
1

Logic of Constraints:A Quantitative

PerformanceandFunctionalConstraint

Formalism

Xi Chen
�
, Harry Hsieh

�
, FeliceBalarin

�
, Yosinori Watanabe

�
�
University of California at Riverside,

�
xichen,harry� @cs.ucr.edu�

CadenceBerkeley Laboratories,
�
felice, watanabe� @cadence.com

Abstract

In the eraof billion-transistordesign,it is critical to establisheffective verificationmethodologies

from the systemlevel all the way down to the implementations.In this paper, we introduceLogic of

Constraints(LOC), a languagethat is particularlysuitedto expressquantitative performanceconstraints

as well as functional constraints.We explore the complexity of LOC formal verification, and show

that someversionsof the problem are undecidable,and someare decidable,but with very complex

algorithms.For practicalpurposes,we thereforeproposeapartialformal verificationmethodologyandan

automaticsimulationtracechecking/monitoringmethodology, bothcanbeusedto verify systemdesigns.

We analyzetheexpressivenessof LOC andshow that it is importantanddifferentfrom LinearTemporal

Logic (LTL), on which traditional hardware assertionlanguages(e.g. IBM’ s Sugarand Synopsys’s

OpenVera)arebased.Throughseveral industrialcasestudies,we demonstratetheusefulnessof theLOC

formalismandthe correspondingverificationapproachesat the higher, transactionlevel of abstraction.

I . INTRODUCTION

The increasingcomplexity of embeddedsystemstoday demandsmore sophisticateddesign

andverificationmethodologies.Systemsarebecomingmoreintegratedasmoreandmorefunc-

tionalitiesandfeaturesarerequiredfor the productto succeedin the market. Embeddedsystem

2

System Function System Architecture
 (Platform)

Functions on Architecture
(Implementation)

Mapping

Fig. 1. SystemDesignMethodology.

architectureslikewise have becomemore heterogeneousas it is becomingmore economically

feasibleto have variouscomputationalresources(e.g. microprocessor, digital signal processor,

reconfigurablelogics) all utilized on a single chip. Designingat the Register TransferLevel

(RTL) [11] or sequentialC-codelevel is no longer efficient. More than ever, designand veri-

fication methodologiesat higher levels of abstractionare requiredto minimize the designcost

of an electronicproduct.The specificationof the function and the architectureshouldbe done

at a high level of abstraction,and the design proceduresrefine the abstractfunction, refine

the abstractarchitecture,andmapthe function onto the architecturethroughautomatictools or

manualmeanswith tool support[17], [4]. High level designproceduresallow designersto tailor

their architecturesto the functions at hand or to modify their functions to suit the available

architectures(seeFigure1).

To make the practiceof designingfrom high level systemspecificationa reality, verification

methodsmustaccompany every stepin the designflow. Specificationat the systemlevel makes

formal verificationpossible[6]. Designerscan prove the propertyof a specificationby writing

down thepropertythey wantto checkin somelogic (e.g.LinearTemporalLogic (LTL) [21]) and

usea formal verificationtool (e.g.the modelchecker SPIN [12]) to run the verification.Formal

verificationchecksthe entire statespaceof a designto verify somespecifiedpropertywithout

any uncertainty. As the designsarerefined,however, the complexity canquickly overwhelmthe

automatictools,andsimulationbecomestheprimarymeansfor verification.Theconfidenceof a

simulationverificationmainlydependson thedesignof testcases.Designerscaninsertembedded

3

assertionsinto their HDL (Hardware DescriptionLanguage)descriptionsto help uncover bugs

of the designsduring simulation.Today’s embeddedassertionlanguagescapturethosesimple

logics as language/platformspecific library blocks. A set of extendedtemporal logic is then

usedto operateon thoseblocks for expressingmorecomplex assertions.Examplesof assertion

languagesinclude IBM’ s Sugar2.0[7] andSynopsys’OpenVera [1].

We believe that the hardware assertionlanguagesare not natural to expressmore abstract

propertiessuchastransactionlevel properties,whereonly theeventsobservablefrom thesystem

and their annotationsare considered.Nor are they convenient to directly expressperformance

constraintsthat are quantitative in nature(e.g. latency, throughput).To this end,we proposea

formal constraintlanguage:Logic of Constraints(LOC). LOC is particularlysuitedfor specifi-

cation and simulationanalysisof real time performanceconstraintsat the transactionlevel, as

will be shown later in this paper. A constraintlanguageis not meaningfulunlessthereexists a

clear and efficient path to verification. We proposean efficient simulation-basedapproachfor

analyzingLOC formulas.C++ tracecheckersareautomaticallygeneratedfrom LOC formulas.

Thecheckersanalyzethesimulationtracesandreportany constraintviolations.In mostcases,the

tracesarescannedonly onceandmemoryusageis very low. The automaticchecker generation

is parameterized,so it canbe customizedfor fastanalysisfor specificverificationenvironments

(e.g.memorylimitation). Thechoiceof C++ for thecheckersis amatterof convenience.It allows

us to tightly integratethe checkerswith the SystemC[3] simulatorfor runtimemonitoring.No

major difficulty exists to generatecheckers in HDLs for integration with hardware simulators,

or in Java for concurrentexecutionwith the software simulators.To illustrate the conceptand

demonstratethe usefulnessof our approaches,we conductthreeseparatecasestudies:a high

level descriptionof a Picture-In-Picture (PIP) design,an RTL level designof a Finite Impulse

Response(FIR) filter, andaTaskTransitionLevel (TTL) [9] channeldesign,which is a refinement

of a Y-ChartApplication ProgrammingInterface(YAPI) [18] communicationentity.

A simulation-basedapproachcan only disprove the LOC formula (if a violation is found),

but it can never prove it conclusively, as that would require analyzing the designspaceex-

haustively. However, for small designsor library modulesthat will be instantiatedmany times

acrossdifferent designs,it is necessaryto formally prove the desiredproperties.We give an

exact verification algorithm for a broadclassof LOC formulas.However, becauseof the high

complexity of this algorithm,we provide analternative.That is, we proposea formal verification

4

methodologywhereLOC formulasare translatedinto verification modelsin Promela(SPIN’s

input language[12]) and LTL formulas.This approachis completefor a restrictedsubsetof

LOC. It can also be applied to a wider subset,but results might then be inconclusive, i.e.

the verification is only partial. We illustrate the conceptanddemonstratethe usefulnessof our

approachthrougha casestudyon formal verificationof the TTL library module.

While similar in spirit to the hardware embeddedassertionlanguages,our LOC simulation

andverificationapproachesare indeeduseful in at leastthreefundamentalaspects.First, Logic

of Constraintsis designedfor expressingall quantitative performanceandfunctionalconstraints,

not just functionalones.This meansthatonecaneasilyspecifyrequirementson timing or power

consumptionof the systemsbeing designed,in addition to thoseon the functional correctness.

Second,to expressperformanceconstraintseffectively, LOC can be usedto expressproperties

that cannot be handledby LTL. Third, systemlevel functional and performanceconstraints

written in LOC can be automaticallyand efficiently synthesizedinto static checkers, runtime

monitors,or formal verificationmodules,aswill be shown in the remainderof this paper.

Therestof thepaperis organizedasfollows. In thenext section,we introducethequantitative

constraintformalism, Logic of Constraints(LOC) and its typical usage.We also compareour

work with the relatedresearch.In SectionIII, we analyzethe expressivenessof LOC, andshow

that LOC canbe usedto expressimportantconstraintsthat cannot be expressedwith LTL for

the specificationof systemdesigns.In SectionIV, we presentsomeresultson the complexity

of LOC verification,mostof the proofsfor which we give in AppendixI. In SectionV, we first

presentthe methodologyfor building a tracechecker or monitor from any given LOC formula,

andthendiscussthe partial formal verificationapproachfor LOC formulas.We demonstratethe

usefulnessandefficiency of theseapproacheswith threeverificationcasestudiesin SectionVI.

In SectionVII, we concludethe paperandprovide our future researchdirections.

I I . LOGIC OF CONSTRAINTS

In thissection,we introduceourquantitativeconstraintformalism,Logic of Constraints(LOC).

Theconstraintspecificationformalismis compatiblewith a wide rangeof functionalspecification

formalismsthat describea systemas a network of componentscommunicatingthrough fixed

interconnections.The observed behavior of the systemis usuallycharacterizedby sequencesof

valuesobserved at the interconnections.We will first defineformal structuresintendedto model

5

thesesequences,and then proposethe syntax and the semanticsof the logic for specifying

constraintsover thesestructures.After the formal presentation,we discussthe typical usageof

LOC and the typical constraintsthat it canexpress.

A. RepresentingSystemBehaviors

We usethe term behaviorto denotethe sequenceof inputsandoutputsthata systemexhibits

when excited by the input sequence.In general,we want to considerboth finite and infinite

sequences,as well as hybrids wheresomeinputs or outputsappearinfinitely many times,and

someappearonly finitely many times. Formally, let � be a set of event names1 and for each��� � let �
	 ��� be its value domain. Then, a behavior is a partial function from ����� to������� ��	 ��� suchthat:

1) �	 ������� � �!	 ��� for each �"� � , andeachpositive integer � for which #	 �����$� is defined,

2) if #	 ������� is not definedfor some�"� � andpositive integer � , then #	 ���&%'� is not defined

for any %)(*� .

3) �	 ������� is not definedfor any �"� � andany ��+-, .2
If � is the largestinteger for which #	 �����$� is defined,thenwe saythat thereare � instancesof� in . We alsosay for all positive integers . +/� that �	 ��� . � is the valueof the . -th instance

of � in .

A systemis specifiedby a setof eventnames,their valuedomainsanda setof behaviors. In a

typical system,eventnamesmay representinterconnections,e.g.wires in a hardwaresystem,or

mailboxesin a softwaresystem.The behavior of the systemis thencharacterizedby sequences

of valuesobserved on the wires, or sequencesof messagesto mailboxes.

Behaviors by themselvesarenot sufficient to evaluateconstraintsthat involve timing or power

of the system.For this, we needadditional information regardingperformancemeasures.We

representthis information as annotationsto behaviors. Formally, given an arbitrary set 0 , an

annotationof behavior with respectto 0 is a partial function 1 from �)�*� to 0 , such

1In this paper, we assumethat 2 is finite. However, the approachpresentedherecould easilybe extendedto arbitrarysetsof

event names.This extensionwould allow us to considernetworks with dynamicprocessand interconnectioncreation.

2Clearly, we could have defined3 asa partial functionon positive integers,but this definition happensto bemoreconvenient

whenwe definethe semantics.

6

that 14	 ������� is definedif and only if #	 �����$� is. We refer to 1 as a 0 -valuedannotationof .

Similarly to events,if 1 is a 0 -valuedannotation,thenwe saythat 0 is the valuedomainof 1 .

An annotatedbehavior is a pair 	5 ��67� where is a behavior and 6 is a set of annotationsof .

In this paperwe show a few usesof annotations,but make no proposalfor their specifica-

tion. We assumethat they are part of the functional specification,and thus specifiedwith the

samelanguageas the functional specification.In a way, they are an extensionof an already

commondesignpractice,wherecommentsandassertionsareplacedin the codeto easedesign

understandinganddebugging.

Annotatedbehaviors are structuresfor which we want to stateconstraints.We expressthese

constraintsin a subsetof first-orderlogic called the Logic of Constraints, or LOC for short. In

otherwords,annotatedbehaviors aremodelsof LOC formulas.

B. LOC Syntax

LOC formulasare definedrelative to a multi-sortedalgebra 	98 �;:��=<'� , where 8 is a set of

sets(sorts), : is a set of operators,and < is a set of relationson setsin 8 . More precisely,

elementsof : are functionsof the form 0?>@�BACACAD�E0GF!HI 0JF�KJ> , where � is a naturalnumber,

and 0?> ��L�LMLM� 0GFCKJ> are(not necessarilydistinct) elementsof 8 . If N �O: is sucha function, then

we say that N is � -ary and 0GFCKJ> -valued.Similarly, an � -ary relation in < is a function of the

form 0?>P�QACACAR��0GF"HI SCT�UWV ��� 1YX[Z5\ �^] . We requirethat 8 containsat leastthe setof integers,and

the value domainsof all event namesand annotationsappearingin the formula. For example,

if 8 containsintegersand reals, : could containstandardaddition and multiplication, and <
could containusualrelationaloperators	`_ ��ab��(b��L�LMLc� .

LOC formulas may contain only one variable,namely d . The value domain of d is the set

of integers.Having only one variablemay seemvery restrictive, but so far we have not found

a natural constraintthat requiredmore than one. In effect, the ability of defining annotations

allows one to specify formulasthat otherwiserequiremore than one variable.The advantages

of a singlevariablearesimplersyntax(fewer names),andmoreefficient simulationmonitoring.

The basicbuilding blocks of LOC formulasare terms. We distinguishtermsby their value

domains:

7

e d is an integer-valuedterm,e for eachvaluedomain 0 � 8 , andeach f � 0 , f is a 0 -valuedterm,e if g is an integer-valuedterm, �Q� � is an event name,and 1 is a 0 -valuedannotation,

thenval 	 �[h gji � is a ��	 ��� -valuedterm, and 14	 �[h gji � is a 0 -valuedterm,3e if N �k: is a 0 -valued � -ary operator, and g�> ��L�L�L;� g;F are appropriatelyvaluedterms,thenNl	9g�> ��L�L�L;� gmF � is a 0 -valuedterm.

