
VERIFYING LOC BASED FUNCTIONAL AND PERFORMANCE
CONSTRAINTS

Xi Chen, Harry Hsieh
University of California, Riverside, CA

Felice Balarin, Yosinori Watanabe
Cadence Berkeley Laboratories, Berkeley, CA

Abstract

In the era of billion-transistor design, it is critical to es-
tablish effective verification methodologies from the system
level all the way down to the implementations. Assertion
languages (e.g. IBM’s Sugar2.0, Synopsys’s OpenVera) have
gained wide acceptance for specifying functional properties
for automatic validation. They are, however, based on Lin-
ear Temporal Logic (LTL), and hence have certain limita-
tions. Logic of Constraints (LOC) was introduced for spec-
ifying quantitative performance constraints, and is particu-
larly suitable for automatic transaction level analysis. We
analyze LTL and LOC, and show that they have different
domains of expressiveness. Using both LTL and LOC can
make the verification process more effective in the context of
simulation assertion checking as well as formal verification.
Through industrial case studies, we demonstrate the useful-
ness of this verification methodology.

1 Introduction

As embedded systems today are becoming more inte-
grated and complex, system verification continues to be a
major challenge. More than ever, design and verification
methodologies at higher levels of abstraction are required to
minimize the design cost of an electronic product. To make
the practice of designing from high level system specifica-
tion a reality, verification methods must accompany every
step in the design flow. Specification at the system level
makes formal verification possible [6]. Designers can prove
the property of a specification by writing down the property
they want to check in some logic (e.g. Linear Temporal Logic
(LTL) [10]) and use a formal verification tool (e.g. the model
checker Spin [11]) to run the verification. Formal verification
checks the entire state space of a design to verify some spec-
ified property without any uncertainty. At the lower level,
however, the complexity can quickly overwhelm the auto-
matic tools, and the simulation becomes the primary means
for verifying the behavior of a design.

The confidence of a simulation verification mainly de-
pends on the design of test cases. Designers can insert
embedded assertions into their HDL (Hardware Description
Language) descriptions to help uncover bugs of system de-
signs during simulation. Today’s embedded assertion lan-

guages capture those simple logics as language/platform spe-
cific library blocks (e.g. handshake assertion) and use a set
of extended temporal logic to operate on those blocks for
expressing more complex assertions. IBM’s Sugar2.0 [8]
is chosen by Accellera as the standard formal property
specification language (PSL) for assertion-based verification.
A similar assertion specification language from Synopsys,
OpenVera [1], can be used to specify both simple temporal
sequences of events and complex temporal formulas.

To effectively specify high-level quantitative perfor-
mance and functional constraints, a formal constraint lan-
guage, Logic Of Constraints (LOC), has been proposed
in [4]. LOC can be used to express a wide range of interest-
ing constraints including real time performance constraints
and functional data consistency constraints. In this paper,
we focus on the expressiveness and analyzability of LOC.
Through several examples, we claim that LOC and LTL are
expressively incomparable. Although it has been proven that
an LTL formula can be translated to an equivalent Büchi au-
tomaton for verification [15], LOC appears to be more dif-
ficult to be formally analyzed. We review the simulation-
based trace analysis methodology for LOC formulas [7], and
then present our formal verification approach for LOC with
help of the model checker Spin [11]. In the case studies,
a TTL (Task Transition Level) communication channel de-
sign [5, 9] specified in Metropolis Meta-Model [3] is used
to demonstrate the usefulness and effectiveness of our LOC-
based quantitative constraint verification.

The rest of the paper is organized as follows. In the
next section, we review Logic Of Constraints (LOC), Lin-
ear Temporal Logic (LTL), and their typical usage. In Sec-
tion 3, we analyze the expressiveness of LOC. In Section 4,
the approach of simulation trace analysis for LOC formu-
las is reviewed. Then, we discuss our formal verification
approach for LOC formulas. In Section 5, we present the
case studies on validating a TTL channel design with LOC
constraints. Both techniques of simulation trace analysis and
model checking are utilized and tested. Section 6 concludes
the paper and gives our future work.

2 Background

In this section, we review the salient aspects of our quan-
titative constraint formalism, Logic Of Constraints (LOC)
and the popular temporal logic for functional property speci-

fication, Linear Temporal Logic (LTL). We discuss their typ-
ical usage and the typical constraints they can express.

