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Abstract

In the eraof billion-transistordesign,it is critical to establisheffective verification methodologies
from the systemlevel all the way down to the implementationsin this paper we introducelLogic of
Constraint§LOC), a languagethatis particularly suitedto expressgquantitatve performanceconstraints
as well as functional constraints.We explore the complexity of LOC formal verification, and shov
that someversionsof the problem are undecidableand someare decidable,but with very complex
algorithms.For practicalpurposeswe thereforeproposea partialformal verificationmethodologyandan
automaticsimulationtracechecking/monitoringnethodologyboth canbe usedto verify systemdesigns.
We analyzethe expressvenesf LOC andshaw thatit is importantanddifferentfrom Linear Temporal
Logic (LTL), on which traditional hardware assertionlanguages(e.g. IBM’s Sugarand Synopsys
Open\éra)arebasedThroughseveralindustrialcasestudies we demonstratéhe usefulnes®f the LOC

formalismandthe correspondingerification approachest the higher, transactiorlevel of abstraction.

I. INTRODUCTION

The increasingcompleity of embeddedsystemstoday demandsmore sophisticateddesign
and verification methodologiesSystemsare becomingmore integratedas more and more func-

tionalitiesandfeaturesare requiredfor the productto succeedn the market. Embeddedsystem
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architecturedik ewise have becomemore heterogeneousas it is becomingmore economically
feasibleto have variouscomputationalresourcege.g. microprocessordigital signal processaqr
reconfigurablelogics) all utilized on a single chip. Designingat the Register Transfer Level
(RTL) [11] or sequentialC-codelevel is no longer efficient. More than ever, designand veri-
fication methodologiesat higher levels of abstractionare requiredto minimize the designcost
of an electronicproduct. The specificationof the function and the architectureshouldbe done
at a high level of abstraction,and the design proceduresrefine the abstractfunction, refine
the abstractarchitecture and map the function onto the architecturethroughautomatictools or
manualmeanswith tool support[17], [4]. High level designproceduresllow designergo tailor
their architecturego the functions at hand or to modify their functionsto suit the available
architecturegseeFigure 1).

To malke the practiceof designingfrom high level systemspecificationa reality, verification
methodsmustaccompan every stepin the designflow. Specificationat the systemlevel makes
formal verification possible[6]. Designerscan prove the propertyof a specificationby writing
down the propertythey wantto checkin somelogic (e.g.Linear TemporalLogic (LTL) [21]) and
usea formal verificationtool (e.g.the modelchecler SPIN[12]) to run the verification. Formal
verification checksthe entire statespaceof a designto verify somespecifiedproperty without
ary uncertainty As the designsarerefined,however, the compleity canquickly overwhelmthe
automatictools, andsimulationbecomeshe primary meandor verification. The confidenceof a

simulationverificationmainly depend®n the designof testcasesDesignercaninsertembedded



assertionsnto their HDL (Hardware DescriptionLanguage)descriptionsto help uncover bugs
of the designsduring simulation. Today’s embeddedassertionlanguagescapturethosesimple
logics as language/platfornspecific library blocks. A set of extendedtemporallogic is then
usedto operateon thoseblocksfor expressingmore complex assertionsExamplesof assertion
languagesnclude IBM’ s Sugar2.({7] and Synopsys’Open\éra[1].

We believe that the hardware assertionlanguagesare not naturalto expressmore abstract
propertiessuchastransactiorlevel propertieswhereonly the eventsobsenablefrom the system
and their annotationsare consideredNor are they corvenientto directly expressperformance
constraintsthat are quantitatve in nature(e.g. lateng, throughput).To this end, we proposea
formal constraintlanguagelogic of ConstraintLOC). LOC is particularly suitedfor specifi-
cation and simulationanalysisof real time performanceconstraintsat the transactionlevel, as
will be shown later in this paper A constraintlanguages not meaningfulunlessthereexists a
clear and efficient path to verification. We proposean efficient simulation-base@approachfor
analyzingLOC formulas.C++ trace checlers are automaticallygeneratedrom LOC formulas.
Thecheclersanalyzethe simulationtracesandreportary constraintviolations.ln mostcasesthe
tracesare scannecnly onceand memoryusageis very low. The automaticchecler generation
is parameterizedso it canbe customizedor fastanalysisfor specificverification ervironments
(e.g.memorylimitation). The choiceof C++ for the checlersis a matterof corveniencelt allows
us to tightly integratethe checlers with the SystemC|[3] simulatorfor runtime monitoring. No
major difficulty exists to generatecheclersin HDLs for integration with hardware simulators,
or in Java for concurrentexecutionwith the software simulators.To illustrate the conceptand
demonstrateghe usefulnessof our approacheswe conductthree separatecasestudies:a high
level descriptionof a Picture-In-Picture (PIP) design,an RTL level designof a Finite Impulse
ResponséFIR) filter, anda Task TransitionLevel (TTL) [9] channeldesign whichis arefinement
of a Y-Chart Application Programmingnterface (YAPI) [18] communicationentity.

A simulation-basedpproachcan only disprove the LOC formula (if a violation is found),
but it can never prove it conclusvely, as that would require analyzingthe design spaceex-
haustvely. However, for small designsor library modulesthat will be instantiatedmary times
acrossdifferent designs,it is necessaryto formally prove the desiredproperties.We give an
exact verification algorithm for a broad classof LOC formulas.However, becauseof the high

compleity of this algorithm,we provide analternatve. Thatis, we proposea formal verification



methodologywhere LOC formulas are translatedinto verification modelsin Promela(SPIN’s
input language[12]) and LTL formulas. This approachis completefor a restrictedsubsetof
LOC. It can also be appliedto a wider subset,but results might then be inconclusve, i.e.
the verificationis only partial. We illustrate the conceptand demonstratehe usefulnessof our
approachthrougha casestudy on formal verification of the TTL library module.

While similar in spirit to the hardware embeddedassertionlanguagespur LOC simulation
and verificationapproachesre indeeduseful in at leastthreefundamentabspectsFirst, Logic
of Constraintgs designedor expressingall quantitatve performanceandfunctionalconstraints,
not just functionalones.This meanghat onecaneasilyspecifyrequirement®n timing or power
consumptionof the systemsbeing designedjn additionto thoseon the functional correctness.
Secondto expressperformanceconstraintseffectively, LOC canbe usedto expressproperties
that cannotbe handledby LTL. Third, systemlevel functional and performanceconstraints
written in LOC can be automaticallyand efficiently synthesizednto static checlers, runtime
monitors,or formal verification modules,aswill be shavn in the remainderof this paper

Therestof the paperis organizedasfollows. In the next section,we introducethe quantitatve
constraintformalism, Logic of Constraints(LOC) and its typical usage.We also compareour
work with the relatedresearchin Sectionlll, we analyzethe expressvenesof LOC, andshowv
that LOC canbe usedto expressimportantconstraintshat can not be expressedwith LTL for
the specificationof systemdesigns.In SectionlV, we presentsomeresultson the compleity
of LOC verification,mostof the proofsfor which we give in Appendixl. In SectionV, we first
presentthe methodologyfor building a tracecheclker or monitor from ary given LOC formula,
andthendiscusshe partial formal verificationapproachfor LOC formulas.We demonstratehe
usefulnesand efficiengy of theseapproachesvith threeverification casestudiesin SectionVI.

In SectionVIl, we concludethe paperand provide our future researchdirections.

Il. LoGIC OF CONSTRAINTS

In this sectionwe introduceour quantitatve constrainformalism,Logic of Constraint{LOC).
The constraintspecificatiorformalismis compatiblewith awide rangeof functionalspecification
formalismsthat describea systemas a network of componentscommunicatingthrough fixed
interconnectionsThe obsered behaior of the systemis usually characterizedy sequencesf

valuesobsened at the interconnectionsWe will first defineformal structuresantendedto model



these sequencesand then proposethe syntax and the semanticsof the logic for specifying
constraintsover thesestructures After the formal presentationye discussthe typical usageof

LOC andthe typical constraintshatit canexpress.

A. RepesentingSystenmBehavios

We usethe term behaviorto denotethe sequenc®f inputsandoutputsthat a systemexhibits
when excited by the input sequenceln general,we want to considerboth finite and infinite
sequencesas well as hybrids where someinputs or outputsappearinfinitely mary times, and
someappearonly finitely mary times. Formally, let E be a setof eventnames$ and for each
e € E let V(e) beits valuedomain Then, a behavior 3 is a partial function from E x Z to
Ueer V(e) suchthat:

1) B(e,n) € V(e) for eache € E, and eachpositive integer n for which 5(e, n) is defined,

2) if (e, n) is not definedfor somee € E andpositive integern, then3(e, m) is not defined

for ary m > n.

3) B(e,n) is not definedfor ary e € £ andary n < 0.2
If n is the largestinteger for which 3(e, n) is defined,thenwe saythattherearen instancesof
e in 5. We alsosayfor all positive integersk < n that g(e, k) is the value of the k-th instance
of e in .

A systenis specifiedby a setof eventnamestheir valuedomainsanda setof behavios. In a
typical system,eventnamesmay representnterconnectionse.g.wiresin a hardware system,or
mailboxesin a software system.The behaior of the systemis thencharacterizedy sequences
of valuesobsenred on the wires, or sequencesf messageso mailboxes.

Behaviors by themselesarenot sufficient to evaluateconstraintghatinvolve timing or power
of the system.For this, we needadditional information regarding performancemeasuresWe
representhis information as annotationsto behaiors. Formally, given an arbitrary set 7', an

annotationof behaior g with respectto 7' is a partial function f from E x Z to T, such

1In this paper we assumeahat E is finite. However, the approachpresentedherecould easily be extendedto arbitrary setsof

event names.This extensionwould allow usto considernetworks with dynamicprocessand interconnectiorcreation.

2Clearly, we could have defineds asa partial function on positive integers,but this definition happengo be more corvenient

whenwe definethe semantics.



that f(e,n) is definedif andonly if 3(e,n) is. We referto f asa T-valuedannotationof 5.
Similarly to events,if f is a T-valuedannotationthenwe saythat7 is the valuedomainof f.
An annotatedbehavioris a pair (3, A) where 3 is a behaior and A is a setof annotationsof
B.

In this paperwe shov a few usesof annotationsput make no proposalfor their specifica-
tion. We assumethat they are part of the functional specification,and thus specifiedwith the
samelanguageas the functional specification.In a way, they are an extensionof an already
commondesignpractice,wherecommentsand assertionsre placedin the codeto easedesign
understandingnd dehugging.

Annotatedbehaiors are structuresfor which we want to stateconstraints We expressthese
constraintsn a subsetof first-orderlogic calledthe Logic of Constrints, or LOC for short.In

otherwords, annotatechehaiors are modelsof LOC formulas.

