of a CDDG is linear

to the size of the original source code.

5.5.2 Abstraction Propagation Algorithms

Let G = {V, E} be a control and data dependency graph that is built from a design spec-
ification, whereV’ is the set of all the vertices and is a set of dependency edges. In the
designer-driven abstraction propagation, a designer can specify free-able variables and state-
ments including variables and control statements, and automatically propagate them to the
entire design. Assuming a set of variables and statemenis!” is chosen by the designer
to start from for the designer-driven abstraction propagation, the algorithm is listed in Algo-
rithm[2.

The algorithm searches for and then abstracts the variables and statements that depend on
the designer’s input in the entire specification. Using the example shown in Fighre 5.8C, if

a designer specifies that the while loop is free-able, then the whole while loop including the

137

Algorithm 8 Constraint-driven abstraction propagation
1. L.=P
for eachv € P do
L := L U {all the vertices that have a pathig
end for
for each synchronization statement V' do
L:=LU{s}
L := L U {all the vertices that have a path4d
end for
Remove all the variables (including their operations) and statemefts+n. from the
design.

© e NT R LN

variablei and the assignment statementafill be totally abstracted and the abstraction can

also be propagated to other variables and statements that depend on them. In the designer-
driven abstraction propagation, the amount of false negative results due to the abstraction is
decided solely by the designer’s input. Its propagation is guaranteed to be exact and no false
negative result will present as a consequence of the propagation.

Assume a set of variablg3 C V' is being checked in the constraints. The algorithm of
the constraint-driven abstraction propagatias listed in Algorithn] 8. The algorithm keeps
what the constraints and synchronization statements depend on, and abstracts the rest of the
design. Using the example shown in Figlre] 5.8 it= {z,y}, V — L = {z}, the code
fraction is then abstracted towhile(: < 10)¢ = ¢ + 1;".

Note that the synchronization statements are not freed at this point even if they don’t di-
rectly control the variables in the constraints. This is because a synchronization statement
controls the execution of the processes in a concurrent system, and the complex interaction
between processes make it difficult to free these synchronization statements exactly. The au-

tomatic abstraction propagation does not intend to handle the synchronization of concurrent

138

YAPI Channel

YapiChannel @

TTL Channel BoundedFlfo\

DataGen yap12TTL TTL2yap1

‘ RdWrThreshold‘

Figure 5.9:YAPI and TTL channels

systems and their abstractions are left to the designer by the designer-driven propagation.
The algorithm also assumes that there are no non-terminating loops that may cause “dead”
code.

Methodologically, the constraint-driven propagation should be applied first in the process
of abstraction verification since it doesn’t need any interaction from the designer and will
not introduce false negative results. Then a designer can apply several iterations of designer-
driven abstractions to further abstract the design specification and simplify the verification
problem as much as possible, even by introducing false negative results. The worst case for
both algorithms is to traverse the entire CDIIG times, so their complexity i©(]V|?) and
they will introduce little overhead compared to the overall compilation time. The effective-
ness of the automatic abstraction propagation we have proposed will be studied through a

formal verification case study in the next section.

139

5.6 Formal Verification for TTL Channel

In this section, we use a realistic Metropolis design as an example to illustrate the usage of
the formal verification mechanism in Metropolis and to demonstrate the effectiveness of the
automatic abstraction propagation we have proposed in Séction 5.5.

Y-chart Application Programmer’s Interface (YAPI) is a popular model of computation
for designing signal processing systerns| [49]. It is basically a Kahn process netwprk [46]
extended with the ability to non-deterministically select an input port to consume and an
output port to produce. Within Metropolis, a library environment is set up such that any
YAPI design can be written using constructs in the Metropolis library. Central to YAPI is the
definition of communication channel and its refinement into Task Transition Level (TTL) [21,
32]. Figure[5.D shows how a YAPI channel is refined to a TTL channel in Metropolis. A
YAPI channel models an unbounded First-In-First-Out (FIFO) buffer, similar to Kahn process
network. Asynchronously, writer processes write data into one end of the channel and reader
processes read data from the other end of the channel. At the lower level (TTL), the channel
is modeled with a bounded FIFO buffer. A central protocol is used to control the mutual
exclusion and boundary checking of the bounded FIFO buffer. As Figure 5.9 shows, the TTL
channel has a bounded FIFBdundedF'ifo) whose size is set at design time, and a control
medium RdWrThreshold) which implements a protocol to guarantee correctly writing to
and reading from the FIFO buffer. To test the YAPI channel and its TTL refinement, we use
a writer processQataGen) to write a series of data into the channel and a reader process

(Sum) to read the data from it.

140

Due to the boundedness of the TTL buffer, the writer process will block when there
is not enough free buffer slots to write data, and the reader process will block when there
is not enough data available in the buffer. The protocol implemented in the TTL channel
controller(RdWrThreshold) uses a threshold value to indicate if the writer or the reader can
be unblocked. If there is a condition on which a process may be unblocked, the controller uses
eventsvakeupreaderor wakeupwriter to signal unblocking. The detail of this algorithm can
be found in [[21]. The TTL channel model has 720 lines of code in Metropolis Meta-Model
and about 2200 lines code in Promela after translation. The experiments presented in this
section are all conducted with Spin 4.1.3 on a 3.0GHz Pentium 4 machine with 4GB of total

memory.