2.1 Logic Of Constraints

Logic Of Constraints [4] is a formalism designed to rea-
son about traces from the execution of a system. It consists of
all the terms and operators allowed in sentential logic, with
additions that make it possible to specify system level quan-
titative functional and performance constraints without com-
promising the ease of analysis. LOC can be used to specify
very common and useful real-time performance constraints:

• rate, e.g. “Display’s are produced every 10 time units”:

t(Display[i + 1]) − t(Display[i]) = 10 , (1)

• latency, e.g. “Display is generated no more than 25
time units after Stimuli”:

t(Display[i]) − t(Stimuli[i]) ≤ 25 , (2)

• jitter, e.g. “every Display is no more than 4 time units
away from the corresponding tick of the real-time clock
with period 10”:

| t(Display[i]) − (i + 1) ∗ 10 | ≤ 4 , (3)

• throughput, e.g. “at least 100 Display events will be
produced in any period of 1001 time units”:

t(Display[i + 100]) − t(Display[i]) ≤ 1001 . (4)

The basic components of an LOC formula are: event
names (e.g. Display and Stimuli), instances of events (e.g.
Display[4] for the fourth instance of the event Display in
the current execution given as a trace of event instances), in-
dices of event instances (e.g. 0, 1, ..., etc), the index variable
i and annotations (e.g. t). The rate constraint (1) requires
that the difference between the values of annotation t for any
two consecutive Display instances should equal to 10.

It should be emphasized that time is only one of the pos-
sible annotations. Any value that may be associated with an
event (e.g. power, area) can be used as an annotation. In
the case of concurrent events, the values of time annotation
should be the same. The indices of instances of the same
event denote the strict order as they appear in the execution
trace. There is no implied relationship between instances of
different events. LOC can be used to express relationship be-
tween the annotations of the different instances of the same
event (e.g. rate), or instances of different events (e.g. la-
tency). In addition, LOC can also be used to specify quanti-
tative functional constraints like data consistency.

2.2 Linear Temporal Logic

Like LOC, Linear Temporal Logic (LTL) is defined
over executions of a system, i.e. linear sequences of state
transitions. LTL formulas are constructed using terms, i.e.

Boolean expressions on variables or system states, classical
Boolean operators such as ¬ (not), ∨ (or), ∧ (and), → (im-
ply), and the linear temporal operators

�
(always), ♦ (even-

tually), X (next) and U (strong until). For example,
�

(A) is
true if A is true for any state, ♦(A) is true if A eventually
becomes true in a future state, X(A) is true if A is true in the
following state, and A U B is true if B eventually becomes
true in a future state and A is true from the current state to
that future state.

It has been proven that LTL formulas can be translated
to equivalent Büchi automata [15]. Based on this theory,
formal techniques like model checking are developed and
utilized for verification of both digital designs (e.g. For-
malCheck [2]) and software protocols(e.g. Spin [11]). LTL
is also widely used in the formal property specification for
simulation-based assertion verification [1, 8], which is im-
portant to assure the integration and correctness of reusable
IP (Intellectual Property) blocks.

3 LOC v.s. LTL

In this section, we discuss the expressiveness of LOC
and compare it with LTL. For LTL, we only restate here its
well known properties. Note that LTL is defined on the state
transition level where any change on the system state can
be accounted for, while LOC works on a higher abstraction
level, in which only the events observable from the system
and their annotations are considered. However, this differ-
ence is just a technicality, because it is not difficult to hide
state transitions so that LTL and LOC are defined over the
same kind of objects. Through several examples and claims,
we will conclude that LOC and LTL are incomparable and
have different domains of expressiveness.

Claim 1: There are LOC formulas that can be expressed
with LTL.

Since both LOC and LTL contain basic Boolean expres-
sions, a subset of LOC constraints that specify simple global
Boolean conditions can be expressed in LTL also. For exam-
ple, the constraint, “the annotation data of the event Display

is always greater than 100”, is expressed in LOC as:

data(Display[i]) > 100 . (5)

If we use a variable Display data to store the value of data

in the design, and use a flag Display occur to indicate that
an instance of the event Display occurs, this constraint can
be easily expressed in LTL as:

�
(Display occur → (Display data > 100)) . (6)

Claim 2: There are LOC formulas that cannot be ex-
pressed with LTL.