B. LOC Syntax

LOC formulasare definedrelative to a multi-sortedalgebra(A, O, R), where A is a set of
sets(sorts), O is a setof operatorsand R is a setof relationson setsin .A. More precisely
elementsof O arefunctionsof the form 77 x --- x T,, — T,,.1, wheren is a naturalnumber
andTi, ..., T, are(not necessarilydistinct) elementsof A. If o € O is sucha function, then
we saythat o is n-ary and 7;,. ;-valued. Similarly, an n-ary relationin R is a function of the
form T x - - - x T,, — {true, false}. We requirethat .4 containsat leastthe setof integers,and
the value domainsof all event namesand annotationsappearingin the formula. For example,
if A containsintegersandreals,O could containstandardaddition and multiplication, and R
could containusualrelationaloperatorg=, <, >, .. .).

LOC formulas may containonly one variable,namelyi. The value domainof i is the set
of integers.Having only one variable may seemvery restrictve, but so far we have not found
a natural constraintthat requiredmore than one. In effect, the ability of defining annotations
allows oneto specify formulasthat otherwiserequire more than one variable. The adwvantages
of a singlevariableare simplersyntax(fewer names)and more efficient simulationmonitoring.

The basicbuilding blocks of LOC formulas are terms We distinguishterms by their value

domains:



« 1 is anintegervaluedterm,

. for eachvaluedomainT € A, andeachc € T, ¢ is a T-valuedterm,

. if 7 is anintegervaluedterm,e € E is an event name,and f is a T-valuedannotation,
thenval(e[r]) is a V (e)-valuedterm, and f(e[7]) is a T-valuedterm?

« if 0 € O is aT-valuedn-ary operatoyand, ..., 7, areappropriatelyvaluedterms,then
o(7i1, ..., T,) is a T-valuedterm.

We saythat 7 in a term of the form val(e[7]) or f(e[r]) is anindex expression

Termsare usedto build LOC formulasin the standardway:

. if r € Risann-aryrelation,andn, ..., r, areappropriatelyaluedtermsthenr(r, ..., 7,)
is an LOC formula,

. if ¢ andvy areLOC formulas,soare, ¢ A, and ¢ V 2.

For example,if a andb are namesof integervaluedevents,and f and g are integervalued

annotationsthenthe setof LOC formulasincludesthe following:
val(ali]) = 5 A val(ali +1]) = 5
flali+4]) + f(blg(ali])]) <20
val(ali]) = 0 v f(b[i]) =0 .

Whenreadingtheseformulas,it is helpful to think of 7+ asbeinguniversallyquantified,asclarified

in the LOC semanticaext.

C. LOC Semantics

Informally, LOC formulasare evaluatedat annotatecoehaior (3, A) asfollows:

. thevariable: evaluatesto ary integer,

. if 7 evaluatesto someinteger n, thenval(e[7]) evaluatesto 3(e,n), and f(e[r]) evaluates
to f(e, n),

. all otheroperatorsandrelationsare evaluatedin the standardway if all their operandsare

defined,andthey are undefinedotherwise,

%It may appearthat expressionf(e[r]) is in conflict with the definition of a T-valuedannotationas a function from E x Z

to T'. However, whenwe definethe semanticof f(e[r]) it will becomeclearthat thereis no conflict.



« Booleanfunctionsare evaluatedasin a usualthree-aluelogic [19],
« an annotatedbehaior satisfiesan LOC formula if it doesnot evaluateto false for ary

value of 3.

More formally, we first definethe value of formulasand termswith respectto an annotated
behaior anda value of the variablei. We usea specialsymbolundef to denotethat the value
of atermor aformulais not defined,andassumehatunde f is distinctfrom any elementof ary
sortin A. We useVj 4, [a], wherea is aterm or a formula, to denotethe value of « evaluated
at the annotatedoehaior (5, A) andthe value n of variablei. If « is a T-valuedterm, then
Vig aylal, isin T'U{undef}, andif « is aformula, thenVjy 4[] is in {true, false, undef}.
Note that this implies that for some k-ary T-valued operatoro, the formula o(7y, ..., 7) can
take value undef, while o itself cannot,becausat is T-valued.Thereis no contradictionhere,
only a slight abuseof notation,aswe usethe samesymbolo to represenboth the operatorand
its nameappearingn LOC formulas.This ambiguityin the meaningof o, canalways be easily
resolhedfrom the context in which o appearsAlso notethatwe do not make a requirementhat
all annotationsappearingn the formula mustbe definedin A. For suchundefinedannotations,
we usevalueundef. The valueof an LOC formulais definedrecursvely asfollows:

« Vi alil =n,

« V(s,4lc] = c for eachelementc of eachvaluedomainT,

cvn y val(er])] = undef it Vi 4 [7] = undef or B(e, Vi 4 [7]) is not defined or

B(e, Viz 4)[7]) otherwise
eachevent namee and eachintegervaluedterm r,
o Vn o [F(El)] = undef if f & A or V(H‘,A) [val(e[r])] = undef
f(e, Vi 4)[7]) otherwise,
eachevent namee, and eachintegervaluedterm r,
undef if V&’A)[Tj]] = undef for somej =1,... )k

o« VU wlo(ri, ..., )] = for eachk-
54 o(Vis,mylml, - - Vs 4)[7k]) otherwise,

for eachannotationf,

ary operatoro,
undef if V7% ,\[r;] = undef for somej =1,...,k
o Vi alr(r,....m)] = R / , 7 for eachk-
r(Vi plnl, -, Vi 4[m]) otherwise,
ary relationr,



_ true if V&,A) [o] = false
. V("B,A)[[d’]] =4 false if V&,,A)ﬂ(p]] — true

undef otherwise,
(

true  if Vi a) [¢] = true and Vis ) [] = true
s Vi nlo Ayl =14 false if Vis ayl8] = false or Vi 4 [¢] = false
\ undef otherwise,

( true if Vi 4 [¢] = true or Vis ) [¥] = true

« VinloVvyl=1q false if Vis o8] = false and Vi 4 [¢] = false

undef otherwise.

We say that an annotz:ltecbeha/ior (8, A) satisfiesa formula ¢, if V{; 4)[4] = false doesnot

hold for ary integer n.

If we imaginerepresenting formulaby its syntaxtree,thenits evaluationcanbe interpreted
aspropagatingvaluesfrom the leavesup. The valueundef canbe createdonly at nodesof the
form val(e[r]) or f(e[r]), if f & A, or 7 evaluatesto a negative integer or to a numberlarger
thanthe numberof instance®f e in 5. Oncecreatedyalueundef propagatesip, andit canbe
stoppedonly at a nodeof the form ¢ A v (if the otherbranchhasvalue false) or ¢ Vv ¢ (if the
otherbranchhasvaluetrue). Thus,it is not hardto shav thatthe value of a formulathat does

not containary termsof the form val(e[7]) or f(e[r]) mustbe eithertrue or false.

D. Typical Usage of LOC

In thefollowing exampleswe assumehatthe setof eventnamess E = { Display, Stimuli},
andthatareal-valuedannotation is defined.Intuitively, we assumehatt(event[x]) corresponds
to the time of the z-th occurrenceof an event event. 4 The following commonconstraintsare

now easyto express:

« rate, e.g.“ Display’s are producedevery 10 time units”:
t(Display[i + 1]) — t(Display[i]) = 10 , (1)
« latency, e.g.“ Display is generatecho more than 25 time units after Stimul:”:

t(Display[i]) — t(Stimulifi]) < 25 , 2

“In this paper we always usei asthe index variablein an LOC formula and z to representan arbitrary value of i.
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. jitter, e.g.“every Display is no morethan4 time units away from the correspondingick

of the real-timeclock with period 10”:
| t(Display[i]) — (i+1)%10 | <4, (3)

« throughput, e.g.“at least100 Display eventswill be producedn ary periodof 1001time
units”™
t(Display[i + 100]) — t(Displayi]) < 1001 , 4)

« burstiness,e.g.“no morethan1000 Display eventswill arrive in arny periodof 9999time
units”™
t(Display[i + 1000]) — ¢t(Display[i]) > 9999 . (5)

In addition,LOC canalsobe usedto specify quantitatie functional constraintssuchasthe data

consistenyg, e.g.“the input datashouldbe the sameasthe outputdata”:
data(input(i]) = data(output[i]) . (6)

It should be emphasizedhat time is only one of the possibleannotations Any value that
may be associatedvith an event (e.g. power, area)canbe usedasan annotation.n the caseof
concurrentevents,the valuesof time annotationshouldbe the same.The indicesof instancef
the sameevent denotethe strict orderasthey appearin the executiontrace.Thereis no implied
relationshipbetweeninstancesof different events. LOC can be usedto expressrelationship
betweenthe annotationsof the differentinstancesof the sameevent (e.g. rate), or instancesof
differentevents(e.g. latenc).

Thelateng constraintabove is truly a lateng constraintonly if the Stimuli and Display are
keptsynchronizedGenerally we will needan additionalannotatiorthat denoteswvhich instance
of Display is “caused”by which instanceof the Stimuli. If the cause annotationis available,

the lateng/ constraintcan be more accuratelywritten as:
t(Displayli]) — t(Stimuli[cause(Display[i])]) < 25 , (7)

and suchan LOC formula can easily be analyzedthroughthe simulationchecler presentedn
SectionV. However, it is the responsibilityof the designerthe program,or the simulatorto

generatesuchan annotation.
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E. RelatedWork

Real-Time Logic (RTL) [15] is a formalism for expressingtiming propertiesin real-time
systemsWith RTL, the propertiesare specifiedby meansof timing relationson occurrence®f
events. The safety propertiesexpressedwvith RTL canbe analyzedefficiently [15], [20]. Based
on RTL, several run-time monitoring techniquedor real-time systemshave beenproposed?],
[?]. Differentfrom RTL, LOC is designedfor transactionlevel quantitatve properties,which
include not only timing but also power, data, memory and so on, due to the introduction of
annotations.

Thereare several decidablelogics that can be translatednto automataand formally verified.
It is well known that LTL canbe translatednto equivelantBuchi automataMONA system[?]
provides a decision procedurefor reasoningmonadic second-ordettogic. But decidability is
usuallyachieved with sacrificeof expressvenessaandcorveniencelt is proventhatonly a subset
of LOC is decidable(seeAppendix|l), but we will show it is still very usefuland efficient for

simulation-basedssertionchecking.