5.6.1 A Deadlock Free Constraint

One important constraint we want to check on the TTL channel is that there should be no
deadlock situation within the channel, i.e. once the writer starts writing data into the channel,

it will finish writing eventually. This constraint can be specified as an LTL formula:

G(datagen_start — (F datagen_finish)) , (5.11)

whereGis theglobally operatorF is theeventuallyoperator in LTL, and— is the Boolean
imply operator.
Firstly, we try to verify a preliminary version of the TTL channel that contains a real

bug causing a deadlock situation. Using Spin, the bug can be easily caught within less than

141

Table 5.2: Summary of formal verification for TTL channel

Verification Manual Designer-driven| Constraint-driven
w/o abstraction abstraction | abstraction prop, abstraction prop.
state vector 432 bytes 352 bytes 232 bytes 188 bytes
depth reached || 75607 74073 54359 33897

states generate(l 2.36686e+09 | 2.36607e+09 2.26572e+09 2.26481e+09
state transitions| 3.65231e+09 | 3.60348e+09 3.42441e+09 3.54922e+09
memory usage || 1094.545 MB | 1091.66MB | 1086.046 MB 1081.028 MB
CPU time usage 11h:48m:51s | 10h:26m:24s 6h:41m:03s 5h:37m:24s
hash factor 3.62926 3.63046 3.79126 3.79278

*QOptimization techniques, partial order reduction and bitstate, are applied.

one minuté? Then, after fixing the bug, we re-run the verification session and the revised
TTL model can pass the formal verification without any error. The total CPU time used for
the verification is a little less than 12 hours. Tdbld 5.2 lists the details about the verification
sessions for the non-deadlock constraint of the TTL model with and without abstractions and
propagations applied.

Considering that the non-deadlock constraint only checks the control part of the TTL
channel, its data-path can be abstracted to reduce the verification complexity. So we first
manually free the data storages in both the writer procBssdGen) and the reader process
(Sum) without using the automatic abstraction propagation. This abstraction saves about
12% of verification time, and requires modifying more than 10 statements throughout the
original design. Then we use the designer-driven abstraction propagation to propagate these
two abstractions to rest of the design. As a result, the internal data-path in the TTL channel

is also abstracted and 43% of the verification time is saved.

2After the abstractions and their propagations are applied later, the bug in the preliminary TTL channel can
also be caught within less than one minute. So the abstractions and their propagation are considered safe.

142

To show the effectiveness of the constraint-driven automatic abstraction propagation, we
also apply it on the original design. It automatically frees not only the FIFO structure but
also the buffers in other two connecting componenig{27TL and TTL2yapi), which
are directly connected to the FIFO, and their operations. From Taljle 5.2, we can see the
constraint-driven abstraction propagation can save 52% of verification time without any hu-
man interaction.

Practically, the designer-driven and constraint-driven abstraction propagations comple-

ment each other and should be used together to simplify verification as much as possible.

5.6.2 Checking Data Consistency

When the writerDataGenwrites a data into the TTL channel, it produces an event of
prepared; when the readeBumreads a data from the channel, it produces an event of
processed. \We use the annotatiodata to represent the value of data written into or read
from the channel. An important constraint that can be expressed with LOC is data consis-
tency of the TTL channel, i.e. the input data of the TTL channel should be read from the
channel in exactly the same order without a loss. The data consistency constraint is defined
as:

data(prepared|i]) = data(processed|i]) . (5.12)

The TTL channel shown in Figufe 5.9 is initially specified in Metropolis Meta-Model

(MMM) [18]. From the MMM specification of the TTL channel design, we use the Metropo-

143

lis backend tool to generate a corresponding Promela (Spin’s modeling language) descrip-
tion [42], which can be verified by the model checker Spin for a particular LTL formula. The
TTL channel design has 634 lines of MMM source code and 2049 lines of Promela code after
translation.

From the discussion above, we know that the data consistency congtraint (5.12) of the
TTL channel cannot be expressed by LTL directly. Therefore, we have to assume that, “after
thex-th write byDataGen at most 31 writes can be done beforextta read bySuni. E] Then
we use arrayprepared _data[32] andprocessed _data[32] to store the recent 32 pieces of data
written by DataGenand read bySumrespectively. We also ugeepared_i and processed _i
(which take values of 0 to 31) to keep the index of the most recent data in the arrays. The

assumption is written in LTL as:

G(prepared_occur — prepared_i # processed_i) , (5.13)

and it is verified to hold by Spin. The data consistency constraint is written in LTL as:

G(processed_occur — prepared_data|processed_i] = processed_data|processed_i]) .
(5.14)

Becauseprocessed[z] always follows prepared|z], the data consistency only needs to be

3This assumption is derived from the actual buffer size of the TTL channel.

144

Table 5.3: Summary of formal verification for data consistency

Formula (5.13) (5.18)
Depth reached 51257 57221
States storedX10°) 2.2431 2.3156
State transitionsX10%) || 2.85523 | 3.09726
Total memory (MB) 735.098 | 819.517
CPU time 1h37m55s 3h03m18s
Hash factor 4.78686 | 4.63699

checked when an instance @focessed is occurring. The formula:

Assumption(5.13) — Constraint([5.14]) (5.15)

is also verified to hold by Spin.

With the bitstate technique [43], Spin verifies the formufas (5.13) [and](5.15) using about
1.5 hours and 3 hours of CPU time respectively on our 1.5GHz Athlon machine with 1GByte
of memory. And all the other relevant verification parameters are listed in [Table 5.3. From
this case study (compared to the case studies in CHapter 3 and GHapter 4), we can clearly
see the tradeoff between the simulation trace checking and the formal verification. The sim-
ulation trace checking is usually much more efficient in terms of memory and CPU time
usage, but its verification results totally depend on the design of test cases for simulation. On
the other hand, the formal verification is more expensive but the results are more confident.