We say that g in a term of the form val 	 �[h gji � or 1n	 �[h gji � is an index expression.

Termsareusedto build LOC formulas in the standardway:e if U �Q< is an � -ary relation,and g�> ��L�L�L;� gmF areappropriatelyvaluedterms,then Uj	9g�> ��LML�LM� gmF �
is an LOC formula,e if o and p areLOC formulas,so are o , orq'p , and otsQp .

For example,if X and u are namesof integer-valuedevents,and 1 and v are integer-valued

annotations,then the setof LOC formulasincludesthe following:

val 	5X h dwi � _yx*q val 	5X h dDz-{Mi � _yx
14	wX h dGz}|^i � z~14	5u h vY	wX h dwi � i � a-�^,
val 	wX h dwi � _ , s�14	5u h dwi � _ ,�L

Whenreadingtheseformulas,it is helpful to think of d asbeinguniversallyquantified,asclarified

in the LOC semanticsnext.

C. LOC Semantics

Informally, LOC formulasareevaluatedat annotatedbehavior 	5 ��67� as follows:e the variable d evaluatesto any integer,e if g evaluatesto someinteger � , then val 	 �[h gli � evaluatesto #	 �����$� , and 14	 �[h gli � evaluates

to 14	 �����$� ,e all otheroperatorsandrelationsareevaluatedin the standardway if all their operandsare

defined,andthey areundefinedotherwise,

3It may appearthat expression�^����� �;��� is in conflict with the definition of a � -valuedannotationasa function from 2Q�#�
to � . However, whenwe definethe semanticsof �^����� �m��� it will becomeclear that thereis no conflict.

8

e Booleanfunctionsareevaluatedas in a usualthree-value logic [19],e an annotatedbehavior satisfiesan LOC formula if it doesnot evaluateto 1YX[Z5\ � for any

valueof d .
More formally, we first definethe value of formulasand termswith respectto an annotated

behavior anda valueof the variable d . We usea specialsymbol V �Y��� 1 to denotethat the value

of a termor a formula is not defined,andassumethat V �$�[� 1 is distinct from any elementof any

sort in 8 . We use � F���R� ��� h h�� i i , where � is a term or a formula, to denotethe valueof � evaluated

at the annotatedbehavior 	5 ��67� and the value � of variable d . If � is a 0 -valued term, then� F���W� ��� h hc� i i , is in 0k�ES�V �$�[� 1] , and if � is a formula, then � F���R� ��� h h�� i i is in SCT�UWV ��� 1YX[Zw\ ��� V �Y��� 1] .
Note that this implies that for some . -ary 0 -valuedoperator N , the formula Nl	9g�> ��LML�LM� g;� � can

take value V �Y��� 1 , while N itself cannot,becauseit is 0 -valued.Thereis no contradictionhere,

only a slight abuseof notation,aswe usethe samesymbol N to representboth the operatorand

its nameappearingin LOC formulas.This ambiguity in the meaningof N , canalwaysbe easily

resolved from thecontext in which N appears.Also notethatwe do not make a requirementthat

all annotationsappearingin the formula mustbe definedin 6 . For suchundefinedannotations,

we usevalue V �Y�[� 1 . The valueof an LOC formula is definedrecursively as follows:e � F���W� ��� h h dwi iY_ � ,e � F���W� ��� h h f�i iY_�f for eachelementf of eachvaluedomain 0 ,

e � F���W� ��� h h val 	 �[h gji � i i�_ � �¡ V �Y�[� 1 if � F���W� ��� h h gli i$_¢V �Y�[� 1 or #	 ��� � F���W� ��� h h gli i � is not defined�	 ��� � F���W� ��� h h gji i � otherwise
for

eachevent name � andeachinteger-valuedterm g ,e � F���W� ��� h h 14	 �[h gji � i i$_ � ¡ V �$�[� 1 if 1B£�¤6 or � F���W� ��� h h val 	 �[h gji � i iJ_¥V �$�[� 114	 ��� � F���W� ��� h h gji i � otherwise,
for eachannotation1 ,

eachevent name � , andeachinteger-valuedterm g ,e � F���W� ��� h h Nj	¦gW> ��LML�LM� g;� � i iJ_ � ¡ V �$�[� 1 if � F���R� ��� h h g�§�i iJ_¥V �$�[� 1 for somër_©{ ��L�LMLM� .Nl	5� F���W� ��� h h gW>ªi i ��L�L�L;� � F���W� ��� h h g;�Mi i � otherwise,
for each. -

ary operatorN ,e � F���W� ��� h h U�	¦gW> ��LML�LM� g;� � i iJ_ � ¡ V �$�[� 1 if � F���R� ��� h h g�§�i iJ_¢V �$�[� 1 for somër_©{ ��L�LMLM� .Uj	5� F���W� ��� h h gW>�i i ��L�L�L;� � F���W� ��� h h g;�;i i � otherwise,
for each. -

ary relation U ,

9

e � F���W� ��� h h oGi iJ_
�««« «««¡ T�UWV

� if � F���R� �j� h h o¬i i$_¥1YX[Z5\ �1YX[Z5\ � if � F���R� �j� h h o¬i i$_/T�URV �V �$�[� 1 otherwise,

e � F���W� ��� h h o�q�pi iY_
�««« «««¡ T�URV

� if � F���R� ��� h h oDi iJ_¢T�UWV � and � F���W� ��� h h p®i iY_-T�UWV �1YX[Zw\ � if � F���R� ��� h h oDi iJ_y1YX[Z5\ � or � F���R� ��� h h pi iJ_y1JX�Z5\ �V �Y�[� 1 otherwise,

e � F���W� ��� h h o�s�pi iY_
�««« «««¡ T�URV

� if � F���R� ��� h h oDi iJ_¢T�UWV � or � F���R� ��� h h pi iY_-T�UWV �1YX[Zw\ � if � F���R� ��� h h oDi iJ_y1YX[Z5\ � and � F���W� ��� h h pi iY_y1YX[Z5\ �V �Y�[� 1 otherwise.

We say that an annotatedbehavior 	9 �&6¯� satisfiesa formula o , if � F���W� ��� h h oDi i4_°1YX[Zw\ � doesnot

hold for any integer � .

If we imaginerepresentinga formula by its syntaxtree,thenits evaluationcanbe interpreted

aspropagatingvaluesfrom the leavesup. The value V �$�[� 1 canbe createdonly at nodesof the

form val 	 �[h gji � or 1n	 �[h gji � , if 1¢£�±6 , or g evaluatesto a negative integer or to a numberlarger

thanthe numberof instancesof � in . Oncecreated,value V �$�[� 1 propagatesup, andit canbe

stoppedonly at a nodeof the form o²q�p (if the otherbranchhasvalue 1YX[Z5\ �) or o"s³p (if the

otherbranchhasvalue T�URV �). Thus,it is not hard to show that the valueof a formula that does

not containany termsof the form val 	 �[h gji � or 1n	 �[h gji � mustbe either T�UWV � or 1YX[Z5\ � .
D. Typical Usage of LOC

In thefollowing examples,we assumethatthesetof eventnamesis �´_©SWµ
d¶\&·DZ9X¹¸ ��º T�d % VGZ9d] ,
andthata real-valuedannotationT is defined.Intuitively, we assumethat T;	 ��»���� T h ¼ i � corresponds

to the time of the ¼ -th occurrenceof an event ��»���� T . 4 The following commonconstraintsare

now easyto express:e rate, e.g. “ µ
d½\&·DZ9X[¸ ’s areproducedevery 10 time units”:

T;	wµ!d¶\&·DZ9X¹¸ h dGz¢{Mi �n¾ T;	wµ!d¶\&·DZ9X¹¸ h dwi � _¿{ ,¢� (1)e latency, e.g. “ µ
d¶\&·DZ9X¹¸ is generatedno more than25 time units after º T�d % VJZ¦d ”:
T;	wµ
d½\�·¬Z5X¹¸ h d5i �n¾ T;	 º T�d % VGZ¦d h dwi �À+¥� x � (2)

4In this paper, we always use Á as the index variablein an LOC formula and Â to representan arbitraryvalueof Á .

10

e jitter , e.g. “every µ
d½\�·¬Z5X¹¸ is no more than4 time units away from the correspondingtick

of the real-timeclock with period10”:Ã T;	wµ!d¶\&·DZ9X¹¸ h dwi �4¾ 	5dGz¥{ �?Ä { , Ã + | � (3)e throughput, e.g.“at least100 µ!d¶\&·DZ9X¹¸ eventswill beproducedin any periodof 1001time

units”: T;	wµ
d½\�·¬Z5X¹¸ h dGz-{ ,�, i �P¾ T;	5µ
d¶\&·DZ9X¹¸ h dwi � + { ,�, { � (4)e burstiness,e.g.“no morethan1000 µ
d¶\&·DZ9X¹¸ eventswill arrive in any periodof 9999time

units”: T;	5µ
d¶\&·DZ9X¹¸ h dGz-{ ,�,�, i �n¾ T;	5µ
d¶\&·DZ9X¹¸ h dwi � (/Å�Å�Å^Å¢L (5)

In addition,LOC canalsobe usedto specifyquantitative functionalconstraintssuchasthe data

consistency, e.g. “the input datashouldbe the sameas the outputdata”:� X�TªXJ	9d � ·¬V¬T h d5i � _ � X�TªXG	wN�VDT¦·�VDT h dwi ��L (6)

It should be emphasizedthat time is only one of the possibleannotations.Any value that

may be associatedwith an event (e.g.power, area)canbe usedasan annotation.In the caseof

concurrentevents,the valuesof time annotationshouldbe the same.The indicesof instancesof

the sameevent denotethe strict orderasthey appearin the executiontrace.Thereis no implied

relationshipbetweeninstancesof different events. LOC can be used to expressrelationship

betweenthe annotationsof the different instancesof the sameevent (e.g. rate),or instancesof

differentevents(e.g. latency).

The latency constraintabove is truly a latency constraintonly if the º T�d % VGZ¦d and µ!d¶\&·DZ9X¹¸ are

keptsynchronized.Generally, we will needan additionalannotationthatdenoteswhich instance

of µ
d¶\&·DZ9X¹¸ is “caused”by which instanceof the º T�d % VGZ¦d . If the f;X¹VJ\ � annotationis available,

the latency constraintcanbe moreaccuratelywritten as:

T;	wµ
d½\�·¬Z5X¹¸ h d5i �n¾ T;	 º T�d % VGZ¦d h f;X¹VJ\ � 	wµ
d½\&·DZ9X[¸ h dwi � i �À+¢� x � (7)

and suchan LOC formula can easily be analyzedthroughthe simulationchecker presentedin

SectionV. However, it is the responsibilityof the designer, the program,or the simulator to

generatesuchan annotation.

11

E. RelatedWork

Real-Time Logic (RTL) [15] is a formalism for expressingtiming propertiesin real-time

systems.With RTL, the propertiesarespecifiedby meansof timing relationson occurrencesof

events.The safetypropertiesexpressedwith RTL can be analyzedefficiently [15], [20]. Based

on RTL, several run-timemonitoring techniquesfor real-timesystemshave beenproposed[?],

[?]. Dif ferent from RTL, LOC is designedfor transactionlevel quantitative properties,which

include not only timing but also power, data,memory, and so on, due to the introduction of

annotations.

Thereareseveral decidablelogics that canbe translatedinto automataandformally verified.

It is well known that LTL canbe translatedinto equivelantBuchi automata.MONA system[?]

provides a decisionprocedurefor reasoningmonadicsecond-orderlogic. But decidability is

usuallyachievedwith sacrificeof expressivenessandconvenience.It is proventhatonly a subset

of LOC is decidable(seeAppendix II), but we will show it is still very usefulandefficient for

simulation-basedassertionchecking.

I I I . EXPRESSIVENESS OF LOC

In this section,we discussthe expressivenesspropertyof LOC especiallyin its relationship

with thewell known LinearTemporalLogic (LTL). It shouldbenotedthatLTL is definedon the

statetransitionlevel whereany changeat the systemstateis accountedfor, while LOC works

on a higher abstractionlevel, in which only the eventsobservable from the systemand their

annotationsare considered.This apparentdifference,however, is just a technicality, becauseit

is not difficult to hide statetransitionsso that LTL andLOC aredefinedover the samekind of

objects.

A. Linear Temporal Logic

Like LOC, Linear TemporalLogic (LTL) is definedover executionsof a system,i.e. linear

sequencesof statetransitions. LTL formulasareconstructedusingterms,i.e.Booleanexpressions

on variablesor systemstates,classicalBooleanoperatorssuchas (not), s (or), q (and), _$Æ
(imply), and the linear temporaloperatorsÇ (always), È (eventually),X (next) and U (strong

until):

12

e Ç (A) is true if A is true for any state.e È (A) is true if A eventuallybecomestrue in a future state.e X(A) requiresthat A will be true in the following state.e A U B requiresthat B will eventually hold in a future state,and A must hold from the

currentstateto that future state.

With thesetemporaloperators,LTL is very powerful in expressingthe functional constraints,

especiallythe onesthat containcomplex temporalpatterns,for example:e response:Ç (A _YÆ È B), i.e. onceA holds,B will eventuallybecometrue sometimelater.e precedence:A U B, i.e. B will eventuallyhold, andB mustbecometruebeforeA becomes

true.e infinite often: ÇÉÈ A, i.e. A will becometrue infinitely often.

It hasbeenproven that LTL formulascan be translatedto equivalent Büchi automata[22].