[1l. EXPRESSIVENESS OF LOC

In this section,we discussthe expressvenesspropertyof LOC especiallyin its relationship
with the well known Linear TemporalLogic (LTL). It shouldbe notedthatLTL is definedon the
statetransitionlevel whereany changeat the systemstateis accountedor, while LOC works
on a higher abstractionlevel, in which only the events obsenable from the systemand their
annotationsare consideredThis apparendifference,however, is just a technicality becauseat
is not difficult to hide statetransitionsso that LTL and LOC are definedover the samekind of

objects.

A. Linear Tempoal Logic

Like LOC, Linear TemporalLogic (LTL) is definedover executionsof a system,i.e. linear
sequencesf statetransitions LTL formulasareconstructedisingterms,i.e. Booleanexpressions
on variablesor systemstates classicalBooleanoperatorssuchas  (not), v (or), A (and), =
(imply), and the linear temporaloperatorsd (always), > (eventually), X (next) andU (strong

until):
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« O(A) is trueif A is true for ary state.

O(A) is trueif A eventuallybecomedrue in a future state.

« X(A) requiresthat A will betruein the following state.
« A U B requiresthat B will eventually hold in a future state,and A must hold from the
currentstateto that future state.
With thesetemporaloperators,LTL is very powerful in expressingthe functional constraints,
especiallythe onesthat containcomplex temporalpatterns for example:

« response(A = < B), i.e. onceA holds,B will eventuallybecometrue sometimelater.

» precedenceA U B, i.e. B will eventuallyhold,andB mustbecometrue beforeA becomes

true.

« infinite often: O $ A, i.e. A will becometrue infinitely often.

It hasbeenproven that LTL formulascan be translatedto equivalent Buchi automata[22].
Basedon this theory formal techniqueslike model checking are developedand utilized for
verificationof bothdigital designge.g.FormalChecK2]) andsoftwareprotocols(e.gSPIN[10]).
LTL is also widely usedin the formal property specificationfor simulation-basedssertion
verification[7], [1], which is importantto assurethe integrationand correctnes®f reusablelP

(Intellectual Property)blocks.

B. LOCvs.LTL

Throughsereral examplesand claims,we will concludethatLOC andLTL areincomparable

and have differentdomainsof expressveness.

Claim 1: Thereare LOC formulasthat can be expressedwith LTL.

Since both LOC and LTL contain basic Booleanexpressionsa subsetof LOC constraints
that specify simple global Booleanconditionscan be expressedn LTL also. For example,the
constraint,“the annotationdata of the event Display is always greaterthan 1007, is expressed
in LOC as:

data(Display[i]) > 100 . (8)

If we use a variable Display_data to storethe value of data in the design,and use a flag

Display_occur to indicatethat an instanceof the event Display occurs,this constraintcan be
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easilyexpressedn LTL as:

O(Display-occur = (Display_data > 100)) . 9)

Claim 2: Thereare LOC formulasthat cannotbe expressedwith LTL.
Many quantitatve constraintshat can be easily expressedy LOC are not suitablefor LTL.
Specifically when more than one eventsneedto be comparedn the sameconstraint(e.g. the

lateng constraint) LTL is not expressve enoughto be used.For example,thelateng constraint:
t(Displayli]) — t(Stimuli[i]) < 25 (10)

requirescomparingeachinstanceof Stimuli with theinstanceof Display with the sameinstance
index. After the z-th Stimuli occurs,it is unknavn whenthe z-th Display will occug i.e. the
numberof Stimuli instanceghat may occur beforethe z-th instanceof Display is arbitrarily
large. Therefore this constraintcannotbe modeledby a finite-statesystem,andit is impossible
to expressit usinga formalismbuilt on finite automatasuchasLTL.

It is interestingto note that there are simple LOC formulas that cannotbe expressedby
LTL eventhoughthey canbe easily representedby a finite-stateautomaton.For example,the
property“the valueof event A on every evenoccurrences 1”, canbe expressedy LOC formula
val(A[2i]) = 1, aswell aswith a simpletwo-stateautomatonhut it is well known thatit cannot
be expressedoy LTL [23].

To shawv thatsomeLTL formulascannotbe expressedn LOC, we first recallthatany property
canbe expressedasa conjunctionof a safetyanda livenessproperty Safetypropertiesarethose
which can always be shovn violated by a finite trace. For example,ary executionthat does
not satisfy the property“the value of A is never 1” must have a finite prefix which endswith
the valueof A being1. On the otherhand,livenesspropertiescan never be violated by a finite
trace.For example,the property“for every requestthereis a response’can never be violated
by a finite tracebecausdhereis always a chancethat a responsanay comesometime in the

future.®

Claim 3: LOC canexpressonly safetyproperties.

®To disprove a livenessproperty we needto shav that the systemcan enteran infinite cycle in which thereare unfulfilled

requests.
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Indeed,if atracedoesnot satisfyan LOC formula, thentheremustexist an: for which the
formulais false.We canevaluateall index expressiondor that value of i. Sincetherecanonly
be finitely mary of theseexpressionstheremustexist somepointin the executionsuchthat, for
that particulari, the formula doesnot refer to any event occurrencebeyond that point. Clearly,
the executionprefix up to that point is sufficient to disprove the property

Ontheotherhand,LTL is capableof expressingsomelivenesgropertiesfor exampled < A,
i.e. “A occursinfinitely often”. From claims (1)-(3), we can concludethe following:

Conclusion:LOC andLTL areincomparable.

Generally LOC is designedfor the specificationof quantitatve performanceand functional
constraintsat the transactionlevel where systemevents and their annotationsare considered.
Becauseof the use of index variable i, LOC is beyond the finite automatadomain. On the
other hand,LTL is suitablefor the specificationof functional constraints,and can effectively
expressthe temporalpatternsfor systemstatetransitions.Becauseof this difference,LOC can
expressmportantpropertieghatcannotbe expressedvith LTL, on which thetraditionalproperty

specificationlanguagesare based.

V. COMPLEXITY OF VERIFICATION OF LOC FORMULAS

In this section,we addresghe following fundamentalquestion:How hardis it to checkif a
systemsatisfiesan LOC formula?This questionhasmary versionsdependingon how the system
is representedand which subsetof LOC formulasis being considered\We presentanswersor
several versions.Someversionsof the problem are undecidableand someare decidable,but
with very comple algorithms.We use these“negative” resultsto justify the developmentof
efficient algorithmswhich may not always give the full answer Thesealgorithms,basedeither
on simulation,or partial formal verification, are describedn SectionV.

In the mostgeneralcase systemsarerepresentedby arbitrary programsand annotationscan
be of ary type. This caseis clearly expressve enoughto encodethe halting problem[14], so
checkingLOC formulasis undecidablen this case.

The first restrictionwe consideris to limit systemspecificationto a infinitely-valuedfinite-
statesystemwherethe numberof statesof the systemis finite, but valuedomainsof annotations

can be infinite. Unfortunately this caseis also undecidableTo shav this we can encodetwo
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countermachinesusing a finite-statesystem,two integer annotationdo representounters,and
an LOC formulato ensurethat countersare incrementecr decremente@s necessary

Thenext restrictionwe considerareso-calledinitely-valuedinite-statesystemswhereannota-
tionsandeventvaluesarerequiredto befinitely valued.With regardsto annotationspecification,
we will considerthreecases:

1) annotationscompletelyundefined,

2) annotationmust satisfy certainaxioms,expresseddy an LOC formula,

3) annotationdefinedby a finite statesystem.
The third caseis typical of later designstagesAt that point annotationscan be consideredas
part of eventvalues,so we will not studyit separately

Thefirst caseis typical at the beginning of the designprocesswhereconstrainton annotations
are stated,but nothing is yet known abouttheir actual values.At that point, annotationsare
uninterpretedunctions, but they still have to satisfy propertiesof equalities.For example,the

formula:

f(e[3d]) = f(eli +2])
is not satisfiedby any behaior in which e occursat least3 times.

We considerthe secondcasebecausegvenif the valuesof annotationsare not known, some
properties,capturedby axioms,may be. Considey for example,time annotationsAll possible
timing annotationssharecertain propertiese.g.time can never decreaseJustfrom thesebasic
propertiesof time, we could deducesomesystempropertieswhich arethenvalid for any timing.
Therefore,it is usefulto be able to expresspropertiesthat all annotationsof certaintype must
have. Specifying axioms could be donein mary ways. For example, an extendedversion of
LOC is usedfor this purposein the Metropolis system[4]. However, the following resultsstate

that LOC checkingis undecidableaven if annotationaxiomsare restrictedto the basicLOC.
Theoem1: It is undecidablenvhethera finitely-valuedfinite-statesystemwith LOC axioms

satisfiesan LOC formula with a single eventindexed by expression:.

As usual, the proof proceedsby reducinga known undecidableproblemto LOC checking.
The detailsare givenin Appendix|.

At first glance,it may appearthat checkingan LOC formula ¢ for a finite statesystemwith

annotationaxiomsa may be reducedto checkingthat the systemsatisfiesimplication of ¢ by
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« without any axioms.Unfortunately this approachdoesnot work, andto seewhy we will for
a momentmake quantificationover : appearexplicitly in the syntax. Thus, the axiomscan be
written asVi : « andthe formulacanbe written asV: : ¢. Solvingthe problemrequireschecking
(Vi : a)==(Vi : ¢), but LOC canonly expressVi : (a==-¢), which is not the same.In fact,
this seeminglyminor restrictionmakesthe problemdecidable as statedby Theorem?2.

We now turn our attentionto the casewithout axioms,i.e. annotationsare either completely

unconstrainedor folded into event values.
Theoem 2: It is decidablewhethera finitely-valued finite-state systemwithout annotation
axiomssatisfiesan LOC formulain which all index expressionsare of the form ai + b, wherea

andb areintegerconstantsandvariable: appear®nly in suchexpressionandlinearinequalities.

The proof consistsof a decisionalgorithm.To describethe algorithm,we needsomenotation.
An event expressionis an LOC term of the form val(e[r]), or of the form f(e[r]), where T
is an integervaluedterm, e is an event name,and f is an annotation.Note that conditionsin
Theorem2 restrict to be a linear expressionj.e. it mustbe of the form ai 4 b, wherea andb
are constantsThe value domainof an event expressionis the setof valuesit cantake, i.e. it is
the value domainof e if the expressionis of the form val(e[7]), andit is the value domain of
f if the expressionis of the form f(e[r]).

Given an LOC formula ¢, we use &, to denotethe setof event expressionsappearingin it.
An interpretationof a setof eventexpressionss a function which assigngo eachexpressionin
the seta valuefrom its valuedomain.SinceTheorem2 requiresthe systemto befinitely-valued,
therecanbe only finitely mary distinct interpretationsof £,. Givenan LOC formula ¢, andan
interpretation/ of £;, we use¢; to denotethe formula obtainedfrom ¢ by replacingeachevent
expressione in ¢ by the value I(¢). We call ¢; an interpretationof ¢. Note that becausep;
containsno event expressions,v(”ﬂ,A) [¢:] actuallydependsonly on n and mustbe either true
or false.