Therefore, it should be used for small but important design modules like the TTL channel.

145

Chapter 6

Conclusions

In this thesis, we have presented a comprehensive and complete study on verification and
analysis methodologies for system level designs and have mainly based our approaches on
formal specification of design constraints. Both simulation and formal verification techniques
have been discussed for system designs with functional and performance constraints. LOC
(Logic of Constraints) and LTL (Linear Temporal Logic) are two main formal languages
that we use for constraint specification. The contributions of this work are summarized as
follows.

We have extensively studied the verification aspects of our quantitative constraint for-
malism, Logic of Constraints. We compare LOC with LTL, a popular functional constraint
specification formalism, find that LOC has a different domain of expressiveness from LTL,
and conclude that LOC can express important constraints that cannot be expressed with LTL.

We have proposed two feasible verification approaches, simulation trace analysis and model

146

checking for LOC. We use a set of case studies on these approaches to demonstrate their
usefulness and effectiveness.

A simulation verification and analysis methodology has been proposed based on for-
mal specification of design constraints, i.e. assertions. We apply our methodology on the
Metropolis design framework and the network processor architecture simulator NePSim.
LTL is used to express and verify functional constraints such as non-starvation and execution
ordering, and LOC is used to specify quantitative performance and functional constraints
such as latency, throughput, and data consistency. All these constraints can be checked with
automatically generated trace checkers on simulation traces using small amounts of CPU
time and memory. The ability of LOC to carry out performance evaluation at the system
level also opens up design exploration avenue uncharted before. We therefore utilize LOC
in the design exploration of dynamic voltage scaling techniques in the network processor
model. Our approach is shown to be an efficient tool to help a designer choose an optimal
configuration in a large design space, specially when the number of considered parameters is
large and manual analysis of simulation results becomes tedious.

In addition to the assertion-based simulation verification, we have also proposed a dead-
lock analysis approach with built-in simulation monitors. We study deadlock problems in
system level designs that include complex synchronization constructs and function-architecture
separation and mapping. We discuss our deadlock analysis approach including a data struc-
ture called the dynamic synchronization dependency graph and an associated deadlock de-

tection algorithm. We use two examples, a complex function model for video processing and

147

a model of function-architecture mapping, to demonstrate the effectiveness and efficiency of
our approach in deadlock analysis for system level designs.

For small but important designs or library modules that will be instantiated many times
across different designs, it is possible and useful to exhaustively prove the desired proper-
ties at a high level of abstraction using formal verification techniques. We have therefore
proposed a formal verification methodology for system level designs with the approach of
automatic generation of verification models from design specifications. This methodology
is unique in that it is able to operate at different levels of abstraction and to allow verifica-
tion to drive the design process. In addition, system functions, abstract architectures, and
mappings can all be verified. Integral to the methodology is a semantically correct translator
from a system level language, Metropolis Meta-Model, to a software verification language,
Promela. Case studies have been performed to show the power of such an approach both in
terms of constraint verification driving synthesis and formal verification of designs before
and after synthesis steps. In addition, automatic abstraction and propagation algorithms have

been proposed to further simplified generated verification models.

148

Bibliography

[1] http://www. omg.org, object constraint language specification, 1997.

[2] http://www.eda.org/dcwg, quick reference guide for the design constraints description
language, 2000.

[3] http://developer.intel.com/design/network/ixa.html, Intel IXP1200 network processor
family hardware reference manual, 2001.

[4] http://www.open-vera.com, OpenVera assertions white paper, Synopsys, Inc., 2002.
[5] http://netlib.bell-labs.com/netlib/spin /whatispin.html, Spin manual, 2003.

[6] http://www.eda.org/vfv, PSL homepage, 2003.

[7] http://www.systemc.org, SystemC homepage, 2003.

[8] http://developer.intel.com/design/intelxscale, Intel XScale microarchitecture, 2004.

[9] http://www.intel.com/design/network/products/npfamily/ixp2400.htm, Intel 1XP2400
network processor, 2004.

[10] http://www.intel.com/design/network/products/npfamily/ixp2800.htm, Intel 1XP2800
network processor, 2004.

[11] http://www.itrs.net/common/2004update/2004update.htm, International Technology
Roadmap for Semiconductors, 2004.

[12] http://www.nlanr.net, NLANR measurement and network analysis, 2004.
[13] http://www.cs.ucr.edu/ cadgroup/pac, Performance Assertion Checker homepage, 2005.

[14] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs - automatic
generation of simulation checkers from formal specificatiofschnical Report, IBM
Haifa Research Laboratory, Israe2003.

[15] M. Abramovici, M. A. Breuer, and A. D. FriedmanDigital Systems Testing and
Testable DesignWiley-IEEE Press, 1994.

[16] P. Alexander, C. Kong, and D. Barton. Rosetta usage guide. http://www.sldl.org. 2001.

149

[17] B. Alpern and F. Schneider. Verifying temporal properties without temporal |8gid/
Transactions on Programming Languagé4(1):147-167, Jan. 1989.

[18] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogeneous systefeghnical Report
2001/01 Cadence Berkeley Laboratoridkov. 2001.

[19] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and A. Sangiovanni-
Vincentelli. Constraints specification at higher levels of abstractionPrateedings
of International Workshop on High Level Design Validation and ,Tdst.. 2001.