Basedon this theory, formal techniqueslike model checkingare developedand utilized for

verificationof bothdigital designs(e.g.FormalCheck[2]) andsoftwareprotocols(e.g.SPIN[10]).

LTL is also widely used in the formal property specificationfor simulation-basedassertion

verification [7], [1], which is importantto assurethe integrationandcorrectnessof reusableIP

(IntellectualProperty)blocks.

B. LOC v.s. LTL

Throughseveral examplesandclaims,we will concludethat LOC andLTL areincomparable

andhave differentdomainsof expressiveness.

Claim 1: ThereareLOC formulasthat canbe expressedwith LTL.

Since both LOC and LTL contain basic Booleanexpressions,a subsetof LOC constraints

that specify simple global Booleanconditionscan be expressedin LTL also.For example,the

constraint,“the annotation� X�TªX of the event µ
d½\&·DZ9X[¸ is alwaysgreaterthan100”, is expressed

in LOC as: � X�TªXG	wµ
d½\�·¬Z5X¹¸ h d5i � ({ ,�,¥L (8)

If we use a variable µ
d¶\&·DZ9X¹¸ � X�TªX to store the value of � X�TªX in the design,and use a flagµ
d½\�·¬Z5X¹¸ NRfmf�VGU to indicatethat an instanceof the event µ
d½\&·DZ9X[¸ occurs,this constraintcan be

13

easilyexpressedin LTL as:

Ç¯	wµ!d¶\&·DZ9X¹¸ NWf;f�VDUb_$Æ 	wµ
d½\�·¬Z5X¹¸ � X¹TªX ({ ,�,��&�EL (9)

Claim 2: ThereareLOC formulasthat cannotbe expressedwith LTL.

Many quantitative constraintsthat canbe easilyexpressedby LOC arenot suitablefor LTL.

Specifically, when more than one eventsneedto be comparedin the sameconstraint(e.g. the

latency constraint),LTL is not expressiveenoughto beused.For example,thelatency constraint:

T;	5µ
d¶\&·DZ9X¹¸ h d5i �n¾ T;	 º T�d % VGZ9d h d5i �Ê+¢� x (10)

requirescomparingeachinstanceof º T�d % VGZ¦d with theinstanceof µ!d¶\&·DZ9X¹¸ with thesameinstance

index. After the ¼ -th º T�d % VGZ¦d occurs,it is unknown when the ¼ -th µ
d¶\&·DZ9X¹¸ will occur, i.e. the

numberof º T�d % VGZ¦d instancesthat may occurbeforethe ¼ -th instanceof µ!d¶\&·DZ9X¹¸ is arbitrarily

large.Therefore,this constraintcannotbe modeledby a finite-statesystem,andit is impossible

to expressit usinga formalismbuilt on finite automatasuchasLTL.

It is interestingto note that there are simple LOC formulas that cannot be expressedby

LTL even thoughthey can be easily representedby a finite-stateautomaton.For example,the

property“the valueof event 6 on every evenoccurrenceis 1”, canbeexpressedby LOC formula

val 	 6th�� dwi � _´{ , aswell aswith a simpletwo-stateautomaton,but it is well known that it cannot

be expressedby LTL [23].

To show thatsomeLTL formulascannotbeexpressedin LOC, we first recall thatany property

canbeexpressedasa conjunctionof a safetyanda livenessproperty. Safetypropertiesarethose

which can always be shown violated by a finite trace.For example,any execution that does

not satisfy the property“the value of 6 is never { ” must have a finite prefix which endswith

the valueof 6 being1. On the otherhand,livenesspropertiescannever be violatedby a finite

trace.For example,the property “for every requestthere is a response”can never be violated

by a finite tracebecausethereis always a chancethat a responsemay comesometime in the

future. 5

Claim 3: LOC canexpressonly safetyproperties.

5To disprove a livenessproperty, we needto show that the systemcan enteran infinite cycle in which thereare unfulfilled

requests.

14

Indeed,if a tracedoesnot satisfyan LOC formula, then theremustexist an d for which the

formula is false.We canevaluateall index expressionsfor that valueof d . Sincetherecanonly

befinitely many of theseexpressions,theremustexist somepoint in theexecutionsuchthat, for

that particular d , the formula doesnot refer to any event occurrencebeyond that point. Clearly,

the executionprefix up to that point is sufficient to disprove the property.

On theotherhand,LTL is capableof expressingsomelivenessproperties,for example Ç~È 6 ,

i.e. “ 6 occursinfinitely often”. From claims(1)-(3), we canconcludethe following:

Conclusion:LOC andLTL are incomparable.

Generally, LOC is designedfor the specificationof quantitative performanceand functional

constraintsat the transactionlevel where systemeventsand their annotationsare considered.

Becauseof the use of index variable d , LOC is beyond the finite automatadomain. On the

other hand,LTL is suitablefor the specificationof functional constraints,and can effectively

expressthe temporalpatternsfor systemstatetransitions.Becauseof this difference,LOC can

expressimportantpropertiesthatcannotbeexpressedwith LTL, on which thetraditionalproperty

specificationlanguagesarebased.

IV. COMPLEXITY OF VERIFICATION OF LOC FORMULAS

In this section,we addressthe following fundamentalquestion:How hard is it to checkif a

systemsatisfiesanLOC formula?Thisquestionhasmany versions,dependingonhow thesystem

is represented,andwhich subsetof LOC formulasis beingconsidered.We presentanswersfor

several versions.Someversionsof the problem are undecidable,and someare decidable,but

with very complex algorithms.We use these“negative” resultsto justify the developmentof

efficient algorithmswhich may not alwaysgive the full answer. Thesealgorithms,basedeither

on simulation,or partial formal verification,aredescribedin SectionV.

In the mostgeneralcase,systemsarerepresentedby arbitraryprograms,andannotationscan

be of any type. This caseis clearly expressive enoughto encodethe halting problem[14], so

checkingLOC formulasis undecidablein this case.

The first restrictionwe consideris to limit systemspecificationto a infinitely-valuedfinite-

statesystem,wherethenumberof statesof thesystemis finite, but valuedomainsof annotations

can be infinite. Unfortunately, this caseis also undecidable.To show this we can encodetwo

15

countermachinesusinga finite-statesystem,two integer annotationsto representcounters,and

an LOC formula to ensurethat countersare incrementedor decrementedasnecessary.

Thenext restrictionweconsiderareso-calledfinitely-valuedfinite-statesystems,whereannota-

tionsandeventvaluesarerequiredto befinitely valued.With regardsto annotationspecification,

we will considerthreecases:

1) annotationscompletelyundefined,

2) annotationmustsatisfycertainaxioms,expressedby an LOC formula,

3) annotationsdefinedby a finite statesystem.

The third caseis typical of later designstages.At that point annotationscan be consideredas

part of event values,so we will not study it separately.

Thefirst caseis typicalat thebeginningof thedesignprocess,whereconstraintson annotations

are stated,but nothing is yet known about their actual values.At that point, annotationsare

uninterpretedfunctions,but they still have to satisfy propertiesof equalities.For example,the

formula: 1n	 �[h�Ë dwi � _y14	 �[h dGz � i �
is not satisfiedby any behavior in which � occursat least3 times.

We considerthe secondcasebecause,even if the valuesof annotationsarenot known, some

properties,capturedby axioms,may be. Consider, for example,time annotations.All possible

timing annotationssharecertainproperties,e.g. time can never decrease.Justfrom thesebasic

propertiesof time,we coulddeducesomesystemproperties,which arethenvalid for any timing.

Therefore,it is useful to be able to expresspropertiesthat all annotationsof certaintype must

have. Specifying axioms could be done in many ways. For example,an extendedversion of

LOC is usedfor this purposein the Metropolissystem[4]. However, the following resultsstate

that LOC checkingis undecidableeven if annotationaxiomsare restrictedto the basicLOC.

Theorem1: It is undecidablewhethera finitely-valuedfinite-statesystemwith LOC axioms

satisfiesan LOC formula with a singleevent indexed by expressiond .
As usual, the proof proceedsby reducinga known undecidableproblemto LOC checking.

The detailsaregiven in Appendix I.

At first glance,it may appearthat checkingan LOC formula o for a finite statesystemwith

annotationaxioms � may be reducedto checkingthat the systemsatisfiesimplication of o by

16

� without any axioms.Unfortunately, this approachdoesnot work, andto seewhy we will for

a momentmake quantificationover d appearexplicitly in the syntax.Thus, the axiomscan be

written as ÌJdÍ � andtheformulacanbewritten as ÌJdÍ�o . Solving theproblemrequireschecking	ÎÌJd¯Í �4� _YÆy	ÎÌJd¯Í?o � , but LOC can only express ÌJd¯Í4	 � _YÆ/o � , which is not the same.In fact,

this seeminglyminor restrictionmakesthe problemdecidable,asstatedby Theorem2.

We now turn our attentionto the casewithout axioms,i.e. annotationsareeithercompletely

unconstrained,or folded into event values.

Theorem2: It is decidablewhethera finitely-valued finite-statesystemwithout annotation

axiomssatisfiesan LOC formula in which all index expressionsareof the form X[d�z�u , where X
and u areintegerconstants,andvariabled appearsonly in suchexpressionsandlinearinequalities.

Theproof consistsof a decisionalgorithm.To describethealgorithm,we needsomenotation.

An event expressionis an LOC term of the form val 	 �[h gji � , or of the form 1n	 �[h gji � , where g
is an integer-valuedterm, � is an event name,and 1 is an annotation.Note that conditionsin

Theorem2 restrict g to be a linear expression,i.e. it mustbe of the form X¹djz±u , where X and u
areconstants.The valuedomainof an event expressionis the setof valuesit cantake, i.e. it is

the value domainof � if the expressionis of the form val 	 �[h gli � , and it is the value domainof1 if the expressionis of the form 14	 �[h gli � .
Given an LOC formula o , we use Ï�Ð to denotethe set of event expressionsappearingin it.

An interpretationof a setof eventexpressionsis a function which assignsto eachexpressionin

theseta valuefrom its valuedomain.SinceTheorem2 requiresthesystemto befinitely-valued,

therecanbe only finitely many distinct interpretationsof ÏjÐ . Given an LOC formula o , andan

interpretationÑ of Ï�Ð , we use oGÒ to denotethe formulaobtainedfrom o by replacingeachevent

expressionÓ in o by the value ÑJ	wÓ � . We call oGÒ an interpretationof o . Note that becauseoGÒ
containsno event expressions,� F���R� �j� h h oDÒ�i i actually dependsonly on � and must be either T�URV �
or 1JX�Z5\ � .

The conditions of Theorem2 also insure that oDÒ is a formula in Presburger arithmetic.

Suchformulasconsistof linear inequalitiesof integer variablescombinedwith usualBoolean

connectivesandquantificationof variables[8]. Presburger formulascanbe evaluatedto T�URV � or1YX[Z5\ � by choosingvaluesfor all free integer variables.LOC formula interpretationscan have

only d asa free variable,andwe will use oGÒW	 �$� to denotethe valueof oDÒ when d is set to � .

17

Assume,for example,a systemwith two binary events, ¼ > and ¼DÔ , and let o be the formula:

	 val 	 ¼ > h�Ë dwi � _ val 	 ¼DÔ�h d5i �&� _$Æ 	9dÕ¢x �ÖL (11)

It hastwo binary event expressions,val 	 ¼ > h�Ë dwi � andval 	 ¼DÔCh d5i � , henceit hasfour interpretations.

To denoteinterpretations,we use00, 01, 10, and11, wherethe first numberrepresentthe value

of val 	 ¼ > hcË dwi � , an the secondnumberrepresentsthe valueof val 	 ¼DÔ�h dwi � . It is easyto checkthatoG×&>Ø_yo$>5× _/T�URV � and oD×¶× _¥o�>¶>Ø_Ù	5d®Õ¢x � .
It is not hard to checkthat LOC formula interpretationshave the following property:Ú ÌYÓ � Ï�Ð"Í¹� F���R� �j� h h Ó=i iY_¥ÑJ	wÓ �=Û _$Æ Ú � F���W� ��� h h o¬i iY_¢� F���W� ��� h h oDÒ�i iY_�oGÒW	 ���ªÛ L (12)

In words,if behavior 	5 ��67� andinteger � agreewith interpretationÑ on the valuesof all event

expressions,then they agreealsoon the valueof the whole formula. In addition,formula oGÒ is

botha Presburger formula(becauseit hasno eventsnor indexing) andanLOC formula (because

it hasno quantifiersandits only free variableis d), so it may be evaluatedin both ways,but the

two valuesarealways the same.

To checkwhethera systemsatisfiesanLOC formula,we will combineformula interpretations

with Presburger formulascharacterizingthe system,andwe will reducethe original problemto

checkingsatisfiabilityof thecombinedformula.Thatwill completetheproof,asthereareknown

algorithmsto checksatisfiabilityof a Presburger formula. In the following Lemma,we establish

that it is indeedpossibleto constructa Presburger formulacharacterizinga finitely-valuedfinite-

statesystem.The constructionis describedin Appendix I.

Lemma1: For a given finitely-valuedfinite-statesystemwith no annotationaxioms,and a

given LOC formula o , it is possibleto construct,for eachinterpretationÑ of ÏjÐ , a Presburger

formula ºØÜ²º Ò in which d is the only free variable,suchthat for all integers � , ºØÜtº ÒW	 �$� is true

if andonly if thereexists an annotatedbehavior 	5 ��67� of the systemsuchthat � F���R� �j� h h Ó=i iY_¥ÑJ	wÓ �
for all Ó � Ï�Ð .