The conditions of Theorem2 also insure that ¢; is a formula in Preshurger arithmetic
Suchformulasconsistof linear inequalitiesof integer variablescombinedwith usual Boolean
connectvesand quantificationof variables[8]. Preshirger formulascanbe evaluatedto ¢rue or
false by choosingvaluesfor all free integer variables.LOC formula interpretationscan have

only i asa free variable,andwe will use¢;(n) to denotethe value of ¢; wheni is setto n.
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Assume,for example,a systemwith two binary events,z; andz,, andlet ¢ be the formula:
(val(z1[3i]) = val(zs[i])) = (i > 5) . (11)

It hastwo binary event expressionsyal(z,[3:]) andval(z,[i]), henceit hasfour interpretations.
To denoteinterpretationsyve use00, 01, 10, and 11, wherethe first numberrepresenthe value
of val(z,[3:]), an the secondnumberrepresentshe value of val(z,[i]). It is easyto checkthat
Bo1 = ¢10 = true and ggy = ¢1; = (i > 5).

It is not hardto checkthat LOC formula interpretationshave the following property:

(Ve € &1l = 1(0)) = (Vip a6l = Vi ul61] = é1(n)) (12)

In words, if behaior (3, A) andintegern agreewith interpretation/ on the valuesof all event
expressionsthenthey agreealso on the value of the whole formula. In addition, formula ¢; is
both a Preshirger formula (becausét hasno eventsnor indexing) andan LOC formula (because
it hasno quantifiersandits only free variableis 7), soit may be evaluatedin both ways, but the
two valuesare alwaysthe same.

To checkwhethera systemsatisfiesan LOC formula, we will combineformulainterpretations
with Preshirger formulascharacterizinghe system,andwe will reducethe original problemto
checkingsatisfiabilityof the combinedformula. Thatwill completethe proof, asthereareknown
algorithmsto checksatisfiability of a Preshirger formula. In the following Lemma,we establish
thatit is indeedpossibleto constructa Preslirger formula characterizinga finitely-valuedfinite-

statesystem.The constructionis describedn Appendix|.

Lemmal: For a given finitely-valued finite-statesystemwith no annotationaxioms,and a
given LOC formula ¢, it is possibleto construct,for eachinterpretation/ of £;, a Preshirger
formula SY'S; in which i is the only free variable,suchthatfor all integersn, SY S;(n) is true
if andonly if thereexists an annotatecbehaior (5, A) of the systemsuchthat Vi 4 [e] = I(e)

for all e € &;.

Considey for example,the systemshawn in Figure 2. It haseight statestwo binary valued
events,z; andzx,, andno annotationsA transitionlabel of the form z;, : v indicatesthat z;, is
generatedvith valuev on thattransition.The systemin Figure 2 satisfiesformula (11), because

x1[37] is always 1, and z, 7] is O for all 7 < 5. With respectto interpretationsof (11), one can
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Fig. 2. A systemgeneratingl for every third value of x; andevery fifth value of .

easily verify that SY Spo = SY So1 = false, becauser,[3i] is never 0, and SY S;; and SY Sio
ar@ (35 > 0:4=5j) and (i > 0) A (35 : i = 5j) respectiely, becauseesvery fifth valuesof

xo[d] is 1.

Theoem3: For a given finitely-valued finite-state systemwith no annotationaxioms, and
a given LOC formula ¢, let formulas SY'S; satisfy the property from Lemma 1, for each
interpretation/ of £,. The systemsatisfiesp if andonly if the the following Preshirger formula

is not satisfiable:

\/ SYSi g, (13)
I

wherethe finite disjunctionrangesover all interpretationsof &;.
To showv onedirection,assumethat the systemdoesnot satisfy the property i.e. assumehat

there exists an annotatedoehaior (8, 4), and an integer n suchthat, Vi, ,)[¢] = false, or

equvalently Vi ) [¢] = true. Let I be the interpretationinducedby (3, A) andn, i.e. setl(e)

to Viz 4[] for all e € &;. By Lemmal, SYS;(n) is true, and by (12) sois I(¢)(n), sothe
formulais satisfiable.
For the otherdirection, assumethat the formula is satisfiable,andlet 7 andn be suchthat

both SY'S;(n) and I(¢)(n) are true. By Lemmal, there exists an annotatedbehaior (3, A)

®We usedj > 0 : ¢ to abbreviate 35 : (5 > 0) A .
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suchthatVj} , [e] = I(e) for all € € &, andby (12) Vi , [¢] = 1(8)(n) = true, implying that
% [¢] = false, i.e. the systemdoesnot satisfy the property
For example, the negation formula (11) hasthe following interpretationsp,, = é,, = false

and ¢go = ¢11 = (i < 5), sofor the systemis Figure 2, formula (13) becomes
(3j>0:i=5j)A(i<5),

which is clearly not satisfiable.

Theorem3 provides a constructve way of reducingthe original problemto satisfiability of
a Preslirger formula. Theorem2 then follows as a simple corollary. The describedalgorithm
proves decidability but it hasa very high compleity. The numberof interpretationsmay be
exponentialin the size of formula, and the bestknown algorithm for checkingsatisfiability of
Preshirger formulasis doubly exponentialin the worst case.Theremay be casesn practicethat
aremuch betterthanthe worst case but it is still unlikely thatthe proposedalgorithmwill have
a wide-spreadiuse.lt is thereforereasonabléo searchfor alternatve, more efficient verification
algorithms,applicableto somereasonablsubsebf LOC. In SectionV, we will proposea couple
of approachesalongtheselines. But first we shav that several approacheghatonemay consider
arein fact not feasible.

EachLOC formula definesa languageconsistingof annotatedbehaiors that it satisfies.If
we could constructan automatorwith the samelanguagewe could reduceLOC verificationto
the languagecontainmentproblem,which hasknown algorithmslinear in the numberof states
of the systemand the property automatonlndeed,this approachis possiblefor a very limited
subsetof LOC (as shown in SectionV), but languagesof mary simple LOC formulas cannot

be representedby a finite-stateautomatonHere are a few example:

« two events,all index expressionjust 7, e.g.
val(z[i]) = val(yld]) ,
. asingleevent, all index expressiondinear, e.g.
val(z[i]) = val(x[21]) ,
« asingleevent, anda single event expressionge.g.

val(z[?]) =1 .
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In the examplesabore we assumeall eventsto be finitely valued. Still, it is not hardto show,
usingthe pumpinglemmafor regular sets[14], that noneof the formulasabove definea regular
languageNote thatfirst two examplessatisfythe conditionsof Theorem2 andcouldbe checled
with the proposedalgorithm.

Anotherapproachmight be to usea classof automatahatis more expressve thanfinite-state
ones.For exampleonemay considempushdovn automatahat candefinecontet-free languages.
Unfortunately this is not possiblein general,eithet For example,if eventz takesvaluesfrom
{0,1,2, 3}, the formula:

(val(z[i]) =0 = (val(z[i + 1]) = 0V val(z[i + 1]) = 1))A
(val(z[i]) =1 = (val(z[i + 1]) =1 Vv val(z[i + 1]) = 2))A
(val(z[s]) =2 = (val(z[i +1]) =2 Vv val(z[i + 1]) = 3))A
(val(z[i]) =3 = (val(z[i +1]) = 3))A

(

(val(z[2i — 1]) = 1 Aval(z[2i]) = 2 A
val(z[3i — 1]) = 2 A val(z[3i]) = 3))

definesthe language:
{s : s is a prefix of 0"1"2"3* for somen > 0} ,

for which it is easyto show thatit is not contet-free (e.g. seeExample6.1 in [14]).

One approachto generatingan automatonfor an LOC formula is to buffer event values.
Onceall the valuesneededo evaluatethe formula for a particularvalue of i arein the buffer,
the formula can be evaluatedfor that value of i. Once all valuesof i that needa particular
event value are evaluated,the event value can be removed from the buffer. The resultsabove
indicatethat the buffer sizescannotbe boundedin general.However, one may hopethat for a
specificfinite-statesystem,a suitablebound can be found. Ideally, a bound may be found for
ary finite-statesystem.

For example, ary implementationof a FIFO queueneedsto satisfy the data consisteng
property(6) , i.e. the i-th valueretrieved from the FIFO mustmatchthe i-the value put into it.
Clearly, we cannotrepresenthis propertywith a finite-stateautomatonaswe cannotboundin
generalthe differencebetweenthe numberof input eventsandthe numberof output events.

However, for ary particularFIFO implementationthis boundcanbe easily establishedit is just
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the size of the FIFO. Thus,the size of the buffer in the checkingautomatomeednot be bigger
thanthe size of the FIFO. One may hopethatthis reasoninggeneralizego ary similar property
and ary finitely-valuedfinite-statesystem.

To the bestof our knowledge, it is not known whethera boundon buffers can be found for
ary finite-statesystems.However, we will usean exampleto showv that even if sucha bound
can be found, it will sometimesbe too big for an efficient verification algorithm. In general,
the exampleis a finitely-valuedfinite-statesystemthat may generaten differentbinary events
Z1,...,Tn, andhasp; + - -- + p, states,wherep,...,p, arefirst n primes.The systemhas
n loops, and the k-th loop has p, states.The systemfirst circles throughthe first p; states,
generatinge; with valueO p; — 1 timesfollowed by generatingr; with valuel once.At theend
of the loop thereis a choiceof repeatingit or moving to the next loop. The systemin Figure 2
is actually a part of sucha systemfor p, = 3 and ps = 5. The languagegeneratedhe system
with n loops consistsof all prefixesof stringsdefinedby regular expression:

(zp: 0Pty D) (mp: 072 gy D) L (2, 0P, s )T

Now, considerthe LOC formula val(z, [i]) = val(z;[i]) = - - - = val(z,[i]) = 1. (For readability
and concisenessye abbreviate formulasof thetyper, =7 A m=mnton =mn =73.) It is
not satisfied,but the smallestvalue of i that violatesit is p; * ps * - - - * p,. Sincethe system
generatesall x;’s before generatingary other events,all p; * ps * --- x p, valuesof z; (and
z9,...,%,_1 fOr that matter)would have to be buffered. Therefore,the size of the buffer have
to be at leastexponentialin the numberof statesof the checled automatonjmplying that the
numberof statesof the checkingautomatorhasto be at leastdoubly exponential.More practical

approachesre needed.