Many quantitative constraints that can be easily ex-
pressed with LOC are not suitable for LTL. Specifically,
when more than one events need to be compared in the same
constraint, LTL is not expressive enough to be used. For
example, the latency constraint (2) requires comparing each
instance of Stimuli with the instance of Display with the

same instance index. After the x-th Stimuli occurs, it is un-
known when the x-th Display will occur, i.e. the number
of Stimuli instances that may occur before the x-th instance
of Display could be arbitrarily large. 1 Therefore, this con-
straint cannot be modeled by a finite-state system, and it is
impossible to express it using a formalism built on finite au-
tomata such as LTL.

To show that some LTL formulas cannot be expressed
in LOC, we first recall that any property can be expressed
as a conjunction of a safety and a liveness property. Safety
properties are those which can always be shown violated by a
finite trace. For example, any execution that does not satisfy
the property “the value of A is never 1” must have a finite
prefix which ends with the value of A being 1. On the other
hand, liveness properties can never be violated by a finite
trace. For example, the property “for every request there is a
response” can never be violated by a finite trace because there
is always a chance that a response may come some time in
the future. 2

Claim 3: LOC can express only safety properties.
Indeed, if a trace does not satisfy an LOC formula, then

there must exist an i for which the formula is false. We can
evaluate all index expressions for that value of i. Since there
can only be finitely many of these expressions, there must
exist some point in the execution such that, for that particular
value of i, the formula does not refer to any event occurrence
beyond that point. Clearly, the execution prefix up to that
point is sufficient to disprove the property. On the other hand,
LTL is capable of expressing some liveness properties, for
example

�
♦A, i.e. “A occurs infinitely often”. From claims

(1)-(3), we can conclude the following:
Conclusion: LOC and LTL are incomparable.
Generally, LOC is designed for the specification of

quantitative performance and functional constraints at the
transaction level where system events and their annotations
are considered. Because of the use of index variable i, LOC
is beyond the finite automata domain. On the other hand,
LTL is suitable for the specification of functional constraints,
and can effectively express the temporal patterns for system
state transitions. Because of this difference, LOC can express
important properties that cannot be expressed with LTL, on
which the traditional property specification languages are
based.

4 Verification Approaches for LOC Formulas

In this section, we discuss the analyzability of LOC. We
first review the simulation-based trace analysis approach pre-
sented in [7], and show that LOC constraints can be easily
verified in an assertion-based simulation verification environ-
ment. Then, we discuss how to utilize the existing formal
verification technique, i.e. model checking, to verify an LOC
formula.

1In this paper, we always use i as the index variable in an LOC formula and x to
represent an arbitrary value of i.

2To disprove a liveness property, we need to show that the system can enter an
infinite cycle in which there are unfulfilled requests.

Automatic
Checker Generation

Simulation Trace Format

C++ Source of the Checker

 LOC formula

Simulation Traces

Evaluation Report

Executable Checker

Compilation

Execution

Figure 1. Trace Analysis Methodology.

4.1 Simulation Verification of LOC Formulas

The methodology for simulation verification with an au-
tomatically generated LOC checker is illustrated in Figure 1
[7]. From the specification of LOC formulas and a trace for-
mat, the automatic checker generator is used to generate a
C++ source of the checker. The source code is compiled into
an executable that takes in simulation traces and reports any
constraint violation.

The algorithm of LOC checking progresses based on the
index variable i. Each LOC formula instance is checked se-
quentially with the value of i being 0, 1, 2, ... etc. A formula
instance is a formula with i evaluated to some fixed positive
integer value, e.g. Display[30] − Display[29] = 10 is the
29th instance of the formula (1). Starting with i equal to 0,
the LOC checker scans the trace sequentially. If any relevant
data is read in, the checker stores it into a queue data struc-
ture and checks the formula; otherwise, the checker keeps
scanning the trace.

The time complexity of the algorithm is linear to the size
of the trace since evaluating a particular Boolean expression
takes constant time. The memory usage, however, may be-
come prohibitively high if one tries to keep the entire trace
in the queue for analysis. As the trace file is scanned in,
the checker attempts to store only the useful annotations and
in addition, evaluate as many formula instances as possible,
and remove from the memory parts of the annotations that
are no longer needed [7]. The trace checking technique can
be easily extended to runtime constraint monitoring, which
is usually run concurrently with the simulation.