Consider, for example,the systemshown in Figure 2. It haseight states,two binary valued

events, ¼ > and ¼DÔ , andno annotations.A transitionlabel of the form ¼ �bÍ » indicatesthat ¼ � is

generatedwith value » on that transition.The systemin Figure2 satisfiesformula (11), because¼ > h�Ë dwi is always { , and ¼DÔWh dwi is 0 for all d a x . With respectto interpretationsof (11), one can

18

Ý�Þ�ß=à Ý Þ ß�á
Ý Þ ß=à Ýmâ¬ß=à

Ýmâ�ß=à
Ýmâ¬ß=à

Ýmâjß�á

Ý â ß=à

1

2 3

4

5

6 7

8

Fig. 2. A systemgenerating1 for every third valueof Â^ã andevery fifth valueof Â�ä .
easily verify that ºØÜtº ×¶×å_ ºØÜtº ×&> _´1JX�Z5\ � , because¼ > h�Ë dwi is never , , and ºØÜtº >¶> and ºØÜtº >5×
are6 	wæ�¨ (°, Í�då_çxM¨ � and 	5d (°,¹� q 	`æ�¨!Í¹dn_¥xM¨ � respectively, becauseevery fifth valuesof¼DÔWh dwi is 1.

Theorem3: For a given finitely-valued finite-statesystemwith no annotationaxioms, and

a given LOC formula o , let formulas ºØÜtº Ò satisfy the property from Lemma 1, for each

interpretationÑ of Ï�Ð . Thesystemsatisfieso if andonly if the the following Presburger formula

is not satisfiable: è
Ò ºØÜtº Ònq o Ò � (13)

wherethe finite disjunctionrangesover all interpretationsof ÏjÐ .
To show onedirection,assumethat the systemdoesnot satisfy the property, i.e. assumethat

there exists an annotatedbehavior 	5 ��67� , and an integer � such that, � F���R� ��� h h oDi i7_é1YX[Z5\ � , or

equivalently � F���R� �j� h h o¬i i$_/T�URV � . Let Ñ be the interpretationinducedby 	5 ��67� and � , i.e. set ÑJ	wÓ �
to � F���R� �j� h h Ó=i i for all Ó � Ï�Ð . By Lemma1, ºØÜtº ÒW	 ��� is true, and by (12) so is ÑY	 o � 	 �$� , so the

formula is satisfiable.

For the other direction, assumethat the formula is satisfiable,and let Ñ and � be suchthat

both ºØÜtº ÒW	 ��� and ÑJ	 o � 	 ��� are true. By Lemma1, there exists an annotatedbehavior 	5 ��6¯�
6We use ê=ëØì"ínî�ï to abbreviate ê=ëØîM�cënì²í&�^ðï .

19

suchthat � F���W� ��� h h Ó=i iY_¥ÑJ	wÓ � for all Ó � ÏjÐ , andby (12) � F���W� ��� h h o¬i iJ_¥ÑJ	 o � 	 �$� _¢T�URV � , implying that� F���W� ��� h h o¬i iJ_y1YX[Z5\ � , i.e. the systemdoesnot satisfy the property.

For example,the negationformula (11) hasthe following interpretations:o ×&> _ o >5× _É1JX�Z5\ �
and oD×¶× _¥o�>¶>_´	5d a x � , so for the systemis Figure2, formula (13) becomes

	`æ�¨ (/, Í¹dP_�x;¨ � qñ	5d a x �Ö�
which is clearly not satisfiable.

Theorem3 provides a constructive way of reducingthe original problemto satisfiability of

a Presburger formula. Theorem2 then follows as a simple corollary. The describedalgorithm

proves decidability, but it has a very high complexity. The numberof interpretationsmay be

exponentialin the size of formula, and the bestknown algorithm for checkingsatisfiability of

Presburger formulasis doublyexponentialin theworst case.Theremaybecasesin practicethat

aremuchbetterthanthe worst case,but it is still unlikely that the proposedalgorithmwill have

a wide-spreaduse.It is thereforereasonableto searchfor alternative, moreefficient verification

algorithms,applicableto somereasonablesubsetof LOC. In SectionV, we will proposea couple

of approachesalongtheselines.But first we show thatseveralapproachesthatonemayconsider

are in fact not feasible.

EachLOC formula definesa languageconsistingof annotatedbehaviors that it satisfies.If

we could constructan automatonwith the samelanguage,we could reduceLOC verificationto

the languagecontainmentproblem,which hasknown algorithmslinear in the numberof states

of the systemand the propertyautomaton.Indeed,this approachis possiblefor a very limited

subsetof LOC (as shown in SectionV), but languagesof many simple LOC formulascannot

be representedby a finite-stateautomaton.Herearea few example:e two events,all index expressionjust d , e.g.

val 	 ¼Ph dwi � _ val 	5¸ h d5i �¤�e a singleevent, all index expressionslinear, e.g.

val 	 ¼Ph dwi � _ val 	 ¼Phc� d5i �Ö�e a singleevent, anda singleevent expression,e.g.

val 	 ¼Ph d Ô i � _´{ L

20

In the examplesabove we assumeall eventsto be finitely valued.Still, it is not hard to show,

usingthepumpinglemmafor regular sets[14], that noneof the formulasabove definea regular

language.Notethatfirst two examplessatisfytheconditionsof Theorem2 andcouldbechecked

with the proposedalgorithm.

Anotherapproachmight be to usea classof automatathat is moreexpressive thanfinite-state

ones.For exampleonemayconsiderpushdown automatathatcandefinecontext-free languages.

Unfortunately, this is not possiblein general,either. For example,if event ¼ takesvaluesfromS ,j� { ���l��Ël] , the formula:	 val 	 ¼Ph d5i � _ , _$Æ 	 val 	 ¼Ph dGz-{Mi � _ , s val 	 ¼Ph dGz¢{Mi � _¿{ �=� q	 val 	 ¼Ph d5i � _¿{-_$Æ 	 val 	 ¼Ph dGz-{Mi � _©{#s val 	 ¼Ph dGz¢{Mi � _ ���=� q	 val 	 ¼Ph d5i � _ � _$Æ 	 val 	 ¼Ph dGz-{Mi � _ � s val 	 ¼Ph dGz¢{Mi � _ Ë¹�=� q	 val 	 ¼Ph d5i � _ Ë _$Æ 	 val 	 ¼Ph dGz-{Mi � _ Ë¹�&� q	&	 val 	 ¼Ph d ¾ {Mi � _ , q val 	 ¼Ph dwi � _¿{ � _$Æ	 val 	 ¼Ph�� d ¾ {Mi � _©{#q val 	 ¼Phc� dwi � _ � q
val 	 ¼Ph�Ë d ¾ {Mi � _ � q val 	 ¼Ph�Ë d5i � _ Ë��&�

definesthe language:

SR\"Í[\ is a prefix of , F { F � F Ë^ò for some � Õ ,�]-�
for which it is easyto show that it is not context-free (e.g.seeExample6.1 in [14]).

One approachto generatingan automatonfor an LOC formula is to buffer event values.

Onceall the valuesneededto evaluatethe formula for a particularvalueof d are in the buffer,

the formula can be evaluatedfor that value of d . Once all valuesof d that needa particular

event value are evaluated,the event value can be removed from the buffer. The resultsabove

indicatethat the buffer sizescannotbe boundedin general.However, onemay hopethat for a

specificfinite-statesystem,a suitableboundcan be found. Ideally, a boundmay be found for

any finite-statesystem.

For example, any implementationof a FIFO queueneedsto satisfy the data consistency

property(6) , i.e. the d -th valueretrieved from the FIFO mustmatchthe d -the valueput into it.

Clearly, we cannotrepresentthis propertywith a finite-stateautomaton,aswe cannotboundin

generalthe differencebetweenthe numberof d � ·¬V¬T eventsand the numberof N�V¬T¦·¬V¬T events.

However, for any particularFIFO implementation,this boundcanbeeasilyestablished,it is just

21

the sizeof the FIFO. Thus,the sizeof the buffer in the checkingautomatonneednot be bigger

thanthe sizeof the FIFO. Onemay hopethat this reasoninggeneralizesto any similar property

andany finitely-valuedfinite-statesystem.

To the bestof our knowledge,it is not known whethera boundon buffers canbe found for

any finite-statesystems.However, we will usean exampleto show that even if sucha bound

can be found, it will sometimesbe too big for an efficient verification algorithm. In general,

the exampleis a finitely-valuedfinite-statesystemthat may generate� different binary events¼ > ��L�LMLM�&¼ F , and has ·Y>4z¿ACACA�zk·�F states,where ·Y> ��L�L�L;� ·�F are first � primes.The systemhas� loops, and the . -th loop has ·¬� states.The systemfirst circles through the first ·Y> states,

generating¼ > with value0 ·Y> ¾ { timesfollowedby generating¼ > with value1 once.At theend

of the loop thereis a choiceof repeatingit or moving to the next loop. The systemin Figure2

is actually a part of sucha systemfor · Ô _ Ë and ·�óô_¿x . The languagegeneratedthe system

with � loopsconsistsof all prefixesof stringsdefinedby regular expression:

	 ¼ >�Í ,Mõ ã½ö > ¼ > Í¬{ � K 	 ¼DÔ Í ,Mõ äªö > ¼DÔ Í¬{ � K L�L�L 	 ¼ F÷Í ,Mõ�ø ö > ¼ F÷Í¬{ � K L
Now, considerthe LOC formula val 	 ¼ > h dwi � _ val 	 ¼DÔ�h dwi � _´ACACA[_ val 	 ¼ F h dwi � _¿{ . (For readability

and conciseness,we abbreviate formulasof the type gW> _yg Ô qùg Ô _Ég;ó to g�>Ê_yg Ô _�g;ó .) It is

not satisfied,but the smallestvalue of d that violates it is ·Y> Ä · Ô�Ä ACACA Ä ·�F . Since the system

generatesall ¼ > ’s before generatingany other events,all ·Y> Ä · ÔÊÄ ACACA Ä ·�F valuesof ¼ > (and¼DÔC��L�LMLM�&¼ F ö > for that matter)would have to be buffered.Therefore,the size of the buffer have

to be at leastexponentialin the numberof statesof the checked automaton,implying that the

numberof statesof thecheckingautomatonhasto beat leastdoublyexponential.More practical

approachesareneeded.

V. VERIFICATION APPROACHES FOR LOC FORMULAS

In this section,we first proposea simulation-basedtrace analysisapproach,and show that

LOC constraintscanbeeasilyanalyzedin anassertion-basedsimulationverificationenvironment.

Then,we discusshow to utilize the existing formal verification technique,i.e. modelchecking,

to verify an LOC formula.

22

Automatic
Checker Generation

Simulation Trace Format

C++ Source of the Checker

 LOC formula

Simulation Traces

Evaluation Report

Executable Checker

Compilation

Execution

Fig. 3. TraceAnalysisMethodology.

A. TraceAnalysisMethodology

The methodologyfor simulation-basedverification with an automaticallygeneratedLOC

checker is illustratedin Figure3. From the specificationof LOC formulasandtraceformats,an

automaticchecker generatoris usedto generatea C++ sourceof thechecker. Thesourcecodeis

compiledinto an executablethat takesin simulationtracesandreportsany constraintviolation.

An exampleof thedefinitionfile for theLOC formulasandtraceformatsis shown in Figure4.

EachLOC formula is precededby a labelandfollowedby the format for extractingeventnames

and their annotationsout of the simulationtraces.The format describedin the figure is written

to work with the trace shown in Figure 8. It specifically looks for a line that startswith a

string which endsin a “ :”, followed by an integer, a string pattern“at time”, then followed by

a floating point number. The string is taken as an event name,and eachsucha line describes

a particular instanceof that event. The integer is taken as the value of that instance,and the

floating point is taken as its “ t” annotation.Which instanceof an event a line is describingis

naturally determinedby the numberof lines that precedeit and match the sameevent name.

For example,the ú -th line matchingthe patternwith event name”Display” describesthe ú -th

event instanceof ”Display”. Any line that doesnot matchthis format will be ignored.Multiple

23

annotation: event value t
trace: "%s : %d at time %f"

annotation: event value t
trace: "%s : %d at time %f"

formula: t(Display[i + 1] − t(Display[i]) == 10
[LOC: rate]

[LOC: latency]
formula: t(Display[i])−t(Stimuli[i]) <= 25

Fig. 4. Definition of LOC formulasandTraceFormats.

username@chimera $

Formula t(Display[i]) − t(Stimuli[i]) <= 25 is violated

where i = 23
t (Display[i]) = 87
t (Stimuli[i]) = 60

Display : −6 at time 87at trace line# 278:

Reading from trace file "latency.trace" ...
checker latency.trace

Fig. 5. Exampleof Error Report.

formulasmay be checked at the sametime with possiblydifferentextraction formats.

The automaticchecker generatorparsesthe definition file to generatea C++ source for

the checker in a straightforward manner, setting up the queuedata structuresfor storing the

annotationsand translatingthe formula into C++ code.The detail of the algorithm inside the

checker will be explainedlater in this section.