V. VERIFICATION APPROACHES FOR LOC FORMULAS

In this section,we first proposea simulation-basedrace analysisapproach,and shov that
LOC constraintanbeeasilyanalyzedn anassertion-basesimulationverificationernvironment.
Then,we discusshow to utilize the existing formal verificationtechnique.e. model checking,

to verify an LOC formula.
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A. Trace AnalysisMethodolgy

The methodologyfor simulation-basedverification with an automatically generatedLOC
checler is illustratedin Figure 3. From the specificationof LOC formulasandtraceformats,an
automaticchecler generatoiis usedto generatea C++ sourceof the checler. The sourcecodeis
compiledinto an executablethat takesin simulationtracesandreportsary constraintviolation.

An exampleof the definitionfile for the LOC formulasandtraceformatsis shovn in Figure4.
EachLOC formulais precededy alabelandfollowed by the formatfor extractingeventnames
andtheir annotationsout of the simulationtraces.The format describedn the figure is written
to work with the trace shaovn in Figure 8. It specifically looks for a line that startswith a
string which endsin a “:”, followed by an integer, a string pattern“at time’, thenfollowed by
a floating point number The string is taken as an event name,and eachsucha line describes
a particularinstanceof that event. The integer is taken as the value of that instance,and the
floating point is taken asits “t” annotation.Which instanceof an event a line is describingis
naturally determinedby the numberof lines that precedeit and matchthe sameevent name.
For example,the n-th line matchingthe patternwith event name”Display” describeghe n-th

eventinstanceof "Display”. Any line that doesnot matchthis formatwill be ignored.Multiple
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[LOC: rate] username@chimera $ checker latency.trace
formula: t(Display[i + 1] — t(Display[i]) == 10 Reading from trace file "latency.trace" ...

annotation: event value t | Formula t(Display[i]) - t(Stimuli[i]) <= 25 is violated
trace: "%s : %d at time %f at trace line# 278: Display : -6 at time 87

[LOC: latency] where i = 23

formula: t(Display[i])-t(Stimuli[i]) <= 25 t (Display[i]) = 87
annotation: event value t t (Stimuli[i]) = 60
trace: "%s : %d at time %f"

Fig. 4. Definition of LOC formulasand Trace Formats. Fig. 5. Exampleof Error Report.

formulasmay be checled at the sametime with possiblydifferentextraction formats.

The automatic checler generatorparsesthe definition file to generatea C++ source for
the checler in a straightforvard manney setting up the queuedata structuresfor storing the
annotationsand translatingthe formula into C++ code. The detail of the algorithm inside the
checler will be explainedlater in this section.

To help the designerfind the point of error easily the error reportincludesthe value of index
1 which violatesthe constraintand the value of eachannotationin the formula. Figure 5 shovs
the casewherelateny betweenthe 23rd eventinstanceof Display and 23rd eventinstanceof
Stimuli violate the given formula. The checler is designedo keepcheckingandreportingary
violation until stoppedby the useror if the traceterminatesWe will discussthe LOC checler
in threeaspectf details:the algorithmof the LOC checking,the runtime monitoringand how
to dealwith memorylimitation.

a) TheLOC Cheder: Thealgorithmof LOC checkingprogressebasedon theindex variable
1. EachLOC formula instanceis checled sequentiallywith the value of ¢ being 1, 2, ... etc.
A formula instanceis a formula with 7 evaluatedto some fixed positive integer value, e.g.
Display[30] — Display[29] = 10 is the 29th instanceof the formula (1). Startingwith : equal
to 1, the LOC checler scansthe tracesequentially If ary relevant datais readin, the checler

storesit into a queueand checksthe formulain the following manner:

check formula {

while (can evaluate formula instance i) {
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eval uate fornula i nstance i;

i ++;

nmenory recycling;
b}

The time compleity of the algorithm is linear to the size of the trace since evaluating a
particular Booleanexpressiontakes constanttime. The memory usage ,howvever, may become
prohibitively high if we try to keepthe entiretracein the queuefor analysis.As the tracefile is
scannedn, the checler attemptsto storeonly the usefulannotationsandin addition, evaluate
as mary formula instancesas possibleand remove from the memory parts of the annotations
that are no longer neededmemoryregycling).

For mary LOC formulas (e.g. constraints(1), (3) - (5) in Sectionll), the algorithm usesa
fixed amountof memoryno matterhow long the tracesare (seeTable |).” Memory efficiency
of the algorithm comesfrom being able to free storedannotationsas their associatedormula
instancesare evaluated.This ability is directly relatedto the choice madein designingLOC.
From the LOC formula, we can conseratively identify what annotationdatawill not be useful
arymoreonceall the formulainstanceswith indiceslessthana certainnumberareall evaluated.

For example,consideran LOC formula:
t(Displayli + 10]) — t(Stimuli[i + 5]) < 300 (14)

andlet the currentvalue of ¢ be 100. Becausehe value of i increasesnonotonically we know
that event Display’s annotationt with index lessthan 111 and event Stimuli’s annotationt
with index lessthan 106 will not be usefulin the future andtheir memoryspacecanbe released
safely Eachtime the LOC formula is evaluatedwith a new value of i, the memoryrecgycling
procedures invoked, which ensuresminimum memoryusage.

As describedn Sectionll, the LOC semanticsallows usto evaluatean LOC formula even if
someof its expressionsare not defined.Whenan annotationwith a particularindex valueis not
yet available from the trace, or whenthe index hasan invalid value (e.g. negative value), the

Booleanexpressiornthat containsthis annotations evaluatedto unde f. The entire LOC formula

"The verification of the constraint(2) may also have constantmemoryusageif the given tracehasa certainregular structure.
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couldthenbe evaluatedaccordingto the standardhree-waluelogic [19] evaluation.For example,

giventhe following LOC formula:
t(Display[i + 10]) > 100 Vv t(Stimuli[i — 5]) < 300 , (15)

let the currentvalue of i be 10. If we know, from the trace,that the value of ¢(Display[20])

is 200, the formula can alreadybe evaluatedto be true evenif the value of ¢(Stimuli[5]) is

still not available at this point in the simulation (trace). Thus the LOC formula instancescan
be evaluatedas soon as possible,which further minimizesthe memoryusage.Also, if we let
the currentvalue of ¢ be 4, -1 is thenan invalid index for annotationt of event Stimuli. The
expressiont(Stimuli[—1]) < 300 is evaluatedto unde f andthe whole formulacanbe evaluated
to true if the evaluationof ¢(Display[14]) > 100 is true, andundef otherwise.

b) RuntimeMonitoring: The static trace checkingtechnique,as describedabove, assumes
that a simulationtraceis first generatecandthe subsequentOC checkingparseshe traceand
looks for constraintviolation. How the traceis generateds immaterialaslong as the format
is correctly specifiedin the definition file. The tracefile for a realistic design,however, can
frequentlyoccuyy several gigabytesof disk space.lt may be desirableto compile the checler
asa runtime monitor to run concurrentlywith the simulatorthrougha Unix pipe. Alternatiely,
the checler canbe compiledinto the compiled-codesimulators for higherefficiency andtighter
integration.As an exampleof suchtight integration,the checler generatohasbeenextendedto
generatd. OC checlersas SystemCmoduleg[3]. During the simulation,other SystemGmodules
(representinghe design)can passthe eventsand annotationgdirectly to the monitor modules
throughchannelsA casestudyof this approactis reportedin sectionVI-B. Runtimemonitoring
is more efficient than static checking,but then obviously the simulationneedto be repeatedf
somenew formula needto be checled later Furthermorethe traceis no longer kept so ary
dehugging hasto rely solely on the error report.

c) Dealingwith MemoryLimitation: Despitethe memoryefficiency for mostLOC formulas,
someLOC formulasmay require high memoryusagethat the verification ernvironmentcan not
support.To deal with the caseof presetmemorylimitation, anotherextensionhasbeenadded
to the checler generatarGenerally the checler tries to readthe traceand storethe annotations
only once.However, if the presetmemorylimit hasbeenreachedijt stopsstoringthe annotation

andinstead,scansthe restof the tracelooking for neededeventsand annotationgor evaluating



26

the currentformulainstance(with the currentvalueof 7). After freeingsomememoryspacethe
algorithm resumesstoring annotationsand readingthe traceagainfrom the samelocation. The
analysistime cancertainly be impacted(seethe casestudyin SectionVI-B) andmay no longer
be of linear compleity. However, the verificationcan continueandthe constraintviolations can

be checled underthe memorylimitation of the verificationervironment.

B. Partial Formal \erification of LOC Formulas

Although our trace analysisenablesefficient verification of LOC formulasin a simulation
ervironment, formal verification may still be necessaryo formally prove propertiesof library
moduleqe.g.the TTL channein SectionVI-C) andothersmalldesignsThe simulationapproach
describedabove suggestour formal verificationapproachA tracechecler canbe interpretedas
an automatonacceptingexecutions.We could thus use existing model-checkingools to verify
that eachexecutionof the systemis acceptedoy the tracechecler. We believe that thereis no
inherentdifficulty to automatethis partial formal verificationprocesdor LOC formulas,though
it hasnot beendoneyet.

Model checkingtools usuallyreducethis language containmenproblemto reachabilityanaly-
sis of the statespacethatincludesstatesof both the systemandthe tracechecler. Unfortunately
model checlers cantypically dealonly with finite statespacesA checler for an LOC formula
canbe interpretedas a finite stateautomatononly if the size of the queueit usescan be fixed
a priori. This is not alwaysthe case,as exemplified by the tracechecler for the constraint(2).
On the other hand,mary LOC formulasdo have correspondindinite-statetrace checlers. For

example,the rate constraint:
t(Displayli + 1]) — t(Displayli]) = 10 (16)

compareghe annotationt of any two consecutre occurrence®f the event Display. To check
this formula, the trace analysisalgorithm (seeSectionV-A) only needsto storethe annotation
t of two consecutie occurrence®f Display at ary giventime, i.e. only a constantamountof
memoryis needed.

From the above discussionwe give the following consenrative rule to decideif the checler

for a particularLOC formula can be expressedy a finite-stateautomaton.
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Rulel1: If anLOC formulasatisfythe following conditions thenit hasa correspondindinite-

statetracechecler:

(a) theindex variable: appearsonly in index expressiongruling out, for example,the jitter

constraint(3)),

(b) all index expressionsindex the sameevent, (ruling out, for example, the lateny con-
straint (2)),

(c) all index expressionsare linear expressionsin 7 (ruling out, for example, the formula
val(A[#?]) = 1), and the differencebetweenary two of themis a constant,i.e. they all
have the same: coeficient, but possibly different constantcoeficients (ruling out, for

example,the formula val( A[i]) = val(A[21])).
AlthoughRule 1 mayappeanquiterestrictive, still mary interestingpropertiessatisfyit, including
rate (1) andthroughput(4) formulas.