4.2 Formal Verification of LOC Formulas

Although our trace analysis enables efficient verification
of LOC formulas in a simulation environment, formal veri-
fication may still be necessary to formally prove properties
of library modules and other small designs for frequent use.
The simulation approach described above suggests our for-
mal verification approach. A trace checker can be interpreted
as an automaton accepting executions. We could thus use ex-
isting model-checking tools to verify that each execution of
the system is accepted by the trace checker. Model checking

tools usually reduce this language containment problem to
reachability analysis of the state space that includes states of
both the system and the trace checker. Unfortunately, model
checkers can typically deal only with finite state spaces. A
checker for an LOC formula can be interpreted as a finite
state automaton only if the size of the queue it uses can be
fixed a-priori. This not always the case, as exemplified by
the trace checker for the latency constraint (2).

On the other hand, many LOC formulas do have corre-
sponding finite-state trace checkers. For example, the rate
constraint:

t(Display[i + 1]) − t(Display[i]) = 10 (7)

compares the annotation t of any two consecutive occur-
rences of the event Display. To verify this formula, the trace
checker (see Section 4.1) only needs to store the annotation
t of two consecutive occurrences of Display at any given
time, i.e. only a constant amount of memory is needed.

From the above discussion, we give the following con-
servative rule to decide if the checker for a particular LOC
formula can be expressed by a finite-state automaton.

Rule 1: If an LOC formula satisfy the following condi-
tions, then it has a corresponding finite-state trace checker:

(a) the index variable i appears only in index expressions
(ruling out, for example, the jitter constraint (3)),

(b) all index expressions index the same event, (ruling out,
for example, the latency constraint (2)),

(c) all index expressions are linear expressions in i (ruling
out, for example, the formula val(A[i2]) = 1), and the
difference between any two of them is a constant, i.e.
they all have the same i coefficient, but possibly dif-
ferent constant coefficients (ruling out, for example, the
formula val(A[i]) = val(A[2i])).

Although Rule 1 may appear quite restrictive, still many
interesting properties satisfy it, including throughput (4) and
rate (7) formulas.

Let n be the maximum difference between two index
expressions in a given formula satisfying Rule 1, and let mi

be the largest of all index expressions evaluated for a par-
ticular value of i. Evaluating the formula for any value of i

requires knowing annotations of at most n + 1 consecutive
occurrences of the indexed event. Thus, if the trace checker
maintains a list of n + 1 most recent annotations of the in-
dexed event, the value of the formula for some value of i can
be computed as a state predicate after the mi-th occurrence
of the indexed event.

For example, for the rate constraint (7), n is 1, and
mi are 2, 3, . . . for i = 1, 2, Assuming that variables
Display t and Display t last are used to store the values of
the annotation t for the current and last instances of Display

respectively, and that Boolean variable Display occur is
true whenever Display occurs, except for the first time (first
occurrence must be skipped since mi is never 1), we can con-
vert the rate constraint (7) into the state predicate:

Display occur =⇒ Display t − Display t last = 10 . (8)

Note that state predicates can be easily converted into LTL
formulas by prefixing them with the always operator

�
.

To formally verify formulas not satisfying Rule 1, we
limit checkers to finite memory, and designate special states
where checking the formula would require allocating addi-
tional memory, but none is available. Such a state may or
may not be reached during the reachability analysis. If it is,
the result of the formula verification is inconclusive. More
precisely, the formal verification can have one of the three
outcomes, unsatisfied if a counter-example is found show-
ing that the system does not satisfy the property, satisfied if
all reachable state are searched without finding a counter-
example or reaching a state where memory is exhausted,
or inconclusive if reachability analysis finds no counter-
examples, but states where memory is exhausted are reach-
able.

For example, the latency constraint (2) cannot be mod-
eled by any finite automata because there can be arbitrarily
many occurrences of Stimuli before the x-th occurrence of
Display (intuitively, we assume that Display[x] always oc-
curs after Stimuli[x]). However if we limit the number of
stored time stamps of Stimuli to, say, 50, then we will si-
multaneously check the following two properties:

P1: There are never more than 50 occurrences of Stimuli

between the x-th occurrences of Stimuli and Display.

P2: If P1 holds, then (2) holds.

Obviously, if P1 and P2 both hold then so does (2), and if P2
is false, so is (2). However, if P2 holds, but P1 does not, the
result is inconclusive.