To help the designerfind the point of error easily, the error report includesthe valueof indexd which violatesthe constraintandthe valueof eachannotationin the formula. Figure5 shows

the casewherelatency betweenthe 23rd event instanceof µ
d¶\&·DZ9X¹¸ and23rd event instanceofº T�d % VGZ¦d violate the given formula.The checker is designedto keepcheckingandreportingany

violation until stoppedby the useror if the traceterminates.We will discussthe LOC checker

in threeaspectsof details:the algorithmof the LOC checking,the runtimemonitoringandhow

to dealwith memorylimitation.

a) TheLOC Checker: Thealgorithmof LOC checkingprogressesbasedon theindex variabled . Each LOC formula instanceis checked sequentiallywith the value of d being 1, 2, ... etc.

A formula instanceis a formula with d evaluatedto some fixed positive integer value, e.g.µ
d½\�·¬Z5X¹¸ hcË^, i ¾ µ!d¶\&·DZ9X¹¸ hc�^Å i�_û{ , is the 29th instanceof the formula (1). Startingwith d equal

to 1, the LOC checker scansthe tracesequentially. If any relevant datais readin, the checker

storesit into a queueandchecksthe formula in the following manner:

check_formula {

while (can evaluate formula instance i) {

24

evaluate formula instance i;

i++;

memory recycling;

} } .

The time complexity of the algorithm is linear to the size of the trace since evaluating a

particularBooleanexpressiontakes constanttime. The memoryusage,however, may become

prohibitively high if we try to keepthe entiretracein the queuefor analysis.As the tracefile is

scannedin, the checker attemptsto storeonly the useful annotations,and in addition,evaluate

as many formula instancesas possibleand remove from the memorypartsof the annotations

that areno longerneeded(memoryrecycling).

For many LOC formulas (e.g. constraints(1), (3) - (5) in SectionII), the algorithm usesa

fixed amountof memoryno matterhow long the tracesare (seeTable I).7 Memory efficiency

of the algorithm comesfrom being able to free storedannotationsas their associatedformula

instancesare evaluated.This ability is directly relatedto the choicemadein designingLOC.

From the LOC formula, we canconservatively identify what annotationdatawill not be useful

anymoreonceall the formula instanceswith indiceslessthana certainnumberareall evaluated.

For example,consideran LOC formula:

T;	wµ
d½\&·DZ9X[¸ h dGz¢{ , i �n¾ T;	 º T�d % VGZ9d h dYz~x�i ��a/Ë^,�, (14)

and let the currentvalueof d be 100. Becausethe valueof d increasesmonotonically, we know

that event µ
d½\�·¬Z5X¹¸ ’s annotationT with index less than 111 and event º T�d % VGZ¦d ’s annotationT
with index lessthan106will not beusefulin the futureandtheir memoryspacecanbereleased

safely. Eachtime the LOC formula is evaluatedwith a new value of d , the memoryrecycling

procedureis invoked, which ensuresminimum memoryusage.

As describedin SectionII, the LOC semanticsallows us to evaluatean LOC formula even if

someof its expressionsarenot defined.Whenan annotationwith a particularindex valueis not

yet available from the trace,or when the index hasan invalid value (e.g. negative value), the

Booleanexpressionthatcontainsthis annotationis evaluatedto V �$�[� 1 . TheentireLOC formula

7The verificationof the constraint(2) may alsohave constantmemoryusageif the given tracehasa certainregular structure.

25

couldthenbeevaluatedaccordingto thestandardthree-valuelogic [19] evaluation.For example,

given the following LOC formula:

T;	5µ
d¶\&·DZ9X¹¸ h dGz¢{ , i ��({ ,�, süT;	 º T�d % VGZ¦d h d ¾ x�i � aýË^,�,¥� (15)

let the currentvalue of d be 10. If we know, from the trace,that the value of T;	wµ
d½\�·¬Z5X¹¸ h��R, i �
is 200, the formula can alreadybe evaluatedto be T�UWV � even if the value of T;	 º T�d % VJZ¦d h xWi � is

still not available at this point in the simulation (trace).Thus the LOC formula instancescan

be evaluatedas soonas possible,which further minimizes the memoryusage.Also, if we let

the currentvalue of d be 4, -1 is then an invalid index for annotationT of event º T�d % VJZ¦d . The

expressionT;	 º T�d % VGZ¦d hþ¾ {Mi �Êa/Ë�,�, is evaluatedto V �Y�[� 1 andthewhole formulacanbeevaluated

to T�URV � if the evaluationof T;	wµ!d¶\&·DZ9X¹¸ h {�|^i ��({ ,�, is T�URV � , and V �Y��� 1 otherwise.

b) RuntimeMonitoring: The static trace checkingtechnique,as describedabove, assumes

that a simulationtraceis first generatedandthe subsequentLOC checkingparsesthe traceand

looks for constraintviolation. How the trace is generatedis immaterialas long as the format

is correctly specifiedin the definition file. The trace file for a realistic design,however, can

frequentlyoccupy several gigabytesof disk space.It may be desirableto compile the checker

asa runtimemonitor to run concurrentlywith the simulatorthrougha Unix pipe. Alternatively,

thechecker canbecompiledinto thecompiled-codesimulator’s for higherefficiency andtighter

integration.As an exampleof suchtight integration,the checker generatorhasbeenextendedto

generateLOC checkersasSystemCmodules[3]. During thesimulation,otherSystemCmodules

(representingthe design)can passthe eventsand annotationsdirectly to the monitor modules

throughchannels.A casestudyof this approachis reportedin sectionVI-B. Runtimemonitoring

is more efficient than static checking,but then obviously the simulationneedto be repeatedif

somenew formula needto be checked later. Furthermore,the trace is no longer kept so any

debugginghasto rely solely on the error report.

c) Dealing with MemoryLimitation: Despitethe memoryefficiency for mostLOC formulas,

someLOC formulasmay requirehigh memoryusagethat the verificationenvironmentcannot

support.To deal with the caseof presetmemorylimitation, anotherextensionhasbeenadded

to the checker generator. Generally, the checker tries to readthe traceandstorethe annotations

only once.However, if thepresetmemorylimit hasbeenreached,it stopsstoringtheannotation

andinstead,scansthe restof the tracelooking for neededeventsandannotationsfor evaluating

26

thecurrentformula instance(with thecurrentvalueof d). After freeingsomememoryspace,the

algorithmresumesstoringannotationsandreadingthe traceagainfrom the samelocation.The

analysistime cancertainlybe impacted(seethe casestudyin SectionVI-B) andmay no longer

be of linear complexity. However, the verificationcancontinueandthe constraintviolationscan

be checked underthe memorylimitation of the verificationenvironment.

B. Partial Formal Verification of LOC Formulas

Although our trace analysisenablesefficient verification of LOC formulas in a simulation

environment,formal verification may still be necessaryto formally prove propertiesof library

modules(e.g.theTTL channelin SectionVI-C) andothersmalldesigns.Thesimulationapproach

describedabove suggestsour formal verificationapproach.A tracechecker canbe interpretedas

an automatonacceptingexecutions.We could thus useexisting model-checkingtools to verify

that eachexecutionof the systemis acceptedby the tracechecker. We believe that thereis no

inherentdifficulty to automatethis partial formal verificationprocessfor LOC formulas,though

it hasnot beendoneyet.

Model checkingtoolsusuallyreducethis language containmentproblemto reachabilityanaly-

sisof thestatespacethat includesstatesof both thesystemandthetracechecker. Unfortunately,

modelcheckerscan typically dealonly with finite statespaces.A checker for an LOC formula

canbe interpretedasa finite stateautomatononly if the sizeof the queueit usescanbe fixed

a priori . This is not always the case,asexemplifiedby the tracechecker for the constraint(2).

On the other hand,many LOC formulasdo have correspondingfinite-statetracecheckers.For

example,the rateconstraint:

T;	wµ
d½\&·DZ9X[¸ h dGz¢{Mi �n¾ T;	wµ
d½\&·DZ9X[¸ h dwi � _©{ , (16)

comparesthe annotationT of any two consecutive occurrencesof the event µ!d¶\&·DZ9X¹¸ . To check

this formula, the traceanalysisalgorithm (seeSectionV-A) only needsto storethe annotationT of two consecutive occurrencesof µ
d¶\&·DZ9X¹¸ at any given time, i.e. only a constantamountof

memoryis needed.

From the above discussion,we give the following conservative rule to decideif the checker

for a particularLOC formula canbe expressedby a finite-stateautomaton.

27

Rule1: If anLOC formulasatisfythefollowing conditions,thenit hasa correspondingfinite-

statetracechecker:

(a) the index variable d appearsonly in index expressions(ruling out, for example,the jitter

constraint(3)),

(b) all index expressionsindex the sameevent, (ruling out, for example, the latency con-

straint (2)),

(c) all index expressionsare linear expressionsin d (ruling out, for example, the formula

val 	 6rh d Ô i � _){), and the differencebetweenany two of them is a constant,i.e. they all

have the same d coefficient, but possibly different constantcoefficients (ruling out, for

example,the formula val 	 6th d5i � _ val 	 6rhc� d5i �).
AlthoughRule1 mayappearquiterestrictive,still many interestingpropertiessatisfyit, including

rate (1) and throughput(4) formulas.

Let � bethemaximumdifferencebetweentwo index expressionsin a givenformulasatisfying

Rule 1, and let %�ÿ be the largest of all index expressionsevaluatedfor a particular value ofd . Evaluating the formula for any value of d requiresknowing annotationsof at most � z {
consecutive occurrencesof the indexedevent.Thus,if the tracechecker maintainsa list of � zO{
most recentannotationsof the indexed event, the valueof the formula for somevalueof d can

be computedasa statepredicateafter the %�ÿ -th occurrenceof the indexed event.

For example,for therateconstraint(16), � is 1, and %�ÿ are ����Ëj��L�LML for dP_´{ ���l��L�L�L . Assuming

that variablesµ
d¶\&·DZ9X¹¸ T and µ!d¶\&·DZ9X¹¸ T Z9X�\�T areusedto storethe valuesof the annotationT for

thecurrentandlast instancesof µ
d¶\&·DZ9X¹¸ respectively, andthatBooleanvariable µ
d¶\&·DZ9X¹¸ NRfmfmVDU
is T�UWV � whenever µ!d¶\&·DZ9X¹¸ occurs,except for the first time (first occurrencemust be skipped

since %�ÿ is never 1), we canconvert the rateconstraint(16) into the statepredicate:

µ
d¶\&·DZ9X¹¸ NRfmfmVDUb_YÆ µ
d½\&·DZ9X[¸ T ¾ µ!d¶\&·DZ9X¹¸ T Z9X�\�TØ_´{ ,¢L (17)

Note that statepredicatescanbe easilyconvertedinto LTL formulasby prefixing themwith the

alwaysoperator Ç .

To formally verify formulasnot satisfyingRule 1, we limit checkers to finite memory, and

28

designatespecialstateswherecheckingtheformulawould requireallocatingadditionalmemory,

but noneis available.Sucha statemayor maynot bereachedduring thereachabilityanalysis.If

it is, the resultof the formulaverificationis inconclusive.More precisely, the formal verification

canhave oneof threeoutcomes:e a counter-exampleis found showing that the systemdoesnot satisfy the property,e the propertyis satisfied,all reachablestatearesearchedwithout finding a counter-example

or reachinga statewherememoryis exhausted,e inconclusive, reachabilityanalysisfinds no counter-examples,but stateswherememoryis

exhaustedare reachable.

For example,the latency constraint:

T;	5µ
d¶\&·DZ9X¹¸ h dwi �n¾ T;	 º T�d % VGZ9d h d5i �Êa-� x (18)

cannotbe modeledby any finite automatabecausethere can be arbitrarily many occurrences

of º T�d % VGZ¦d before ¼ -th occurrenceof µ
d¶\&·DZ9X¹¸ (intuitively, we assumethat µ!d¶\&·DZ9X¹¸ h ¼ i always

occursafter º T�d % VGZ¦d h ¼ i). However, if we limit the numberof storedtime stampsof º T�d % VGZ¦d to,

say, 50, thenwe cansimultaneouslycheckthe following two properties:

P1: There are never more than 50 occurrencesof º �������	�
� between
�
-th occurrencesofº �������	�
� and � �������� ¸ .

P2: If P1 holds,then (18) holds.

Obviously, if P1 and P2 both hold then so does(18), and if P2 is � ������� , so is (18). However,

if P2 holds,but P1 doesnot, the result is inconclusive.

To specify P1 and P2, assumethat the tracechecker keeps51 most recenttime stampsforº �������	�
� and � ��������� ¸ in arrays � ��������� ¸ � and º �������	�
� � suchthat ¼ -th time stampis storedat

position � ¼������! �"�# of the arrays.Also assumethat variable � ��������� ¸ � and º �������$�
� � (which

take valuesfrom 0 to 50) keepthe index of the most recenttime stampsin the arrays.Finally,

assumethat binary variables � ��%�&�'� ¸ (*)+) �	, and º �������	�
� (-).) ��, are
��,-�	�

when � ��������� ¸ andº �������	�
� occur, respectively. Then,P1 canbe specifiedwith the following statepredicate:º �������	��� (-)+) ��,0/21 � º �������$�
� �43/ � ��������� ¸ � #65 (19)

Sincewe assumethat � ��������� ¸ always follows º �������	�
� , the conditionwhere � ��%�&�'� ¸ � equalsº �������	�
� � just after º �������	�
� occurs, indicates the buffer overflow. Constraint (18) can be

29

USRCONTROL

JU
G

G
LE

R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

Fig. 6. Picture-In-PictureDesign.

expressedas follows:

� ��������� ¸ (-)+) ��,7/21 � ��������� ¸ �.8 � �������� ¸ ��9&: º �������$�
� �.8 � ��%�&�'� ¸ ��9<;>= >? (20)

andfinally P2 canbe expressedas follows:@ �A�B���C�D��� (AEF� "�GH# /21 I (,-���$��� � =*J #65 (21)

VI. CASE STUDIES

We apply our LOC-basedverificationmethodologiesto threedesignexamples.The first is a

systemlevel designfor set-topvideo processing,Picture-In-Picture (PIP), which is originally

specifiedwith YAPI [18]. PIP is partially respecifiedand simulatedwith Metropolis environ-

ment [4]. The secondis an RTL model of a Finite ImpulseResponse(FIR) filter written in

SystemCand is actually part of the standardSystemCdistribution. We usethe generatedtrace

checkers to verify a wide variety of functionalandperformanceconstraints.The third is a Task

TransitionLevel (TTL) [9] refinementof a YAPI channeldesign.We useboth traceanalysisand

formal verificationtechniquesto verify thedataconsistency constraintsof theTTL channel,and

show how the formal verificationapproachworks on checkingimportantlibrary modules.