Let n bethe maximumdifferencebetweenwo index expressionsn a givenformulasatisfying
Rule 1, and let m; be the largestof all index expressionsevaluatedfor a particular value of
1. Evaluating the formula for ary value of i requiresknowing annotationsof at mostn + 1
consecutre occurrence®f theindexed event. Thus,if the tracechecler maintainsa list of n+ 1
mostrecentannotationsof the indexed event, the value of the formula for somevalue of i can
be computedas a statepredicateafter the m;-th occurrenceof the indexed event.

For example,for therateconstraint(16),n is 1, andm,; are2,3,...fori =1,2,.... Assuming
that variablesDisplay_t and Display_t_last areusedto storethe valuesof the annotationt for
the currentandlastinstancef Display respectiely, andthat Booleanvariable Display_occur
is true wheneer Display occurs,except for the first time (first occurrencemust be skipped

sincem; is never 1), we can corvert the rate constraint(16) into the statepredicate:
Display_occur = Display_t — Display_t_last = 10 . @an

Note that statepredicatesan be easily corvertedinto LTL formulasby prefixing themwith the
alwaysoperatorQd.

To formally verify formulasnot satisfyingRule 1, we limit checlersto finite memory and
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designatespecialstatesvherecheckingthe formulawould requireallocatingadditionalmemory
but noneis available.Sucha statemay or may not be reachedduring the reachabilityanalysis.If
it is, the resultof the formulaverificationis inconclusve. More precisely the formal verification
can have one of threeoutcomes:

« acounterexampleis found shaving that the systemdoesnot satisfy the property

« the propertyis satisfied,all reachablestateare searchedvithout finding a counterexample

or reachinga statewherememoryis exhausted,
« inconclusve, reachabilityanalysisfinds no counterexamples,but stateswhere memoryis

exhaustedare reachable.

For example,the lateng constraint:
t(Displayli]) — t(Stimuli[i]) < 25 (18)

cannotbe modeledby ary finite automatabecausehere can be arbitrarily mary occurrences
of Stimuli beforez-th occurrenceof Display (intuitively, we assumethat Display[z] always
occursafter Stimuli[z]). However, if we limit the numberof storedtime stampsof Stimuli to,
say 50, thenwe can simultaneouslycheckthe following two properties:

PL  Thereare never more than 50 occurrencef Stimuli betweeni-th occurrencesof

Stimuli and Display.

P2. If P1 holds,then(18) holds.

Obviously, if P1 and P2 both hold thenso does(18), andif P2 is false, sois (18). However,
if P2 holds,but P1 doesnot, the resultis inconclusve.

To specify P1 and P2, assumethat the trace checler keeps51 mostrecenttime stampsfor
Stimuli and Display in arraysDisplay_t and Stimuli_t suchthat z-th time stampis storedat
position (z mod 51) of the arrays.Also assumethat variable Display_i and Stimuli_i (which
take valuesfrom 0 to 50) keepthe index of the mostrecenttime stampsin the arrays.Finally,
assumethat binary variables Display_occur and Stimuli_occur are true when Display and

Stimuli occur respectrely. Then,P1 canbe specifiedwith the following statepredicate:
Stimuli_occur = (Stimuli_i # Display i) . (19)

Sincewe assumethat Display always follows Stimuli, the conditionwhere Display_i equals

Stimuli_i just after Stimuli occurs, indicatesthe buffer overflon. Constraint(18) can be
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expressedas follows:
Display-occur = Display_t[Display_i| — Stimuli_t[Display_i] < 25 , (20)
andfinally P2 canbe expressedasfollows:

Assumption (19) = Formula (20) . (21)

V1. CASE STUDIES

We apply our LOC-basedverification methodologiego threedesignexamples.Thefirst is a
systemlevel designfor set-topvideo processingpPicture-In-Pictue (PIP), which is originally
specifiedwith YAPI [18]. PIP is partially respecifiedand simulatedwith Metropolis erviron-
ment [4]. The secondis an RTL model of a Finite Impulse ResponsdFIR) filter written in
SystemCandis actually part of the standardSystemCdistribution. We usethe generatedrace
checlersto verify a wide variety of functionaland performanceconstraintsThe third is a Task
TransitionLevel (TTL) [9] refinementof a YAPI channeldesign.We useboth traceanalysisand
formal verificationtechniquedo verify the dataconsisteng constraintof the TTL channeland

shov how the formal verification approachworks on checkingimportantlibrary modules.

A. Picture-In-Pictuie

Figure 6 shows the PIP design. TS.DEMUX demultiplexesthe single input transportstream
(TS) into multiple pacletizedelementarystreamgPES).PES PARSERparseghe pacletizedele-
mentarystreamgo obtainMPEG video streamslUnderthe control of the user(USRCONTFROL),
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decodedvideo streamscan either be resized(through RESIZE) or directly feedto JUGGLER
thatcombinegheimagesto producethe picture-in-picturevideos.The entiredescriptionconsists
of approximately19,000lines of Metropolisand YAPI code.With the sampleinput streamwe
used,it produced120,000lines of output representingheaderinformation for the processed

frames.

WINDOW_DATA_OUT 23483 87000
WINDOW win_params_update x_begin: 12 y_begin:
RESIZE field_start field_count: 2 size: 6720

WINDOW win_params_update x_begin: 12 y_begin: §
USRCONTROL write pixels_out: 144
RESIZE field_start field_count: 3 size: 10368

USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876
RESIZE field_start field_count: 4 size: 14016

Fig. 7. PIP SimulationTrace.

At the systemlevel, we canuseLOC to specify the functional properties.In the component
RESIZE of PIR the imagesprocessedirein interlacedformat with alternatingfields of all odd
lines, thenall even. The imagesize shouldonly changeafter a completeframe, eachof which
has? fields, is produced.Therefore,the field sizesof pairedeven and odd fields shouldbe the

same.This propertycanbe expressedasan LOC formula:

size(field_start[2i + 2]) — size(field_start[2i + 1]) =

size(field_start[2i + 1]) — size( field_start|2i]) : (22)

where field_start is aneventatwhich RESIZEstartsto outputa new imagefield. Theannotation
size is the total numberof pixels processedy RESIZE. Figure 7 showns snapshotof the PIP
trace. The generationof the checler for this LOC formula and the actual checkingon the
simulationtracetake lessthan 1 minute of CPU time.

Anotherfunctional propertywe areinterestedn is that the numberof the fields the RESIZE

componentreadsin should be equalto the numberof fields it produces.Two local counters,
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one at RESIZES input part and one at its output part, provide theseannotationsAfter a piece
of video is processedthesetwo countersneedto be comparedo seeif the propertyholds.The

LOC usedto checkthis propertyis:
field_count(in[i]) = field_count(out[i]) . (23)

The eventsin and out are generatedby the input and output parts of RESIZE respectrely
wheneer they finish processinga whole pieceof video. The annotationfield_count represents
the numberof fields processedby the input and outputpartsof RESIZE. The generatiorof the
checler for this formula andthe actualtracecheckingtake lessthan 1 minute of CPU time.

We can also check performancepropertiessuch as lateng. The lateny issuein RESIZE
relatesto the timely responsdo usersize specification.Since PIP is specifiedat the behaior
level, no detail timing information is available. We thereforespecifiesa bound (e.g. 5) on the
numberof fields processedetweenreadinga new size specification(read_size) andthe actual

changein outputimagesize (change_size):
field_count(change_sizeli]) — field_count(read_size[i]) <5 , (24)

whereread_size is generatedvhenaer RESIZE readsa new size specificationfrom USRCON-
TROL, andchange_size is generatedvhenever the size of the outputimageis actuallychanged.
Theannotationfield_count is the valueof a global counterthatis incrementedy onewheneer
RESIZE processes new imagefield. The generationof the checler for this LOC formula and

the actualtracecheckingalsotake lessthan 1 minute of CPU time.

Stimuli : 0 at time 9

FIR Display : 0 at time 13
FSM Stimuli : 1 at time 19
Stimuli = | Display Display : -6 at time 23

DATA Stimuli : 2 at time 29

Display : —16 at time 33

Fig. 8. FIR Designand SimulationTrace.
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B. FIR filter

Figure 8 shaws a 16 tap FIR filter which readsin samplesvhenthe inputis valid andwrites
out the resultwhen outputis ready The filter designis divided into a control FSM and a data
path. The testbenchfeedssampleddataof arbitrarylengthandthe outputis displayedwith the
simulator

We useour automatictracechecler generatotto verify the propertiesspecifiedin constraints
(1) - (5) (of Section Il). The sametracefiles are usedfor all the analysesand eachconstraint
is checled one at a time. The time and maximummemoryusageare shavn in Tablel. We can
seethat the time requiredfor analysisgrows linearly with the size of the tracefile, and the
maximummemory requirements formula dependenbut staysfairly constant.Using LOC for

commonreal-timeconstraintverificationis indeedvery efficient.
TABLE |

CoSTS OF CHECKING CONSTRAINTS (1)-(5) oN FIR

Lines of Trace | 10° 108 107 108

Time(s) | 1 8 89 794

c1 Memory | 28B 28B 28B 28B

Time(s) | 1 12 120 1229

c2 Memory | 28B 28B 28B 28B

Time(s) | 1 7 80 799

3 Memory | 24B 24B 24B 24B

Time(s) | 1 7 77 803

c4 Memory | 0.4KB 0.4KB 0.4KB 0.4KB

Time(s) | 1 7 79 810

5 Memory | 4KB 4KB 4KB 4KB

The simulationtimesfor thesetracesare listed in Tablell. Giventhe large file size,runtime

monitoring (seeSectionV-A.b) may reducethe total verificationtime (simulationand checking)
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sinceno tracefile needsto be actually generatedFor the lateng constraint(the formula (2)),
we implementthe checler asa SystemCmoduleandthe simulationtraceis no longerwritten to
a file but passedo the monitoring moduledirectly. For the tracesize of 100 million lines, the
staticcheckingapproactrequiresl404second®f simulationtime and1229second®of checking
time for atotal of 2633 secondsRuntime monitoringtechniquerequiresonly 1420 seconddor

both simulationand monitoring.