[20] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. Metropolis: an integrated electronic system design environmi&EE
Computer 36(4):45—- 52, Apr. 2003.

[21] J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter, and W. J. M. Smits. Com-
munication refinement in video systems on chipPmceedings of th&” International
Workshop on Hardware/Software Codesigages 142—-146, 1999.

[22] J. R. Hichi. On a decision method in restricted second order arithmetiroceedings
of International Congress on Logic, Methodology and Philosophy of Scigrages
1-11. Standford University Press, 1960.

[23] T. Burd and R. Brodersen. Design issues for dynamic voltage scalirgrobeedings
of International Symposium on Low Power Electronics and Degigges 9-14, 2000.

[24] E. Cerny, B. Berkane, P. Girodias, and K. Khordddierarchical Annotated Action
Diagrams: An Interface-Oriented Specification and Verification Methddwer Aca-
demic Publishers, 1998.

[25] A. Charlesworth. The multiway rendezvouSCM Transactions on Programming Lan-
guages and Systent3):350-366, 1987.

[26] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logi®orkshop on Logics of Programgages 52—71,
1981.

[27] E. M. Clarke, O. G. Jr., and D. A. Peleilodel CheckingThe MIT Press, 2000.

[28] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlock€ M Computing
Surveys3(2):67-78, 1971.

[29] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the accellera formal verifica-
tion technical committee. Mar. 2002.

[30] H. B. Enderton A Mathematical Introduction to LogicAcademic Press, Inc., 1972.

150

[31] F. Fallah, P. Ashar, and S. Devadas. Simulation vector generation from HDL de-
scriptions for observability-enhanced statement coveragé€rdneedings of the 36th
ACM/IEEE Design Automation Conferengages 666—671, 1999.

[32] O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data synchroniza-
tion scheme for embedded hw-sw shared-memory systenioteedings of Interna-
tional Symposium on System SyntheSist. 2001.

[33] P. Godefroid and G. J. Holzmann. On the verification of temporal propertieBron
ceedings of IFIP/WG6.1 Symposium on Protocols Specification, Testing, and Verifica-
tion, June 1993.

[34] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification
methods. IrProceedings of the 5th Conference on Computer Aided Verificatmbome
697 ofLecture Notes in Computer Scienpages 438-449. Springer-Verlag, June 1993.

[35] A. N. Habermann. Prevention of system deadlocksommunications of the ACM
12(7):373-377, 1969.

[36] T. Hafer and W. Thomas. Computational tree logic and path quantifiers in the monadic
theory of the binary treeProceedings of International Colloquium on Automata, Lan-
guages, and Programmingduly 1987.

[37] Z. Har'’El and R. P. Kurshan. Software for analysis of coordinatiorPrisceedings of
the International Conference on System Scigpages 382—-385, 1988.

[38] J. P. HayesComputer Architecture and OrganizatioNcGraw-Hill, 1988.

[39] J. Henriksen, J. Jensen, M. Jagrgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. Aroceedings of Tools and
Algorithms for the Construction and Analysis of Systems, First International Workshop,
TACAS '95, LNCS 1019995.

[40] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture validation for
processors. IProceedings of the 22nd Annual International Symposium on Computer
Architecture pages 404-413, June 1995.

[41] C. A. R. Hoare. Communicating sequential procesgesmmunications of the ACM
21(8):666-677, 1978.

[42] G.J.Holzmann. The model checker SHIBEE Transactions on Software Engineering
23(5):279-258, May 1997.

[43] G. J. Holzmann. An analysis of bitstate hashiffgrmal Methods in Systems Desjgn
13(3):289-307, Nov. 1998.

[44] J. E. Hopcroft and J. D. Ullman.Introduction to automata theory, languages, and
computation Addison Wesley, 1979.

151

[45] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems.
IEEE Transactions on Software Engineerjpgges 890-904, 1986.

[46] G. Kahn. The semantics of a simple language for parallel programmifyotreedings
of IFIP Congresspages 471-475. North Holland Publishing Company, 1974.

[47] K.Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System
level design: orthogonalization of concerns and platform-based dd& gk Transac-
tions on Computer-Aided Desigh9(12):1523-1543, Dec. 2000.

[48] E. Knapp. Deadlock detection in distributed databasA&€M Computing Surveys
19(4):303-328, 1987.

[49] E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer, P. Lieverse, and
K. Vissers. YAPI: application modeling for signal processing system&rdceedings
of the37*" Design Automation Conferencéune 2000.

[50] M. Krishnamurthi, A. Basavatia, and S. Thallikar. Deadlock detection and resolution in
simulation models. IProceedings of the 26th Conference on Winter Simulapages
708-715. Society for Computer Simulation International, 1994.

[51] T. Kropf. Introduction to Formal Hardware VerificatiorSpinger-Verlag, 1998.

[52] Y. Luo, J. Yang, L. Bhuyan, and L. Zhao. NePSim: A network processor simulator with
power evaluation frameworkEEE MICRO, special issue on network process&ept.
2004.

[53] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Spec-
ification. Springer-Verlag1992.

[54] E. J. McCluskeyLogic Design PrinciplesPrentice Hall, 1986.
[55] K. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1993.

[56] A. Mok and G. Liu. Early detection of timing constraint violation at runtime.Pho-
ceedings of IEEE Real-Time Systems Sympogages 176-186, Dec. 1997.

[57] A. Mok and G. Liu. Efficient run-time monitoring of timing constraints.Rroceedings
of Real-Time Technology and Applications Sympospages 252—-262, June 1997.