A. Picture-In-Picture

Figure6 shows the PIP design.TS DEMUX demultiplexes the single input transportstream

(TS) into multiplepacketizedelementarystreams(PES).PESPARSERparsesthepacketizedele-

mentarystreamsto obtainMPEGvideostreams.Underthecontrolof theuser(USRCONTROL),

30

decodedvideo streamscan either be resized(throughRESIZE) or directly feed to JUGGLER

thatcombinestheimagesto producethepicture-in-picturevideos.Theentiredescriptionconsists

of approximately19,000lines of MetropolisandYAPI code.With the sampleinput streamwe

used, it produced120,000lines of output representingheaderinformation for the processed

frames.

RESIZE field_start field_count: 2 size: 6720

RESIZE field_start field_count: 3 size: 10368

WINDOW win_params_update x_begin: 12 y_begin: 6

RESIZE field_start field_count: 4 size: 14016

USRCONTROL write pixels_out: 144

USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876

WINDOW win_params_update x_begin: 12 y_begin: 6

WINDOW_DATA_OUT 23483 87000

Fig. 7. PIP SimulationTrace.

At the systemlevel, we can useLOC to specify the functionalproperties.In the component

RESIZEof PIP, the imagesprocessedare in interlacedformat with alternatingfields of all odd

lines, thenall even. The imagesizeshouldonly changeafter a completeframe,eachof which

has2 fields, is produced.Therefore,the field sizesof pairedeven andodd fields shouldbe the

same.This propertycanbe expressedasan LOC formula:�B�KL� ��� �����'M �N�O��,A�.8P=*�$QR=-9 # :S�B�KT� ��� �����M �N�O�H,A�.8U=*�	Q " 9 # /
�B�KT� ��� �����M �N�O�H,A�.8U=*�	Q " 9 # :S����KT� ��� �����M �N�O�H,-�.8P=*�'9 # ? (22)

where � �����M �N�O�H,A� is aneventatwhichRESIZEstartsto outputanew imagefield. Theannotation�B�KT�
is the total numberof pixels processedby RESIZE.Figure 7 shows snapshotsof the PIP

trace. The generationof the checker for this LOC formula and the actual checking on the

simulationtracetake lessthan1 minuteof CPU time.

Another functionalpropertywe are interestedin is that the numberof the fields the RESIZE

componentreadsin shouldbe equal to the numberof fields it produces.Two local counters,

31

oneat RESIZE’s input part andoneat its output part, provide theseannotations.After a piece

of video is processed,thesetwo countersneedto be comparedto seeif the propertyholds.The

LOC usedto checkthis propertyis:

� �����'M)+(� E � � � E 8V�'9 # / � ������M)+(� E � ��(���.8W��9 #X5 (23)

The events
� E and (�&� are generatedby the input and output parts of RESIZE respectively

whenever they finish processinga whole pieceof video. The annotation� �����'M)+(� E � represents

the numberof fields processedby the input andoutputpartsof RESIZE.The generationof the

checker for this formula andthe actualtracecheckingtake lessthan1 minuteof CPU time.

We can also check performancepropertiessuch as latency. The latency issue in RESIZE

relatesto the timely responseto usersize specification.SincePIP is specifiedat the behavior

level, no detail timing information is available.We thereforespecifiesa bound(e.g. 5) on the

numberof fields processedbetweenreadinga new sizespecification(
,*����M �B�KL�

) andthe actual

changein output imagesize ().Y � E	Z � �B�KL�):
� �����'M)+(� E � �')NY � E$Z � �B�KT��8W��9 # : � �����M).(� E � � ,L����M ����KT��8W��9 #\[] 0? (24)

where
,*����M �B�KL�

is generatedwhenever RESIZEreadsa new sizespecificationfrom USRCON-

TROL, and).Y � E$Z � ����KT� is generatedwhenever thesizeof theoutputimageis actuallychanged.

Theannotation� �����M).(� E � is thevalueof a globalcounterthat is incrementedby onewhenever

RESIZEprocessesa new imagefield. The generationof the checker for this LOC formula and

the actualtracecheckingalso take lessthan1 minuteof CPU time.

Stimuli Display
FSM

 DATA

FIR
Stimuli : 0 at time 9
Display : 0 at time 13
Stimuli : 1 at time 19
Display : −6 at time 23
Stimuli : 2 at time 29
Display : −16 at time 33

Fig. 8. FIR DesignandSimulationTrace.

32

B. FIR filter

Figure8 shows a 16 tap FIR filter which readsin sampleswhenthe input is valid andwrites

out the resultwhenoutput is ready. The filter designis divided into a control FSM and a data

path.The testbenchfeedssampleddataof arbitrarylengthandthe output is displayedwith the

simulator.

We useour automatictracechecker generatorto verify the propertiesspecifiedin constraints

(1) - (5) (of Section II). The sametracefiles are usedfor all the analysesandeachconstraint

is checked oneat a time. The time andmaximummemoryusageareshown in TableI. We can

seethat the time requiredfor analysisgrows linearly with the size of the trace file, and the

maximummemoryrequirementis formula dependentbut staysfairly constant.Using LOC for

commonreal-timeconstraintverification is indeedvery efficient.

TABLE I

COSTS OF CHECKING CONSTRAINTS (1)-(5) ON FIR

Lines of Trace ^�_+` ^a_.b ^a_.c ^�_+d
Time(s) 1 8 89 794

C1
Memory 28B 28B 28B 28B

Time(s) 1 12 120 1229

C2
Memory 28B 28B 28B 28B

Time(s) 1 7 80 799

C3
Memory 24B 24B 24B 24B

Time(s) 1 7 77 803

C4
Memory 0.4KB 0.4KB 0.4KB 0.4KB

Time(s) 1 7 79 810

C5
Memory 4KB 4KB 4KB 4KB

The simulationtimesfor thesetracesare listed in Table II. Given the large file size,runtime

monitoring(seeSectionV-A.b) may reducethe total verificationtime (simulationandchecking)

33

sinceno tracefile needsto be actually generated.For the latency constraint(the formula (2)),

we implementthechecker asa SystemCmoduleandthesimulationtraceis no longerwritten to

a file but passedto the monitoringmoduledirectly. For the tracesizeof 100 million lines, the

staticcheckingapproachrequires1404secondsof simulationtime and1229secondsof checking

time for a total of 2633seconds.Runtimemonitoringtechniquerequiresonly 1420secondsfor

both simulationandmonitoring.

TABLE II

TIME USAGE OF SIMULATION AND CHECKING FOR CONSTRAINT (2) ON FIR

Lines of Trace ^a_+` ^a_+b ^a_+c ^�_+d
Simulationw/o RuntimeMonitoring (s) 1 14 148 1404

StaticTraceCheckingOnly (s) 1 12 120 1229

Simulationw/ RuntimeMonitoring (s) 2 14 145 1420

We also verify constraint (7) to illustrate verification with memory limitation since this

constraintis particularlyexpensive in termsof memoryusage.TableIII shows thatthesimulation

time grows linearly with thesizeof the tracefile. However, dueto theuseof anannotationin an

index expression,memorycanno longerbe recycled andwe seethat it alsogrows linearly with

the sizeof the tracefile. Indeed,sincewe will not know what annotationwill be neededin the

future,we cannever remove any informationfrom the queue.If the memoryis a limiting factor

in the simulation environment, the analysisspeedmust be sacrificedto allow the verification

to continue,asdiscussedin SectionV-A.c. The result is shown in Table III wherethe memory

usageis limited to 50KB. We seethat the analysistakesmoretime whenthe memorylimit has

beenreached.Information about tracepatterncan be usedto dramaticallyreducethe running

time undermemoryconstraints.Aggressive memoryminimizationtechniquesanddatastructures

canalsobe usedto further reducetime andmemoryrequirements.For mostLOC formulasand

simulationtraces,however, thememoryspacecanberecycledandthememoryrequirementsare

small.

34

TABLE III

COSTS OF CHECKING CONSTRAINT (7) ON FIR

Lines of Trace(ef^�_hg) 2 3 4 5

Unlimited Time(s) i 1 i 1 i 1 1

Memory Mem(KB) 40 60 80 100

Mem Limit Time(s) i 1 61 656 1869

(50KB) Mem(KB) 40 50 50 50

C. SimulationTraceAnalysisfor TTL Channel

Y-chart Application ProgrammingInterface(YAPI) is a model of computationfor designing

signal processingsystems[18]. It is basicallya Kahn processnetwork [16], extendedwith the

ability to non-deterministicallyselectan input port to consumeandanoutputport to produce.A

YAPI channelmodelsan unboundedFirst-In-First-Out(FIFO) buffer. Asynchronously, a writer

processwritesdatainto oneendof thechannelanda readerprocessreadsdatafrom theotherend

of thechannel.A designmethodologybasedon YAPI wasproposedin [5]. It includesrefinement

of the YAPI channelinto a lower-level abstractioncalled Task TransitionLevel (TTL) [9]. The

refinementis shown in Figure9.

At the TTL level, the channelis modeledwith a boundedFIFO buffer. The mutualexclusion

and boundarycheckingof the boundedFIFO buffer is guaranteedby a central protocol. As

Figure9 shows, the TTL channelhasa boundedFIFO(BoundedFifo) whosesizeis setat design

time,anda controlmedium(RdWrThreshold) which implementsa protocolto guaranteecorrectly

writing to and reading from the FIFO buffer. We use a writer process(DataGen) to write a

seriesof data into the channeland a readerprocess(Sum) to read the data from it. To verify

the correctnessof the refinement,we focus on the verification of the TTL channel,which is

normally a library modulethat needsto be frequentlyreused.We first checka propertythat is

suitablefor both LOC and LTL, “the datareadby Sumis always greaterthan or equal to 0”,

and we call it “non-negative” property. Another importantpropertythat can be expressedwith

LOC is dataconsistency of the TTL channel,i.e. the input dataof the TTL channelshouldbe

35

DataGen

DataGen

TTL2yapi

BoundedFifo

RdWrThreshold

yapi2TTL Sum

TTL Channel

YapiChannel Sum

YAPI Channel

Refine

Fig. 9. YAPI ChannelandTTL Channel.

readfrom the channelin exactly the sameorder without a loss. In the rest of this section,we

apply both assertioncheckingand formal verification techniqueson the TTL channelfor these

two properties.

TheTTL channelshown in Figure9 is initially specifiedin MetropolisMeta-Model(MMM) [4].

We simulate it in the Metropolis environment, and producesimulation traceswith different

lengths.When the writer DataGenwrites a datainto the TTL channel,it producesan event of�&,*�����H,L��M
; whenthereaderSumreadsa datafrom thechannel,it producesaneventof

�D, (-) �A�A����M .
We usethe annotation

Mj�T�O�
to representthe valueof datawritten into or readfrom the channel.

The non-negative constraintis definedin LOC as:M��H�O� � �&, (-) �A�-����M	8W��9 #lk J ? (25)

and the dataconsistency constraintis definedas:M��T�O� � �&,*�����H,L��M	8W��9 # /0M��T�O� � �&, (*) �A�A�A��M	8W��9 #X5 (26)

Theautomaticchecker generatoris usedto parsethedefinitionfile (seeFigure10) for thetrace

format andLOC formulas,andgeneratea C++ sourcefor the tracechecker. After compilation,

we use the executablechecker to verify that both of the LOC formulas (25) and (26) hold

on tracesof 10m to 10n lines. The time and memoryusageof the traceanalysisare shown in

Table IV.

36

[LOC: consistency]
formula: data(prepared[i]) == data(processed[i])
annotation: event data
trace: "Data is %s %d"

[LOC: non_negative]
formula: data(processed[i]) >= 0
annotation: event data
trace: "Data is %s %d"

Fig. 10. Definition of the TraceFormatandLOC formulas

TABLE IV

COSTS OF TRACE ANALYSIS FOR THE CONSTRAINTS (25) AND (26)

Lines of Trace ^a_.` ^a_.b ^a_+c ^�_+d
Formula (25) Time(s) i 1 5 44 432

Mem(Bytes) 4 4 4 4

Formula (26) Time(s) i 1 8 84 767

Mem(Bytes) 172 172 176 172

D. Formal Verification for TTL Channel

FromtheMMM specificationof theTTL channeldesign,we usetheMetropolisbackendtool

to generatea correspondingPromela(SPIN’s modeling language)description[12], which can

be verified by the model checker SPIN for a particularLTL formula. The TTL channeldesign

has634 lines of MMM sourcecodeand 2049 lines of Promelacodeafter translation.In the

Promelacode,We useBooleanvariables
�D,L�����H,*��M (-)+) ��, and

�D, (-) �A�A����M (*)+) ��, to indicatethe

conditionsthat instancesof
�&,*�����H,*��M

and
�&, (-) �A�-����M occur, respectively. Thecodeblocks,which

manipulatetheauxiliarydatastructures,areembeddedinto thePromelacodeappropriately. Thus,

the non-negative constraint(25) canbe expressedin LTL as:o � �&, (-) �A�-����M (*)+) �	,p/21q�D, (-) �A�A����M Mj�T�O�srRJ #X? (27)

where
�&, (-) �A�-����M M��H�O� storesthemostrecentdatareadby Sum. With thebitstatetechnique[13],

SPINverifiestheLTL formula (27) within 2 hourson our 1.5GHzAthlon machinewith 1GByte

37

of memory. Thesamesetupis usedfor all casestudiesin this section.All therelevantverification

parametersare listed in TableV.