TABLE 1

TIME USAGE OF SIMULATION AND CHECKING FOR CONSTRAINT (2) oN FIR

Lines of Trace 105 106 107 108

Simulationw/o RuntimeMonitoring (s) | 1 14 148 1404

Static Trace CheckingOnly (s) 1 12 120 1229

Simulationw/ Runtime Monitoring (s) | 2 14 145 1420

We also verify constraint(7) to illustrate verification with memory limitation since this
constraints particularlyexpensve in termsof memoryusageTablelll showsthatthe simulation
time grows linearly with the size of the tracefile. However, dueto the useof anannotationin an
index expressionmemorycanno longerbe reg/cled andwe seethat it alsogrows linearly with
the size of the tracefile. Indeed,sincewe will not know what annotationwill be neededn the
future, we cannever remove ary informationfrom the queue.lf the memoryis a limiting factor
in the simulation ervironment, the analysisspeedmust be sacrificedto allow the verification
to continue,asdiscussedn SectionV-A.c. Theresultis shovn in Tablelll wherethe memory
usageis limited to 50KB. We seethat the analysistakes moretime whenthe memorylimit has
beenreached.Information abouttrace patterncan be usedto dramaticallyreducethe running
time undermemoryconstraintsAggressve memoryminimizationtechniquesanddatastructures
canalsobe usedto further reducetime and memoryrequirementsfFor mostLOC formulasand
simulationtraces however, the memoryspacecanbe reg/cled andthe memoryrequirementsre
small.
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TABLE Il

CosTS OF CHECKING CONSTRAINT (7) oN FIR

Linesof Trace(x10*) (2 3 4 5

Unlimited Time(s) | <1 <1 <1 1

Memory | Mem(KB) | 40 60 80 100

Mem Limit | Time(s) | <1 61 656 1869

(50KB) | Mem(KB) | 40 50 50 50

C. SimulationTrace Analysisfor TTL Channel

Y-chart Application Programminginterface (YAPI) is a model of computationfor designing
signal processingsystemg18]. It is basicallya Kahn processnetwork [16], extendedwith the
ability to non-deterministicallyselectaninput port to consumeandan outputport to produce A
YAPI channelmodelsan unboundedrirst-In-First-Out(FIFO) buffer. Asynchronouslya writer
processwritesdatainto oneendof thechannelanda readerprocesseadsdatafrom the otherend
of thechannel A designmethodologybasedon YAPI wasproposedn [5]. It includesrefinement
of the YAPI channelinto a lower-level abstractioncalled Task Transition Level (TTL) [9]. The
refinementis shovn in Figure9.

At the TTL level, the channelis modeledwith a boundedFIFO buffer. The mutual exclusion
and boundarycheckingof the boundedFIFO buffer is guaranteedoy a central protocol. As
Figure9 shows, the TTL channelhasa boundedrFIFOBoundedifo) whosesizeis setat design
time, anda controlmediumRdWrTheshold which implementsa protocolto guaranteeorrectly
writing to and readingfrom the FIFO buffer. We use a writer procesdDataGer) to write a
seriesof datainto the channeland a readerprocessgun) to readthe datafrom it. To verify
the correctnesof the refinement,we focus on the verification of the TTL channel,which is
normally a library modulethat needsto be frequentlyreused We first checka propertythatis
suitablefor both LOC andLTL, “the datareadby Sumis always greaterthan or equalto 0”,
andwe call it “non-negative” property Anotherimportantpropertythat can be expressedwith

LOC is dataconsisteng of the TTL channel,i.e. the input dataof the TTL channelshouldbe
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YAPI Channel

YapiChannel @

RdWrThreshold

Fig. 9. YAPI Channeland TTL Channel.

readfrom the channelin exactly the sameorder without a loss. In the rest of this section,we
apply both assertioncheckingand formal verification techniqueson the TTL channelfor these
two properties.

TheTTL channekhownin Figure9is initially specifiedn MetropolisMeta-Model(MMM) [4].
We simulateit in the Metropolis environment, and produce simulation traceswith different
lengths.Whenthe writer DataGenwrites a datainto the TTL channel,it producesan event of
prepared; whenthereaderSumreadsa datafrom the channeljt producesaneventof processed.
We usethe annotationdata to representhe value of datawritten into or readfrom the channel.

The non-n@ative constraintis definedin LOC as:
data(processed|i]) >0 , (25)
andthe dataconsisteng constraintis definedas:
data(prepared[i]) = data(processed]i]) . (26)

Theautomaticchecler generators usedto parsethe definitionfile (seeFigure10) for thetrace
formatand LOC formulas,and generatea C++ sourcefor the tracechecler. After compilation,
we use the executablechecler to verify that both of the LOC formulas (25) and (26) hold
on tracesof 10° to 10° lines. The time and memory usageof the trace analysisare shavn in
TablelV.
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[LOC: non_negative]
formula: data(processed][i]) >= 0
annotation: event data
trace: "Data is %s %d"

[LOC: consistency]
formula: data(prepared]i ]) == data(processed][i])
annotation: event data
trace: "Data is %s %d"

Fig. 10. Definition of the Trace Formatand LOC formulas

TABLE IV

CoSTS OF TRACE ANALY SIS FOR THE CONSTRAINTS (25) AND (26)

Lines of Trace 105 10 107 108

Formula(25) | Time(s) <1l 5 44 432

Mem(Bytes)| 4 4 4 4

Formula (26) | Time(s) <1 8 84 767

Mem(Bytes)| 172 172 176 172

D. Formal Verification for TTL Channel

Fromthe MMM specificationof the TTL channeldesign,we usethe Metropolisbaclkendtool
to generatea corresponding?romela(SPIN’s modelinglanguage)description[12], which can
be verified by the model checler SPIN for a particularLTL formula. The TTL channeldesign
has 634 lines of MMM sourcecode and 2049 lines of Promelacode after translation.In the
Promelacode,We use Booleanvariablesprepared_occur and processed_occur to indicatethe
conditionsthatinstance®f prepared andprocessed occut respectiely. The codeblocks,which
manipulatehe auxiliary datastructuresareembeddednto the PromelacodeappropriatelyThus,

the non-n@ative constraint(25) can be expressedn LTL as:
O(processed_occur = processed_data > 0) (27)

whereprocessed_data storesthe mostrecentdatareadby Sum With the bitstatetechnique13],
SPIN verifiesthe LTL formula (27) within 2 hourson our 1.5GHzAthlon machinewith 1GByte
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of memory The samesetupis usedfor all casestudiesin this section All therelevantverification
parametersrelisted in Table V.

From the discussionn SectionV-B, we know that the dataconsisteng constraint(26) of the
TTL channelcannotbe expressedby LTL directly. Therefore,we have to assumethat, “after
the x-th write by DataGen at most 31 writes canbe donebeforethe x-th readby Suni. & Then
we usearraysprepared_data|32] and processed_data[32] to storethe recent32 piecesof data
written by DataGenand read by Sumrespectiely. We also use prepared_i and processed_i
(which take valuesof 0 to 31) to keepthe index of the most recentdatain the arrays.The

assumptions written in LTL as:
O(prepared_occur = prepared_i # processed_i) , (28)

andit is verified to hold by SPIN (seeTable V). The dataconsisteng constraintis written in
LTL as:

O(processed_occur = prepared_data[processed_i| = processed_data[processed_i]) . (29)

Becauserocessed|z| alwaysfollows prepared|x], the dataconsisteng only needgo bechecled

when an instanceof processed is occurring. The formula:
Assumption (28) = Constraint (29) (30)

is verified to hold by SPIN, andall the relevantverificationparametersrealsolistedin TableV.

VIl. CONCLUSIONS

In this paper we discussthe verification aspectsof the quantitatve constraintformalism,
Logic of Constraints.We compareLOC with LTL, find that LOC hasa different domain of
expressvenesshan LTL, and concludethat LOC can expressimportantpropertiesthat cannot
be expressedby LTL, on which the traditional property specificationlanguagesare based.We
analyzecompleity of LOC verification,proposewo feasibleverificationapproachessimulation
traceanalysisand model checking.We also presenta setof casestudieson theseapproacheso

demonstrateéheir usefulnessand effectiveness.

8This assumptioris derived from the actualbuffer size of the TTL channel.
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TABLE V

SUMMARY OF FORMAL VERIFICATION FOR THE LTL FORMULAS (27), (28) AND (30)

LTL Formula 27) (28) (30)

Depthreached 48669 51257 57221

Statesstored(x 10%) 2.21872 | 2.2431 2.3156

Statetransitions(x10%) | 2.86427 | 2.85523 | 3.09726

Total memory (MB) 747.936 735.098 819.517
CPUtime 1h37m24s| 1h37m55s| 3h03m18s
Hashfactor 4.83946 4.78686 4.63699

We are currently working on a few future enhancementand novel applications.One such
applicationwe are consideringis to integratethe LOC monitor with a simulatorthatis capable
of non-deterministicsimulation, non-determinismbeing crucial for designat high levels of
abstraction.We will use the checler to checkfor constraintviolations, and once a violation
is found, the simulation could roll back and look for anothernon-determinisnresolutionthat
does not violate the constraint.In addition, to help the designereasily producetraces for
constrainttheckingwe planto developembeddedaodeblocksfor tracegeneratiorin theform of
libraries,similar to embeddeaonstrainifanguagesWe alsoplanto retagetthe baclendchecler
generatiorfor differentdevelopmenternvironments(e.g.System\érilog, Verilog, VHDL) to allow
tight integration of monitorsfor thoseervironmentsaswell. Lastly, we planto extendthe LOC
formalism with the universalquantifierV and existential quantifier4, so that we can express

more interestingconstraints.
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APPENDIX |

Before we presentthe proofs of Theoreml andLemmal (in SectionlV), we needto define
systemsthat we are dealingwith. Formally, a finitely-valued finite-statesystemis a sextuple
(S,80,T,E,G, a) where:

« S is the setof statesthat mustbe finite,

e Sy C S is the setof initial states,

« T'C S x S isthetransitionrelation,

. FE is the setof eventnamessuchthat for eache € E the valuedomainV (e) is finite,

« G:{(e,v):e€ E,veV(e)} 27T is the geneation function

« annotationaxioma is an LOC formulathat may refer to valuesof eventin E, but alsoto

someannotationsValue domainsof all the annotationsappearingn « mustbe finite.
We useG(e) as an abbreiation of [,y (., G(e, v). Intuitively, G(e, v) is the setof transitions
on which e is generatedvith value v.

An annotatedbehaior (3, A) is in the setof behaiors of the system(S, Sy, T, E, G, «) if it
satisfiesa, andthereexists a (possiblyfinite) sequencef statessg, s1,... suchthat:

e 50 € S,

e (8i-1,8;) € T for all i > 0 for which s; exists,

. for all e € E, all transitions(s; 1, s;), and all positive integersn: if e is generatedon

(si_1, s;) for the n-th time, thenit mustbe possibleto generatethe value (e, n) on that

transition,i.e. if it holdsthat:

(Si—lasi) € G(e) s

7

n={j:1<j<k (sj_1,s;) € Gle)}

thenthe following mustalso hold:

(8i-1,8:) € G(e, B(e,m)) -
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A. Proof of Theoem1

We will reducethe Post Correspondenc®roblem(PCP) [14] to checkingwhethera finitely-
valuedfinite-statesystemwith LOC annotationaxiomssatisfiesan LOC formula. Recallthat a
PCPinstanceis given by two orderedlists of strings,as, ..., a, andby,...,b,. The questionis
whetherthereis a sequencef integersi,, . . ., i, (all form 1 to n) suchthatstringsa;, a;, . .. a;,
andb;, b;, ...b;, arethesame.