To specify P1 and P2, assume that the trace checker
keeps 51 most recent time stamps for Stimuli and Display

in arrays Display t and Stimuli t such that the x-th time
stamp is stored at position (x mod 51) of the arrays. Also
assume that variable Display i and Stimuli i (which take
values from 0 to 50) keep the indices of the most recent time
stamps in the arrays. Finally, assume that binary variables
Display occur and Stimuli occur are true when Display

and Stimuli occur, respectively. Then, P1 can be specified
with the following state predicate:

Stimuli occur =⇒ (Stimuli i 6= Display i) . (9)

Since we assume that Display always follows Stimuli,
the condition where Display i equals Stimuli i just after
Stimuli occurs, indicates the buffer overflow. Constraint (2)
can be expressed as follows:

Display occur =⇒ Display t[Display i]

−Stimuli t[Display i] < 25 , (10)

and finally P2 can be expressed as follows:

Assumption (9) =⇒ Formula (10) . (11)

It is natural to search for a general algorithm to check
any LOC formula. Unfortunately, checking LOC is unde-
cidable in general. To show this we can encode two counter

machines using a finite-state system, two integer annotations
to represent counters, and an LOC formula to ensure that
counters are incremented or decremented as necessary. The
decidability of LOC restricted to finitely-valued annotations
remains an open problem, however there are indications that
it is quite hard. For example, in a system with a single event
x taking values from {0, 1, 2, 3}, the formula:

(val(x[i]) = 0 =⇒ (val(x[i + 1]) = 0 ∨ val(x[i + 1]) = 1))∧
(val(x[i]) = 1 =⇒ (val(x[i + 1]) = 1 ∨ val(x[i + 1]) = 2))∧
(val(x[i]) = 2 =⇒ (val(x[i + 1]) = 2 ∨ val(x[i + 1]) = 3))∧
(val(x[i]) = 3 =⇒ (val(x[i + 1]) = 3))∧
((val(x[i − 1]) = 0 ∧ val(x[i]) = 1) =⇒
(val(x[2i − 1]) = 1 ∧ val(x[2i]) = 2 ∧
val(x[3i − 1]) = 2 ∧ val(x[3i]) = 3))

defines the language:

{s : s is a prefix of 0n1n2n3∗ for some n ≥ 0} .

It is not hard to show (e.g. see Example 6.1 in [12]) that
this language is not context-free, and thus cannot be recog-
nized even with a pushdown automaton, let alone a finite-
state one.

5 Case Studies

Y-chart Application Programmer’s Interface (YAPI) is a
model of computation for designing signal processing sys-
tems [14]. It is basically a Kahn process network [13], ex-
tended with the ability to non-deterministically select an in-
put port to consume and an output port to produce. A YAPI
channel models an unbounded FIFO buffer. Asynchronously,
a writer process writes data into one end of the channel and a
reader process reads data from the other end of the channel.
A design methodology based on YAPI was proposed in [5].
It includes refinement of the YAPI channel into a lower-level
abstraction called Task Transition Level (TTL) [9]. The re-
finement is shown in Figure 2.

At the TTL level, the channel is modeled with a bounded
FIFO buffer. The mutual exclusion and boundary checking
of the bounded FIFO buffer is guaranteed by a central proto-
col. As Figure 2 shows, the TTL channel has a bounded FIFO
(BoundedF ifo) whose size is set at design time, and a con-
trol medium (RdWrThreshold) which implements a pro-
tocol to guarantee correctly writing to and reading from the
FIFO buffer. We use a writer process (DataGen) to write a
series of data into the channel and a reader process (Sum) to
read the data from it. To verify the correctness of the refine-
ment, we focus on the verification of the TTL channel. We
first check a property that is suitable for both LOC and LTL,
“the data read by Sum is always greater than or equal to 0”,
and we call it “non-negative” property. Another important
property that can be expressed with LOC is data consistency
of the TTL channel, i.e. the input data of the TTL channel
should be read from the channel in exactly the same order
without a loss.

DataGen

DataGen

TTL2yapi

BoundedFifo

RdWrThreshold

yapi2TTL Sum

TTL Channel

YapiChannel Sum

YAPI Channel

Refine

Figure 2. YAPI Channel and TTL Channel.