[58] J. L. Peterson and A. Silberscha@perating System Concep#sddison-Wesley, 1983.

[59] A.Pnueli. The temporal logic of programs.Pnoceedings of thes!” IEEE Symposium
on Foundation of Computer Sciengages 46-57, 1977.

[60] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP address lookup
algorithms.IEEE Network Magazinel5(2):8-23, 2001.

152

[61] M. Sfinghal. Deadlock detection in distributed systet&B&E Computer22(11):37-48,
1989.

[62] F. Vahid and T. Givargis.Embedded System Design: A Unified Hardware/Software
Approach John Wiley & Sons, 2002.

[63] M. Y. Vardi. An automata-theoretic approach to linear temporal lodimgics for
Concurrency. Structure versus Automata, LNCS Vol 1043, Springer-Vedags 238—
266, 1996.

[64] P. Wolper. Temporal logic can be more expressivéormation and Contrgl(56):72—
99, 1983.

153

Appendix A

Formal LOC Syntax and Semantics

A.1 Representing System Behaviors

We use the terrbehaviorto denote the sequence of inputs and outputs that a system exhibits
when excited by the input sequence. In general, we want to consider both finite and infinite
sequences, as well as hybrids where some inputs or outputs appear infinitely many times, and
some appear only finitely many times. Formally, #ebe a set okvent nam@nd for each

e € E let V(e) be itsvalue domain Then, abehavior(is a partial function fronE' x Z to

U.cr V (e) such that:

(1) B(e,n) € V(e) foreache € E, and each positive integerfor which (e, n) is defined,

1 In this work, we assume thd is finite. However, the approach presented here could easily be extended
to arbitrary sets of event names. This extension would allow us to consider networks with dynamic process and
interconnection creation.

154

(2) if B(e,n) is not defined for some € E and positive integen, then3(e,m) is not

defined for anyn > n.
(3) B(e,n) is not defined for any € F and anyn < O.E]

If n is the largest integer for which(e, n) is defined, then we say that there arsstances
of e in 3. We also say for all positive integets< n that (e, k) is the value of the:-th
instance ot in .
A systems specified by a set of event names, their value domains aatia behaviors
In a typical system, event names may represent interconnections, e.g. wires in a hardware
system, or mailboxes in a software system. The behavior of the system is then characterized
by sequences of values observed on the wires, or sequences of messages to mailboxes.
Behaviors, by themselves, are not sufficient to evaluate performance constraints that may
involve quantities like timing or power of the system. For this, we need additional infor-
mation regarding performance measures. We represent this information as annotations to
behaviors. Formally, given an arbitrary s€t an annotationof behavior of type T is a
partial functionf from E x Z to T', such thatf (e, n) is defined if and only if3(e, n) is. We
refer to f as aT-valued annotation of. Similarly to events, iff is aT-valued annotation,
then we say thdt’ is the value domain of. An annotated behavias a pair(3, A) wherej

is a behavior andl is a set of annotations of.

2 Clearly, we could have define@las a partial function on positive integers, but this definition happens to
be more convenient when we define the semantics.

155

Here we show a few uses of annotations, but make no proposal for their specification.
We assume that they are part of the functional specification, and thus specified with the
same language as the functional specification. In a way, they are an extension of an already
common design practice, where comments and assertions are placed in the code to ease
design understanding and debugging.

Annotated behaviors are structures for which we want to state constraints. In other words,

annotated behaviors are models of LOC formulas.

A.2 LOC Syntax

LOC formulas are defined relative to a multi-sorted algebtaO, R), whereA is a set of
sets (sorts)(is a set of operators, and is a set of relations on sets . More precisely,
elements ot are functions of the forrf} x - -- x T,, — T,,,1, wheren is a natural number,
andTi,...,T,,, are (not necessarily distinct) elements4f If o € O is such a function,
then we say thatis n-ary and7,,,;-valued. Similarly, am-ary relation inR is a function of
the formT; x - - - x T,, — {true, false}. We require thad contains at least the set of integers,
and the value domains of all event names and annotations appearing in the formula. For ex-
ample, if A contains integers and rea{3,could contain standard addition and multiplication,
andR could contain usual relational operatdss, <, >, ...).

The basic building blocks of LOC formulas aterms We distinguish terms by their

value domains:

156

1 is an integer-valued term,

for each value domai' € A, and eacle € T, cis aT-valued term,

if 71is an integer-valued term,c E is an event name, anflis a7-valued annotation,

then vale[7]) is aV/(e)-valued term, and (e[7]) is aT-valued term,

if o € O is aT-valuedn-ary operator, and, ..., 7, are appropriately valued terms,

theno(r, ..., 7,) is aT-valued term.

We say that in a term of the form vak[r]) or f(e[r]) is anindex expressian

Terms are used to build LOC formulas in the standard way:

e if r € R is ann-ary relation, andr, ..., 7, are appropriately valued terms, then
r(r,...,7,)is an LOC formula,

e if ¢ andy are LOC formulas, so arg, ¢ A v, andg V 1.

For example, it andb are names of integer-valued events, drathdg are integer-valued

annotations, then the set of LOC formulas includes the following:

val(ali]) =5 A val(ali +1]) =5
f(ali+4]) + f(blg(ali])]) <20

val(ali]) =0 vV f(bi]) =0 .

When reading these formulas, it is helpful to thinkiads being universally quantified, as
clarified in the LOC semantics next.