We now describethe systemusedin the reduction. The statesof the systemare 4-tuples
(1, Ja, %, J») Wherei, andi, rangefrom 1 to n, j, rangesbetweenl and the length of the
string a;,, and j, rangesbetweenl andthe lengthof the string b;, . Initial statesarethosewhere
Jja = j» = 0. In addition,thereis a specialstatedenotedoy DON E. The systemhastwo events
a andb, both valuedfrom 0 to n. Informally, the systemmovesinto (i,, ja., %, j») afterit sees
the j,-th letter of a;,, which mustalso be the j,-th letter of b;,. Formally, the transitionsin the
systemare the following:

o From (ig,ja — 1,4, 56 — 1) 10 (4a, Ja, %, Jo) if je-th letterin string a;, is the sameas j,-th
letterin string b;,. If j, = j» = 0, theneventa with valuei, andeventb with valuei, are
generatedOtherwise,no eventsare generatedn this type of transitions.

o From (i, jo — 1,4, jb) 10 (Z4, ja; %, 1) if b;, hasy, letters,and j,-th letterin string a;, is
the sameasthe first letter in string b;; . A b eventwith valueij is generatedn this type of
transitions.

o From (i, ja, %, 55 — 1) to (i, 1,4, jp) if a;, hasj, letters,and j,-th letter in string b;, is
the sameasthe first letter in string a;; . An o eventwith values,, is generatedn this type
of transitions.

o From (iq, ja, %, j») to (i, 1,4, 1) if a;, hasj, letters,b; hasj, letters,andthe first letters
in stringsa;, andb;; arethe same.An a eventwith values,, anda b eventwith value,
are generatedn this type of transitions.

o From (is, ja, %, j») to DONE if a;, hasj, letters,andb;, hasj, letters.Eventsa andb are

generatedn this type of transitions,both with valueO.

The systemhasa single binary annotationcalled good, and the annotationaxiom is:

good(ali]) < (val(a[i]) = val(b[i]) A ((i = 1) V good(ali — 1])))
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PCPhasa solutionif andonly if the systemabove doesnot satisfythe LOC formula:
val(ali]) =0 .

Indeedthe formulaabove is violatedif andonly if thereis a pathin the systemfrom someinitial
stateto DON E, suchthatalongthis patha andb are generatedhe samenumberof times (say
k+ 1), andthefirst £ valuesof of ¢ andb arenot only equalbut alsolargerthanO. If iy, ...,

denotesthosevalues,thenit is not hardto checkthat stringsa;, a;, . .. a;, and b, b;, ...b;, are

k
the same.

We have just shavn that PCPcanbe reducedo checkingwhethera finitely-valuedfinite-state
systemwith LOC annotationaxiomssatisfiesan LOC formula. Sincethe formeris known to be

undecidableijt follows that the latter is alsoundecidable.

B. Proof of Lemmal

In this sectionwe define the Preslirger formula SY S; whose existencewas claimed by
Lemmal. We do soin several steps.First, we characterizehe transitionrelationwith formulas
TRAN;, for eachpair of states(s,q). Theseformulas have free variablest,,, one for each
transition (p, ) € T. We constructl’RAN,, suchthat an assignment,, = n,, € Z satisfies
TRAN,, if anonly if thereis a pathin 7" from s to ¢ that crossedransition(p, r) exactly n,,
times. We set:

TRAN;; = FLOW,, A CONN;

Formula F LOW,, requiresthat the numberof times a path entersthe statemust be equalto
the numberof timesit leavesthe state.The exceptionsto this rule are statess, which mustbe

exited one extra time, and ¢, which mustbe enteredone extra time. Formally:

FLOW, = J\ (t >0)

(p,r)eT
AN tw+Indieg= >ty +Indiy) |
reS (p,r)eT (ryw)eT

whereIndp is 1 if propositionP holds,andit is O otherwise.
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For example,for the systemin Figure 2:
FLOW13 :(tlg Z 0) A=A (t84 Z 0)
A(tig =tog =tg1 + 1 =t + t1a)

A (tia +tge = tys = tsg = ter = t7g = tgu) -

Unfortunately F'LOW;, is not sufficient to fully characterizgpathsfrom s to ¢g. For example,
the assignment |y = to3 = 1, t31 = t14 = 0, tas = tsg = tg7 = t7g = tgs = 2 satisfiesSFLOW 3
but it doesnot describea pathfrom 1 to 3. Rather it describesa pathanda loop not connected
to the path. To eliminatesuchloops,in additionto F'LOW,, we muststatethatif ¢,, > 0, then
theremust exist a simple pathfrom s to p, i.e. theremustexist a sequencesy, ..., sy_1, s Of
no morethan |S| states,suchthats, = s, sy = p, andt,, ,5, > 0 for all i = 2,...,k. Thisis
statedby formula CON N, which uses|S| variablesy,, to representhis path.Here,we assume
that S is a subsebf integers.This assumptiorcanbe madewithout lossof generality asinteger
encodingscan be easily definedfor ary finite set.If the pathis of length! < |S|, we require
thatv, = p for all £ > [. So, if the valueof v is not p, we arestill in the active portion of the
path andwe mustrequirethatt,, > 0, wherez andy are valuesof v, andv,,, respectiely.

Formally, we define:

CONN, = N\ (> 0)=3v1...vis: (01 = 5) A (5 = )

(pr)€T
IS]-1
AN (v =p)=>(vks1 = p)
k=1
IS|-1
AN ==\ (e =2)A @1 =) Aty > 0))) -
k=1 (z,y)eT

It may appearl’ RAN,, needsa term similar to CONN; statingthatif ¢,, > 0, theremust
exists a simple pathfrom r to ¢, but in fact, this statements alreadyimplied by the conjunction
of FLOW,, andCON Nj.

For example,for the systemin Figure 2:

CONN; = ((t45 > 0):>(t14 > 0)) Nooo,
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implying that:
TRAN;3 =(t3; > 0)
A (tig = tog = tg1 + 1)
A (tig = tys = tse = ter = lyg = tga = 0) .

In the next step,we useTRAN,, to characterizegenerationrelation with formulasGEN,
for eachpair of states(s, ¢). Theseformulashave a free variablesg, for eachevente € E. We
constructG E Ny, suchthat an assignmeny, = n. € Z satisfiesTRAN;, if anonly if there
exists a pathin 7" from s to ¢ alongwhich evente is generatedxactly n, times.It is not hard
to seethat:

GEN,= 3.3t ... :TRANJAN(0= 3 1)

overall tp, s.t. (p,r)€T = (z,y)€G(e)

For example,for the systemin Figure 2:

GEng :Eltlg e E|t84 . TRAN13
A (gzy = tia + Tz + t31)

A (Gzy = tas + tse + ter + trg +tga)
which canbe simplified to (g, = 0) A (35 > 0: g5, = 3j + 2).

So far, we have characterizeda systemindependentlyof the LOC formula. Next, we will
defineSY S; for a specificinterpretation/ of the setof eventexpressionst,. But first, we need
to introducesomeadditional notation. In the rest of the section,we will usee,, a., and b, to
denotethe event nameand constantsappearingin event expressione, i.e. we will assumethat
every e is of the form val(e.[aci + b]) or f(ec]aci + be]), where f is an annotationWe say that
two eventexpressions ande’ are similar, andwrite € ~ €', if they referto the sameevent,i.e.
e. = e« andthey bothrefer to the value of e, or they both refer to the sameannotationof e..

We say that an orderedtuple (qo, 51, ¢1, - - -, sn, qn) € SV is aninstanceof interpretation
I of & if the following is satisfied:

(1) qo is aninitial state,i.e gy € Sp.

(2) (sn,qn) is atransition,ieVn=1,...,N : (sp,q,) € T

(3) Thereexistsa partition&y, ..., Ey of £; suchthatfor alln =1,..., N andall € € £, the

following holds:
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a) if e is of the form val(ec[a.i + b ]), thenthe evente, canbe generatedn transition

(Sn, gn) With the valuerequiredby I, i.e. the following holds:

(sn,0n) € Glec, I(€)) ,
b) I assignghe samevalueto all similar event expressionsn the samepatrtition, i.e.:
Ve €&, : (€ ~e) = (I(¢) =1(e)) .
We call ary sucha partition an instantiating partition of instance(qo, s1, - - -, gn)-
Intuitively, by traversinga pathvisiting (s1,41) - - - (sn, gv) We could generatell eventvalues
requiredby 7. However, SY S; mustalsoensurethatthesevaluesaregeneratedt correctvalues

of index expression.To do so, SY'S; usesa variabley,;, for eache € E andeachj =1,..., N,

to counthow mary timesevente is generatedn a pathsegmentform ¢;_; to s;. Formally:
N

sysi= \/ 3...3y,;... :/\(GENqn_lsn(...,yen,...)

(qusla“'an) (811'“58N) over all Yej s.t. eEE,lstN n=1

n

A /\ (Z(yeek + Ind(s, qp)ec(e.)) = et + be)> ,

66871, k=1
wherethe first disjunctionrangesover all instancesf I, the seconddisjunctionrangesover all

instantiatingpartitionsof the currentinstanceandGEN,, .. (- - -, Yen, - - - ) denoteghe formula
obtainedform GEN,

dn—18n

by substitutingvariablesg, with y., for all e € E. The equation
requiresfor all e € &, thatthe total numberof timesthat e, is generatedn the path from the
initial stateto the transition(s,, g,) is exactly asrequiredby the index expressiona.i + b..

For example, the interpretation] which assignsl both to val(z[3i]) and val(z.[i]) in for-
mula(11) hasasingleinstancg(1, 3, 1, 8, 4) with theuniqueinstantiatingpartition&; = {val(x;[3i])},
&, = {val(z,[i]) }. Therefore:

SY St =3Yz113Yz12Yer13Yay2 (GEN13(2/z117 Yzs1) N GEN1g(Yz,2, Ys2)
A (Yzy1 + 1 = 30)

A (yz21 + Yzo2 + 1= Z)) .
One cancheckthat:
GENl?»(yzllayml) :(ngl = 0) A (El] >0:y;1 =37+ 2)
GENIS(meaywz?) :(3.7 >0: Y2 = 3.7) A (3.7 >0 Ygp2 =57 + 4) )
so SY'S; canbe simplifiedto (35 > 0 : 55 = i), aswe anticipatedin SectionlV.