From the discussionin SectionV-B, we know that the dataconsistency constraint(26) of the

TTL channelcannotbe expressedby LTL directly. Therefore,we have to assumethat, “after

the x-th write by DataGen, at most31 writes canbe donebeforethe x-th readby Sum”. 8 Then

we usearrays
�&,L���&��,*��M Mj�T�O�	8VtH=-9

and
�&, (-) �A�A����M M��T�O�	8PtT=-9 to storethe recent32 piecesof data

written by DataGenand read by Sum respectively. We also use
�&,*�����H,L��M �

and
�D, (-) �A�A����M �

(which take valuesof 0 to 31) to keep the index of the most recentdata in the arrays.The

assumptionis written in LTL as:o � �&,*�����H,L��M (-).) ��,p/21q�&,L���&��,*��M �43/S�&, (*) �A�A�A��M � #X? (28)

and it is verified to hold by SPIN (seeTable V). The dataconsistency constraintis written in

LTL as:o � �&, (-) �A�A����M (-)+) ��,p/u1v�&,*�����H,L��M M��T�O�	8 �&, (-) �A�A����M �'9$/S�&, (*) �A�A����M M��T�O�	8 �D, (-) �A�A����M ��9 #X5 (29)

Because
�&, (-) �A�-����M	8 ¼ 9 alwaysfollows

�&,*�����H,L��M	8 ¼ 9 , thedataconsistency only needsto bechecked

whenan instanceof
�&, (-) �A�A����M is occurring.The formula:@ �A�B���C�D��� (AE>� =*w # /21 x (AE �N��,*��� E � � = GH# (30)

is verifiedto hold by SPIN,andall therelevantverificationparametersarealsolisted in TableV.

VII . CONCLUSIONS

In this paper, we discussthe verification aspectsof the quantitative constraintformalism,

Logic of Constraints.We compareLOC with LTL, find that LOC has a different domain of

expressivenessthan LTL, and concludethat LOC can expressimportantpropertiesthat cannot

be expressedby LTL, on which the traditional propertyspecificationlanguagesare based.We

analyzecomplexity of LOC verification,proposetwo feasibleverificationapproaches,simulation

traceanalysisandmodelchecking.We alsopresenta setof casestudieson theseapproachesto

demonstratetheir usefulnessandeffectiveness.

8This assumptionis derived from the actualbuffer sizeof the TTL channel.

38

TABLE V

SUMMARY OF FORMAL VERIFICATION FOR THE LTL FORMULAS (27), (28) AND (30)

LTL Formula (27) (28) (30)

Depthreached 48669 51257 57221

Statesstored(ef^a_.d) 2.21872 2.2431 2.3156

Statetransitions(ef^a_ d) 2.86427 2.85523 3.09726

Total memory(MB) 747.936 735.098 819.517

CPU time 1h37m24s 1h37m55s 3h03m18s

Hashfactor 4.83946 4.78686 4.63699

We are currently working on a few future enhancementsand novel applications.One such

applicationwe areconsideringis to integratethe LOC monitor with a simulatorthat is capable

of non-deterministicsimulation, non-determinismbeing crucial for design at high levels of

abstraction.We will use the checker to check for constraintviolations, and once a violation

is found, the simulationcould roll back and look for anothernon-determinismresolutionthat

does not violate the constraint. In addition, to help the designereasily produce traces for

constraintchecking,we planto developembeddedcodeblocksfor tracegenerationin theform of

libraries,similar to embeddedconstraintlanguages.We alsoplanto retarget thebackendchecker

generationfor differentdevelopmentenvironments(e.g.SystemVerilog,Verilog,VHDL) to allow

tight integrationof monitorsfor thoseenvironmentsaswell. Lastly, we plan to extendthe LOC

formalism with the universalquantifier y and existential quantifier z , so that we can express

more interestingconstraints.

REFERENCES

[1] Openvera assertionswhite paper. Synopsys,Inc, 2002.

[2] http://www.cadence.com/products/formalcheck.html,2003.

[3] http://www.systemc.org, 2003.

39

[4] F. Balarin, L. Lavagno,C. Passerone,A. Sangiovanni-Vincentelli, M. Sgroi, and Y. Watanabe.Modeling and designing

heterogeneoussystems.Technical Report2001/01CadenceBerkeley Laboratories, Nov. 2001.

[5] J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter, andW. J. M. Smits. Communicationrefinementin video

systemson chip. In Proceedingsof the {a|~} International Workshopon Hardware/Software Codesign, pages142–146,

1999.

[6] X. Chen,F. Chen,H. Hsieh, F. Balarin, and Y. Watanabe.Formal verification of embeddedsystemdesignsat multiple

levels of abstraction.In Proceedingsof InternationalWorkshopon High Level DesignValidation andTest, pages125–130,

Oct. 2002.

[7] C. Eisnerand D. Fisman. Sugar2.0 proposalpresentedto the accelleraformal verification technicalcommittee. Mar.

2002.

[8] H. B. Enderton.A MathematicalIntroductionto Logic. AcademicPress,Inc., 1972.

[9] O. Gangwal, A. Nieuwland,and P. Lippens. A scalableand flexible datasynchronizationschemefor embeddedhw-sw

shared-memorysystems.In Proceedingsof InternationalSymposiumon SystemSynthesis, Oct. 2001.

[10] P. GodefroidandG. J. Holzmann.On the verificationof temporalproperties.In Proceedingsof IFIP/WG6.1Symposium

on ProtocolsSpecification,Testing, and Verification, June1993.

[11] J. P. Hayes.ComputerArchitecture and Organization. McGraw-Hill, 1988.

[12] G. J. Holzmann.The modelchecker SPIN. IEEE Trans.on Software Engineering, 23(5):279–258,May 1997.

[13] G. J. Holzmann.An analysisof bitstatehashing.Formal Methodsin SystemsDesign, 13(3):289–307,Nov. 1998.

[14] J. E. Hopcroft andJ. D. Ullman. Introductionto automatatheory, languages,and computation. AddisonWesley, 1979.

[15] F. Jahanianand A. K. Mok. Safetyanalysisof timing propertiesin real-timesystems. IEEE Transactionson Software

Engineering, pages890–904,1986.

[16] G. Kahn. Thesemanticsof a simplelanguagefor parallelprogramming.In Proceedingsof IFIP Congress, pages471–475.

North Holland PublishingCompany, 1974.

[17] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. Systemlevel design:orthogonalization

of concernsandplatform-baseddesign. IEEE Trans.on Computer-AidedDesign, 19(12):1523–1543,Dec. 2000.

[18] E. d. Kock, G. Essink,W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer, P. Lieverse,and K. Vissers. Yapi: application

modelingfor signalprocessingsystems.In Proceedingsof the ��{a|~} DesignAutomationConference, June2000.

[19] E. J. McCluskey. Logic DesignPrinciples. PrenticeHall, 1986.

[20] O. Millet. Multicycles and rtl logic satisfiability. In Formal Techniquesin Real-Time and Fault Tolerant Systems, pages

73–86.

40

[21] A. Pnueli. The temporallogic of programs. In Proceedingsof the ��� |�} IEEE Symposiumon Foundationof Computer

Science, pages46–57,1977.

[22] M. Y. Vardi. An automata-theoreticapproachto linear temporallogic. Logics for Concurrency. Structure versusAutomata,

LNCSVol 1043,Springer-Verlag, pages238–266,1996.

[23] P. Wolper. Temporallogic canbe moreexpressive. Informationand Control, (56):72–99,1983.

APPENDIX I

Beforewe presentthe proofsof Theorem1 andLemma1 (in SectionIV), we needto define

systemsthat we are dealing with. Formally, a finitely-valued finite-statesystemis a sextuple��� ? �u� ?��\?���?���?%��# where:� � is the setof statesthat mustbe finite,� �u�4�]� is the setof initial states,� � �]�S�6� is the transitionrelation,� � is the setof event namessuchthat for each
��� � the valuedomain �!� � # is finite,� ���D� � � ?�»�#�� ��� ��?�» � �s� � #h���� =��

is the generation function,� annotationaxiom � is an LOC formula that may refer to valuesof event in � , but alsoto

someannotations.Valuedomainsof all the annotationsappearingin � mustbe finite.

We use � � � # as an abbreviation of ���h�B�<�¡ ¢ � � � ?�»�# . Intuitively, � � � ?�»�# is the set of transitions

on which
�

is generatedwith value » .
An annotatedbehavior ��£ ? @ # is in the setof behaviors of the system ��� ? �u� ?��\?���?��¤?���# if it

satisfies� , and thereexists a (possiblyfinite) sequenceof states
� � ? �L¥ ?B5B5B5 suchthat:� � � � �u� ,� � �N¦¨§&¥ ? �N¦ # � � for all

�©rªJ
for which

�N¦
exists,� for all

�«� � , all transitions � �N¦¨§&¥ ? �B¦ # , and all positive integers E : if
�

is generatedon� �N¦¨§&¥ ? �N¦ # for the E -th time, then it must be possibleto generatethe value £¬� � ? E # on that

transition,i.e. if it holds that:

� �N¦¨§&¥ ? �B¦ # � � � � #X?
E /® �+¯!�D"�[°¯![]±$? � ��²�§&¥ ? ��² # � � � � #h� ?

then the following mustalsohold:

� �N¦¨§&¥ ? �N¦ # � � � � ? £¬� � ? E #�#³5

41

A. Proof of Theorem1

We will reducethe Post CorrespondenceProblem(PCP) [14] to checkingwhethera finitely-

valuedfinite-statesystemwith LOC annotationaxiomssatisfiesan LOC formula. Recall that a

PCPinstanceis given by two orderedlists of strings,
�´¥ ?B5B5N5N? �Tµ and ¶ ¥ ?B5N5B5.? ¶ µ . The questionis

whetherthereis a sequenceof integers
��¥ ?B5B5B5.? ��· (all form " to E) suchthat strings

�H¦¹¸O�T¦»º 5B5B5 �T¦»¼
and ¶ ¦ ¸ ¶ ¦ º 5B5N5 ¶ ¦ ¼ are the same.

We now describethe systemused in the reduction.The statesof the systemare 4-tuples� ��½ ?¯ ½ ? ��¾ ?�¯ ¾ # where
��½

and
��¾

rangefrom " to E , ¯ ½ rangesbetween " and the length of the

string
�T¦�¿

, and ¯ ¾ rangesbetween" andthe lengthof the string ¶ ¦�À . Initial statesarethosewhere¯ ½4/ ¯ ¾�/0J
. In addition,thereis a specialstatedenotedby ��ÁÃÂ � . The systemhastwo events�

and ¶ , both valuedfrom
J

to E . Informally, the systemmoves into � ��½ ?�¯ ½ ? ��¾ ?�¯ ¾ # after it sees

the ¯ ½ -th letter of
�T¦�¿

, which mustalsobe the ¯ ¾ -th letter of ¶ ¦�À . Formally, the transitionsin the

systemare the following:� From � ��½ ?�¯ ½l: "T? ��¾ ?�¯ ¾Ä: "�# to � ��½ ?¯ ½ ? ��¾ ?�¯ ¾ # if ¯ ½ -th letter in string
�T¦�¿

is the sameas ¯ ¾ -th
letter in string ¶ ¦ À . If ¯ ½4/ ¯ ¾Å/ÆJ

, thenevent
�

with value
��½

andevent ¶ with value
��¾

are

generated.Otherwise,no eventsaregeneratedon this type of transitions.� From � ��½ ?�¯ ½Ç: "T? ��¾ ?�¯ ¾ # to � ��½ ?�¯ ½ ? ��È¾ ?B"A# if ¶ ¦ À has ¯ ¾ letters,and ¯ ½ -th letter in string
�T¦�¿

is

the sameasthe first letter in string ¶ ¦�ÉÀ . A ¶ event with value
� È ¾ is generatedon this type of

transitions.� From � ��½ ?¯ ½ ? ��¾ ?�¯ ¾�: "A# to � ��È½ ?B"T? ��¾ ?�¯ ¾ # if
�T¦�¿

has ¯ ½ letters,and ¯ ¾ -th letter in string ¶ ¦ À is

the sameas the first letter in string
�T¦ É¿ . An

�
event with value

� È ½ is generatedon this type

of transitions.� From � ��½ ?¯ ½ ? ��¾ ?�¯ ¾ # to � ��È½ ?B"T? �'È¾ ?B"A# if
�T¦�¿

has ¯ ½ letters, ¶ ¦ À has ¯ ¾ letters,andthe first letters

in strings
�T¦ É¿ and ¶ ¦�ÉÀ are the same.An

�
event with value

� È ½ , and a ¶ event with value
� È ¾

aregeneratedon this type of transitions.� From � ��½ ?�¯ ½ ? ��¾ ?�¯ ¾ # to ��Á�Â � if
�T¦�¿

has ¯ ½ letters,and ¶ ¦ À has ¯ ¾ letters.Events
�

and ¶ are

generatedon this type of transitions,both with value0.