157

A.3 LOC Semantics

We first define thevalue of formulas and terms with respect to an annotated behavior and a
value of the variablé. We use a special symbahdef to denote that the value of a term
or a formula is not defined, and assume thatef is distinct from any element of any sort
in A. We useV[j; , [a], wherea is a term or a formula, to denote the valuecoévaluated
at the annotated behavigs, A) and the value: of variablei. If « is aT-valued term, then
Vi lel, isinT U {undef }, and ifo is a formula, theny,) [o] is in {true, false, undef }.
Note that this implies that for sonieary T-valued operatos, the formulao(ry, ..., 7) can
take valueundef, while o itself cannot, because it i5-valued. There is no contradiction
here, only a slight abuse of notation, as we use the same sytootepresent both the
operator and its name appearing in LOC formulas. This ambiguity in the meaningan
always be easily resolved from the context in whichppears. Also note that we do not
make a requirement that all annotations appearing in the formula must be defidedran

such undefined annotations, we use valudef. The value of an LOC formula is defined

recursively as follows:

° V(%’A) [[Z]] = n,

® V(s 4lc] = cfor each element of each value domaiff,

e for each event nameand each integer-valued term

158

undef if Vi a)[7] = undef,

Vi, lval(e[r])] = or 3(e, Vi3 4)[7]) is not defined

| B(e; Vi a)l7]) otherwise,

o for each annotatiorf, each event name and each integer-valued term

(

undef if f&A,

Vis,alf(elr])] = or Vi 4 [val(e[r])] = undef,

\ f(e, V5 »l7]) otherwise,

e for eachk-ary operatop, usingv; to denoteVy;, ,[7;] for eachj =1,... .k,

undef if v; = undef for somey,
V&%A)[[O(Tb ce ,Tk)]] =
o(vy,...,vx) oOtherwise,
o for eachk-ary relationr, usingv; to denotel;, 4 [7;] foreachj =1,... k,
undef if v; = undef for somey,
V&A) Ir(r,....,7)] =
r(vi,...,vx) oOtherwise,

true it Vi 4 [0] = false,

* Vis.a) [¢] = false if Vi 4\ [9] = true,

\ undef otherwise,

159

true if Vi 4[] = true,
andV; 4 [v] = true,

e Vi plondl =19 fase if Vi ay[9] = false,

or Vi a) [v] = false,

undef otherwise,

true if Vi 4\ [¢] = true,
or Vi 4 [¥] = true,

* Visalo Vel =9 fase it vy 4 [¢] = false,

andV(j; 4 [¢] = false,

undef otherwise.

\

We say that an annotated behavidr A) satisfies a formula, if Vj; , [¢] = false does not

hold for any integer..

160

Appendix B

Proof of LOC Verification Complexity

Before we present the proofs of Theorgm 1 and Lemmma 1 (in Se2¥pnve need to define
systems that we are dealing with. Formally, a finitely-valued finite-state system is a sextuple

(S,50,T, E,G, a) where:
e S is the set oktateshat must be finite,

So C S is the set ofnitial states,

e T C S x S is thetransition relation

E is the set of event names such that for eaeh £ the value domaiv' (e) is finite,

e G:{(e,v):e€ E,veV(e} 2T is thegeneration function

annotation axiomy is an LOC formula that may refer to values of eventAn but
also to some annotations. Value domains of all the annotations appeatingust be
finite.

161

We use(+(e) as an abbreviation ¢f], ., G(e, v). Intuitively, G(e, v) is the set of transitions
on whiche is generated with value.
An annotated behavidi3, A) is in the set of behaviors of the systé Sy, T, F, G, «)

if it satisfiesa, and there exists a (possibly finite) sequence of states, ... such that:
® 5 € SO!
e (s;_1,s;) € T foralli > 0 for which s; exists,

e forall e € F, all transitions(s;_1, s;), and all positive integers: if e is generated on
(si—1,s;) for the n-th time, then it must be possible to generate the valiten) on

that transition, i.e. if it holds that:

(si—1,s:) € G(e) ,

n = Hj 11 <5<k (sj_1,85) € G(e)}‘)

then the following must also hold:

(si—1,s:) € G(e, B(e,n)) .

B.1 Proof of Theorem 1

We will reduce theéPost Correspondence Problem (PCPR¥] to checking whether a finitely-
valued finite-state system with LOC annotation axioms satisfies an LOC formula. Recall

162

that a PCP instance is given by two ordered lists of strings,. ., a, andby,...,b,. The
guestion is whether there is a sequence of integers. , i, (all form 1 to n) such that strings
@i iy - .. a;, @ndb; by, ... b;, are the same.

We now describe the system used in the reduction. The states of the system are 4-tuples
(4, jas T, jb) Wherei, andi, range froml to n, j, ranges betweemh and the length of the
string a;,, andj, ranges betweem and the length of the string,. Initial states are those
wherej, = j, = 0. In addition, there is a special state denoteddy N E. The system has
two events: andb, both valued front to n. Informally, the system moves int@,, j., iy, J»)
after it sees thg,-th letter ofa;,, which must also be thg-th letter ofb;,. Formally, the

transitions in the system are the following:

o From (i, jo — 1,4, b — 1) 10 (44, ja, @, Jb) if je-th letter in stringa;, is the same as
Jo-th letter in stringb;,. If j, = j, = 0, then event with value:, and event with

valuei, are generated. Otherwise, no events are generated on this type of transitions.

o From (i, jo — 1,4, J») tO (44, ja, i}, 1) if b;, hasy, letters, andj,-th letter in stringa;,
is the same as the first letter in strihg. A b event with valuej, is generated on this

type of transitions.

o From (i, ja, i, jo — 1) to (i’, 1,4y, jp) if a;, hasj, letters, andj,-th letter in stringb;,

a’ Y

is the same as the first letter in string. An a event with value;, is generated on this

type of transitions.

o From (iq, ja, i, J») t0 (i, 1,4;,1) if a;, hasj, letters,b; hasj, letters, and the first

a’)

163

letters in strings:;, andb,-;) are the same. An event with value’, and ab event with

valuei; are generated on this type of transitions.

o From(iy, ja, i, J») t0 DONE if a;, hasy, letters, and;, hasj, letters. Events andb

are generated on this type of transitions, both with value 0.