The systemhasa singlebinary annotationcalled Z�(-(M , and the annotationaxiom is:

Z�(*(M � �	8V�'9 #ËÊ 1 � val � �	8V�'9 # / val ��¶ 8V�'9 #fÌ ��� �Ä/ "A#fÍ Z�(-(M � �	8W�f: " 9 #�#�#Î5

42

PCPhasa solution if andonly if the systemabove doesnot satisfy the LOC formula:

val � �	8W��9 # /ÆJ 5
Indeedtheformulaabove is violatedif andonly if thereis a pathin thesystemfrom someinitial

stateto ��Á�Â � , suchthat alongthis path
�

and ¶ aregeneratedthe samenumberof times(say± Q "), andthe first ± valuesof of
�

and ¶ arenot only equalbut alsolarger than0. If
��¥ ?B5B5B5+? ��·

denotesthosevalues,then it is not hard to checkthat strings
�T¦ ¸ �T¦ º 5B5N5 �T¦»¼ and ¶ ¦ ¸ ¶ ¦ º 5B5B5 ¶ ¦»¼ are

the same.

We have just shown thatPCPcanbereducedto checkingwhethera finitely-valuedfinite-state

systemwith LOC annotationaxiomssatisfiesan LOC formula.Sincethe former is known to be

undecidable,it follows that the latter is alsoundecidable.

B. Proof of Lemma1

In this section we define the Presburger formula �ÅÏC�uÐ whose existencewas claimed by

Lemma1. We do so in several steps.First, we characterizethe transitionrelationwith formulas�ÇÑ @ Â�Ò�Ó for eachpair of states � � ?%ÔL# . Theseformulas have free variables
��Õ�Ö

, one for each

transition � � ? , # � � . We construct �ÇÑ @ ÂÃÒ'Ó such that an assignment
��Õ�ÖC/ E Õ�Ö!�F×

satisfies�ÇÑ @ Â�Ò�Ó if an only if thereis a path in � from
�

to Ô that crossestransition � � ? , # exactly E Õ�Ö
times.We set: �ÇÑ @ Â�Ò�Ó /ÆIÙØ ÁCÚ6Ò�Ó Ì x ÁÃÂÛÂÃÒ
Formula

I�Ø ÁCÚ6Ò�Ó requiresthat the numberof times a path entersthe statemust be equal to

the numberof times it leaves the state.The exceptionsto this rule arestates
�
, which must be

exited oneextra time, and Ô , which mustbe enteredoneextra time. Formally:IÙØ ÁÃÚXÒ'Ó / Ü� ÕBÝ Ö ¢Þ� � � ��Õ�Ö k J #
Ì ÜÖ ��ß$à á� Õ�Ý Ö ¢
� � ��Õ�ÖÄQSâ E MHÖ�ã Ò / á� ÖÝ ä ¢Þ� � ��Öä�Q°â E MTÖ�ã Ó%å ?

where
â E M�æ is 1 if proposition ç holds,and it is 0 otherwise.

43

For example,for the systemin Figure2:IÙØ ÁÃÚ ¥'è�/ � �%¥'é k J #fÌËê�ê�êBÌ � � në k J #
Ì � �%¥'éì/>��é�èl/>��è�¥<Q " />�%¥'é�Q«�%¥ ë #Ì � �%¥ ë Q°� në /]� ë�m />� m�í /]� í�î />� în />� në #X5

Unfortunately,
IÙØ ÁCÚ6Ò�Ó is not sufficient to fully characterizepathsfrom

�
to Ô . For example,

the assignment
�%¥'é4/ï��é�è4/ " , ��è�¥�/Æ�%¥ ë /ðJ

,
� ë�m /Æ� m�í /ï� í�î /Æ� în /Æ� në /ñ=

satisfies
IÙØ ÁCÚ ¥'è

but it doesnot describea pathfrom 1 to 3. Rather, it describesa pathanda loop not connected

to the path.To eliminatesuchloops,in additionto
IÙØ ÁÃÚXÒ'Ó we muststatethat if

��ÕhÖ4rRJ
, then

theremust exist a simple path from
�

to
�
, i.e. theremust exist a sequence

�*¥ ?B5B5N5N? �B·.§&¥ ? �B· of

no more than òV�óò states,suchthat
�*¥\/ô�

,
��·�/]�

, and
� Ò�õ~ö ¸ Ò�õ rðJ

for all
�¬/÷= ?N5B5B5N?�± . This is

statedby formula
x ÁÃÂÛÂÃÒ which uses òV�óò variables» · to representthis path.Here,we assume

that � is a subsetof integers.This assumptioncanbemadewithout lossof generality, asinteger

encodingscan be easily definedfor any finite set. If the path is of length
�l; òW�óò , we require

that » ·Ç/°� for all ± rF�
. So, if the valueof » · is not

�
, we arestill in the active portion of the

path and we must requirethat
��ø�ù¤rñJ

, where ¼ and ú are valuesof » · and » ·%û$¥ respectively.

Formally, we define:x ÁÃÂüÂ�Ò / Ü� ÕBÝ Ö ¢
� � � ��Õ�Ö\rªJ # /21 z » ¥ 5N5B5 z »jý ß ý��Åþ � » ¥Å/ï� #fÌ � »�ý ß ý /S� #
Ì ý ß ý §&¥Ü·�ã$¥ � » ·ó/«� # /u1 � » ·�û$¥©/«� #
Ì ý ß ý §&¥Ü·�ã$¥ � » ·4/S� # /21 àðÿ� øBÝ ù ¢Þ� � � » ·4/ ¼$#fÌ � » ·�û$¥�/ ú #uÌ � ��ø�ùprRJ # å�� 5

It may appear�óÑ @ ÂÃÒ'Ó needsa term similar to
x ÁÃÂÛÂÃÒ statingthat if

��Õ�Ö�rñJ
, theremust

existsa simplepathfrom
,

to Ô , but in fact, this statementis alreadyimplied by theconjunction

of
IÙØ ÁCÚ6Ò�Ó and

x ÁÃÂüÂ�Ò .
For example,for the systemin Figure2:x Á�ÂüÂ ¥Å/ �a� � ë�m rªJ # /21 � �%¥ ë rFJ #a#fÌX5B5B5Ë?

44

implying that: �ÇÑ @ Â ¥'è�/ � ��è�¥ k J #
Ì � �%¥'éì/]��é�è�/]��è�¥fQ "A#
Ì � �%¥ ë /]� ë�m /]� m�í />� í�î /F� în /F� në /ÆJ #³5

In the next step,we use �óÑ @ ÂÃÒ'Ó to characterizegenerationrelation with formulas ��� ÂÃÒ'Ó
for eachpair of states� � ?%ÔT# . Theseformulashave a free variablesZ for eachevent

��� � . We

construct ��� ÂÃÒ'Ó such that an assignmentZ / E �>×
satisfies�ÇÑ @ Â�Ò�Ó if an only if there

exists a path in � from
�

to Ô alongwhich event
�

is generatedexactly E times.It is not hard

to seethat :

�Ù� Â�Ò�Ó / z 5B5B5 z ��Õ�Ö 5B5N5� ��� �
over all �	��
 s.t. � ÕBÝ Ö ¢Þ� �

�T�óÑ @ ÂÃÒ'Ó Ì Ü O��� à Z / á� øBÝ ù ¢Þ��$�¡ ¢ ��ø�ù å
For example,for the systemin Figure2:�Ù� Â ¥'èl/ z �%¥'é 5B5B5 z � në �L�ÇÑ @ Â ¥'èÌ ��Z ø ¸ /]�%¥'é�Q«��é�è�Q«��è�¥ #

Ì ��Z ø º /]� ë�m Q«� m�í Q«� í�î Q«� în Q«� në #X?
which canbe simplified to ��Z ø º /ÆJ #2Ì ��z ¯sk J � Z ø ¸ /Æt ¯ QR= # .

So far, we have characterizeda systemindependentlyof the LOC formula. Next, we will

define �ÅÏC�uÐ for a specificinterpretation
â

of the setof event expressions��� . But first, we need

to introducesomeadditionalnotation.In the rest of the section,we will use
���

,
���

, and ¶ � to

denotethe event nameand constantsappearingin event expression� , i.e. we will assumethat

every � is of the form val � ���%8V�����$Q ¶ �'9 # or ��� ���%8P�����DQ ¶ ��9 # , where � is an annotation.We saythat

two event expressions� and � È aresimilar, andwrite ����� È , if they refer to the sameevent, i.e.���Ä/0��� É
and they both refer to the valueof

���
, or they both refer to the sameannotationof

���
.

We say that an orderedtuple � Ô � ? �*¥ ?%Ô ¥ ?B5B5B5.? ��� ?�Ô � # � � é�� û$¥ is an instanceof interpretationâ
of ��� if the following is satisfied:

(1) Ô � is an initial state,i.e Ô � � �u� .
(2) � �Nµ ?�Ô µ # is a transition,i.e y$E / "L?B5B5B5.? Â � � �Nµ ?%Ô µ # � �
(3) Thereexists a partition � ¥ ?B5N5B5N? � � of ��� suchthat for all E / "L?B5B5B5.? Â andall � � � µ the

following holds:

45

a) if � is of the form val � ���%8V�����$Q ¶ �'9 # , then the event
���

canbe generatedon transition� �Nµ ?%Ô µ # with the valuerequiredby
â
, i.e. the following holds:

� �Bµ ?%Ô µ # � � � ��� ? â ��� #a#X?
b)

â
assignsthe samevalue to all similar event expressionsin the samepartition, i.e.:

y�� È � � µ � ��� È ��� # /21 à â ��� È # />â ��� # å 5
We call any sucha partition an instantiatingpartition of instance� Ô � ? �*¥ ?N5B5B5N?�Ô � # .

Intuitively, by traversinga pathvisiting � �*¥ ?%Ô ¥ #u5B5B5 � ��� ?%Ô � # we couldgenerateall eventvalues

requiredby
â
. However, �ÅÏC�uÐ mustalsoensurethat thesevaluesaregeneratedat correctvalues

of index expression.To do so, �ÅÏC�uÐ usesa variable ú ² , for each
��� � andeach̄

/ "T?N5B5B5N? Â ,

to counthow many timesevent
�

is generatedon a pathsegmentform Ô ²h§&¥ to
��²

. Formally:

�ÅÏC�uÐ / ÿ� Ó� Ý Ò ¸ Ý"!"!"! Ý Ó$# ¢ ÿ�&% ¸ Ý"!"!"! Ý % # ¢ z 5B5N5 z´ú ² 5N5B5� ��� �
over all

ù�')(
s.t. ���� ÝW¥�**²+*,�

� �Üµ�ã$¥ þA�Ù� ÂÙÓ�- ö ¸ Ò - � 5B5B5N? ú µ ?B5N5B5%#
Ì Ü� ��% - à

µá ·�ã$¥ �'ú �. · QSâ E M � Ò ¼�Ý Ó ¼ ¢Þ��$�¡ $.'¢ # /Æ�����	Q ¶ � å � ?
wherethe first disjunctionrangesover all instancesof

â
, the seconddisjunctionrangesover all

instantiatingpartitionsof thecurrentinstance,and �Ù� ÂÙÓ - ö ¸ Ò - � 5B5B5N? ú µ ?B5N5B5�# denotesthe formula

obtainedform �Ù� Â�Ó�- ö ¸ Ò - by substitutingvariables Z with ú µ for all
� � � . The equation

requiresfor all � � � µ that the total numberof times that
���

is generatedon the path from the

initial stateto the transition � �Nµ ?%Ô µ # is exactly as requiredby the index expression
�����	Q ¶ � .

For example, the interpretation
â

which assigns1 both to val � ¼ ¥+8PtL�'9 # and val � ¼ éA8V�'9 # in for-

mula(11)hasasingleinstance� "T? t ?B"L? w ?0/�# with theuniqueinstantiatingpartition � ¥�/ � val � ¼ ¥+8PtL�'9 #�� ,� é�/ � val � ¼ éA8W��9 #+� . Therefore:�ÅÏ��uÐ / z´ú ø ¸ ¥ z´ú ø ¸ é z´ú ø º ¥ z´ú ø º é � à ��� Â ¥'è ��ú ø ¸ ¥ ? ú ø º ¥ #fÌÛ��� Â ¥ n ��ú ø ¸ é ? ú ø º é #Ì �'ú ø ¸ ¥fQ " /]tL� #
Ì �'ú ø+º�¥fQ ú ø+º�é Q " /0� # å 5

Onecancheckthat:��� Â ¥'è ��ú ø ¸ ¥ ? ú ø º ¥ # / �'ú ø º ¥Å/0J #fÌ ��z ¯sk J � ú ø ¸ ¥Å/Æt ¯ QR= #
��� Â ¥ n ��ú ø ¸ é ? ú ø º é # / ��z ¯!k J � ú ø ¸ é�/Æt ¯j#fÌ ��z ¯sk J � ú ø º éì/ N¯ Q /�#³?

so �ÅÏ��uÐ canbe simplified to ��z ¯ rFJ �j N¯ /0� # , aswe anticipatedin SectionIV.