The system has a single binary annotation cajled!, and the annotation axiom is:

good(ali]) <= (val(ali)) = val(bi]) A ((i = 1) V good(ali — 1]))) .

PCP has a solution if and only if the system above does not satisfy the LOC formula:

val(ali]) = 0 .

Indeed the formula above is violated if and only if there is a path in the system from some
initial state to DO N F, such that along this pathandb are generated the same number of
times (sayk + 1), and the firs& values of ofa andb are not only equal but also larger than
0. If 4, ..., 4, denotes those values, then it is not hard to check that stings . . . a;, and
bi bi, ... b;, are the same.

We have just shown that PCP can be reduced to checking whether a finitely-valued finite-
state system with LOC annotation axioms satisfies an LOC formula. Since the former is

known to be undecidable, it follows that the latter is also undecidable.

164

B.2 Proof of Lemmal

In this section we define the Presburger form6lg.S; whose existence was claimed by
Lemmal]. We do so in several steps. First, we characterize the transition relation with
formulasT RAN;, for each pair of state&, ¢). These formulas have free variabtgs, one

for each transitionip,) € T'. We construcf’ RAN;, such that an assignmef}f = n,, € Z
satisfiesI'RAN,, if an only if there is a path iff” from s to ¢ that crosses transitiofp,)

exactlyn,,. times. We set:

TRAN,, = FLOW,, A CONN,

FormulaF LOW,, requires that the number of times a path enters the state must be equal to
the number of times it leaves the state. The exceptions to this rule are stateish must

be exited one extra time, agdwhich must be entered one extra time. Formally:

FLOW, = J\ (tp >0)

(p,r)eT
ANCYS tyrt Indeey = Y7 oy + Indiey)
r€S (pr)eT (rw)eT

wherelndp is 1 if propositionP holds, and it is O otherwise.

165

For example, for the system in Figyre]2.2:

FLOW13 :(tlg Z O) N A (t84 Z 0)
A (t1e = toz = t31 + 1 = tia + t14)

A (t1a +tsg = tas = tsg = ter = trs = tsa) .

Unfortunately, FLOW, is not sufficient to fully characterize paths frosto ¢. For
example, the assignmett = to3 = 1, t31 = t1g4 = 0, tys = ts6 = tgr = t7g = tgg = 2
satisfiesF" LOW13 but it does not describe a path from 1 to 3. Rather, it describes a path
and a loop not connected to the path. To eliminate such loops, in additiBddV,, we
must state that if,, > 0, then there must exist a simple path freno p, i.e. there must
exist a sequence,, . .., sx_1, s Of no more thar|S| states, such that = s, s, = p, and
ts, s, > 0foralli =2 ... k. Thisis stated by formul& ON N, which usegsS| variables
v, to represent this path. Here, we assume thigta subset of integers. This assumption can
be made without loss of generality, as integer encodings can be easily defined for any finite
set. If the path is of length< |S|, we require that, = p for all k£ > [. So, if the value of,

is notp, we are still in the active portion of the path and we must requiretthat 0, where

166

x andy are values o, andv, | respectively. Formally, we define:

CONN; = /\ (tyr > 0)=Fvy ... Jug| : ((v1 =5) A (vs) =p)

(p,r)ET
1S|—1
A N\ 0k = p)=> (Vi1 = p)
1S-1
AN ==\ (=2 A (vrss = 9) A (tny > 0))) .
k=1 (z,y)ET

It may appeafl RAN,, needs a term similar t6ON N; stating that ift,, > 0, there
must exists a simple path fromto ¢, but in fact, this statement is already implied by the
conjunction of F LOW,, andCON N;.

For example, for the system in Figyre]2.2:

CONN1 = ((t45 > O):>(t14 > O)) Nooo

implying that:

TRAng :(tgl Z O)
A (t1g = taz = t31 + 1)

A (tig = tys = tse = ter = trg = tsa = 0) .
In the next step, we useR AN, to characterize generation relation with formulaB V.,

for each pair of state§, ¢). These formulas have a free variabledor each event € F.

We constructG EN,, such that an assignment = n. € Z satisfiesI' RAN,, if an only if

167

there exists a path i from s to ¢ along which event is generated exactly, times. It is

not hard to see that :

GENy= 3..3t,... :TRAN A N(ge= > ts)

over allty, s.t. (p,r)eT e€k (z,y)eG(e)

For example, for the system in Figure]2.2:

GEN13 :Htm e Elt84 . TRAN13
A (Gzy = trz + taz + t31)

A (Gzy = tas + tse + ter + trs + tsa)

which can be simplified t0g,, = 0) A (35 > 0: g,, = 3j + 2).

So far, we have characterized a system independently of the LOC formula. Next, we will
defineSY S; for a specific interpretatiorh of the set of event expressiofig. But first, we
need to introduce some additional notation. In the rest of the section, we will.usg
andb, to denote the event name and constants appearing in event expressomve will
assume that evemwyis of the form vale.[a.i + b]) or f(ec[a.i+b.]), wheref is an annotation.
We say that two event expressianande’ aresimilar, and writee ~ ¢, if they refer to the
same event, i.ee. = e and they both refer to the value af, or they both refer to the same
annotation ot..

We say that an ordered tupley, s1, g1, - - ., sy, qn) € S*M*1 is aninstanceof interpre-

tation] of &, if the following is satisfied:

168

(1) qo is an initial state, i.ey € Sp.
(2) (sn,qn)is atransition,i.e/n=1,...,N:(s,,q,) €T

(3) There exists a partitioé, ..., Ey of &, such thatforalh =1,..., N and alle € &,

the following holds:

(a) ifeis of the form vale.[a i + b.]), then the event, can be generated on transition

(sn, q,) With the value required by, i.e. the following holds:

(50, qn) € Glee, 1(€))

(b) I assigns the same value to all similar event expressions in the same partition,
le.:

Ve €&, (€ ~e) = (I(€) =1(e)) .

We call any such a partition anstantiating partitionof instance(qo, s1, - - -, qn)-

Intuitively, by traversing a path visitings,, ¢1) . .. (sn, gn) We could generate all event
values required by. However,SY S; must also ensure that these values are generated at
correct values of index expression. To do 8&S; uses a variablg.;, for eache € E and

eachj = 1,..., N, to count how many times eveats generated on a path segment form

169

¢j—1 t0 s;. Formally:

>2

SYs = \/ \/ 3.y

(90,515,qN) (E1,EN) gyer allye; s.t.e€E,1<j<N n=1

A /\ (Z(yeek -+ Ind(sk#]k)eG(@e)) = a. + be)> ,

ecEy k=1

<GENqn ol Yoy)

where the first disjunction ranges over all instances, dhe second disjunction ranges over
all instantiating partitions of the current instance, @8N, . (..., Yen,-..) denotes the
formula obtained fornGEN,, ., by substituting variableg. with y.,, for alle € E. The
equation requires for atl € £, that the total number of times thatis generated on the path
from the initial state to the transitiofs,,, ¢,) is exactly as required by the index expression
act + be.

For example, the interpretatiohwhich assigns 1 both to v@l,[3:]) and valz.[i]) in
formula [2.17) has a single instange 3, 1, 8, 4) with the unique instantiating partitiafy =

{val(z1[3i])}, & = {val(z;[i])}. Therefore:

SY St =392y 13Ya12 W1 3Was2 (GEN13(yx117yac21) N GEN8(Yar2, Yao2)
A (yml +1= 31)

N (yaszl + Yu2e + 1= Z)) .

170

One can check that:

GENlB(yxllayzgl) :(yle = O) A (EI] Z 0: Yzri1 = 3] + 2)

GENIS(yxﬂayng) :(EU >0: Yz 0= 3j) A (Hj >0 Yp2 =95 + 4))

soSY'S; can be simplified td3; > 0 : 55 = ¢), as we anticipated in Sectipn 2.6.

171

	List of Figures
	List of Tables
	Introduction
	System Level Design
	Verification Methods
	Functional and Performance Constraints
	Metropolis Design Framework
	Framework and Design Methodology
	Metropolis Meta-Model Language

	Thesis Overview

	Logic of Constraints
	Introduction to LOC
	LOC Syntax and Semantics
	Expressiveness of LOC
	Checking LOC Formulas with Simulation
	Runtime Monitoring
	Dealing with Memory Limitation
	A Case Study of FIR Filter

	Formal Verification of LOC Formulas
	Complexity of Verifying LOC Formulas

	Simulation Verification and Analysis Based on Formal Assertions
	Methodology of Simulation Verification and Analysis
	Simulation Verification in Metropolis
	A Picture-in-Picture Design
	A Function-Architecture Mapping Model

	Verification for Network Processor Architectures
	Introduction to Network Processors
	Network Processor Model
	Experimental Settings
	Verification Studies

	Performance and Power Analyis for Network Processor Architectures
	Experimental Settings
	Dynamic Voltage Scaling
	Power Analysis
	Design Exploration for DVS

	Deadlock Analysis with Built-in Simulation Monitors
	Introduction to Deadlock Analysis
	Synchronization in Metropolis
	Synchronization Constructs
	Deadlock in Metropolis

	Synchronization Dependency and Deadlock Analysis
	Deadlock Analysis Methodology
	Dynamic Synchronization Dependency Graph
	Deadlock Detection Algorithm
	Implementation

	Case Studies of Deadlock Analysis
	A Function Model for Video Processing
	A Function-Architecture Mapping Model

	Formal Verification for System Level Designs
	Introduction to Formal Verification
	Formal Verification Methodology
	Translation from MMM to Promela
	MMM Processes
	Interfaces and Await Statements
	Dynamic Objects
	Function-Architecture Mapping

	Producer-Consumer Network
	Verification of Data Integrity
	Assumptions and Schedulers
	Transformation and Refinement

	Automatic Abstraction and Propagation
	Control and Data Dependency Graph
	Abstraction Propagation Algorithms

	Formal Verification for TTL Channel
	A Deadlock Free Constraint
	Checking Data Consistency

	Conclusions
	Bibliography
	Formal LOC Syntax and Semantics
	Representing System Behaviors
	LOC Syntax
	LOC Semantics

	Proof of LOC Verification Complexity
	Proof of Theorem 1
	Proof of Lemma 1