5.1 Simulation Trace Analysis for TTL Channel

The TTL channel shown in Figure 2 is initially specified
in Metropolis Meta-Model (MMM) [3]. We simulate it in
the Metropolis environment, and produce simulation traces
with different lengths. When the writer DataGen writes a
data into the TTL channel, it produces an event of prepared;
when the reader Sum reads a data from the channel, it pro-
duces an event of processed. We use the annotation data

to represent the value of data written into or read from the
channel. The non-negative constraint is defined in LOC as:

data(processed[i]) ≥ 0 , (12)

and the data consistency constraint is defined as:

data(prepared[i]) = data(processed[i]) . (13)

The automatic checker generator is used to parse the def-
inition file for the trace format and LOC formulas, and gen-
erate a C++ source for the trace checker. After compilation,
we use the executable checker to verify that both of the LOC
formulas (12) and (13) hold on traces of 105 to 108 lines.
The time and memory usage of the trace analysis are shown
in Table 1.

Table 1. Results of Checking Formulas(12),(13)
Lines of Trace 105 106 107 108

Formula (12) Time(s) <1 5 44 432
Mem(Bytes) 4 4 4 4

Formula (13) Time(s) <1 8 84 767
Mem(Bytes) 172 172 176 172

5.2 Formal Verification for TTL Channel

From the MMM specification of the TTL channel de-
sign, we use the Metropolis backend tool to generate a corre-
sponding Promela (Spin’s language) description [11], which
can be verified by the model checker Spin for a particu-
lar LTL formula. The TTL channel design has 634 lines
of MMM source code and 2049 lines of Promela code af-
ter translation. In the Promela code, We use Boolean vari-
ables prepared occur and processed occur to indicate the
conditions that instances of prepared and processed occur,

respectively. The code blocks, which manipulate the aux-
iliary data structures, are embedded into the Promela code
appropriately. Thus, the non-negative constraint (12) can be
expressed in LTL as:

�
(processed occur → processed data > 0) , (14)

where processed data stores the most recent data read by
Sum. With the bitstate technique [11], Spin verifies the LTL
formula (14) within 2 hours on our 1.5GHz Athlon machine
with 1GByte of memory. The same setup is used for all case
studies in this paper. All the relevant verification parameters
are listed in Table 2.

From the discussion in Section 4.2, we know that the
data consistency constraint (13) of the TTL channel cannot
be expressed by LTL directly. Therefore, we have to assume
that, “after the x-th write by DataGen, at most 31 writes
can be done before the x-th read by Sum”. 3 Then we use
arrays prepared data[32] and processed data[32] to store
the recent 32 pieces of data written by DataGen and read by
Sum respectively. We also use prepared i and processed i

(which take values of 0 to 31) to keep the indices of the most
recent data in the arrays. The assumption is written in LTL
as:

�
(prepared occur → prepared i 6= processed i) , (15)

and it is verified to hold by Spin (see Table 2). The data
consistency constraint is written in LTL as:

�
(processed occur → prepared data[processed i]

= processed data[processed i]) .(16)

Because processed[x] always follows prepared[x], the data
consistency only needs to be checked when an instance of
processed is occurring. The formula:

Assumption (15) → Constraint (16) (17)

is verified to hold by Spin, and all the relevant verification
parameters are also listed in Table 2.

Table 2. Verification Results for Formulas (14),
(15) and (17)

LTL Formula (14) (15) (17)
Depth reached 48669 51257 57221
States stored (×108) 2.21872 2.2431 2.3156
State transitions (×108) 2.86427 2.85523 3.09726
Total memory (MB) 747.936 735.098 819.517
CPU time 1h37m24s 1h37m55s 3h03m18s
Hash factor 4.83946 4.78686 4.63699

6 Conclusions

In this paper, we discuss the verification aspects of the
quantitative constraint formalism, Logic of Constraints. We

3This assumption is derived from the actual buffer size of the TTL channel.

compare LOC with LTL, find that LOC has a different do-
main of expressiveness than LTL, and conclude that LOC
can express important properties that cannot be directly ex-
pressed by LTL. Although it appears that LOC formulas are
more difficult to be analyzed, we discuss two feasible ver-
ification approaches, simulation trace analysis and model
checking. We also present case studies on these approaches
to demonstrate their usefulness and effectiveness.

Our future work includes extending the LOC formalism
with the universal quantifier ∀ and existential quantifier ∃,
and constraint-guided non-deterministic simulation.

References

[1] Openvera assertions white paper. Synopsys, Inc, 2002.

[2] http://www.cadence.com/products/formalcheck.html, 2003.

[3] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, M. Sgroi, and Y. Watanabe. Modeling and de-
signing heterogeneous systems. Technical Report 2001/01 Ca-
dence Berkeley Laboratories, Nov. 2001.

[4] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone,
and A. Sangiovanni-Vincentelli. Constraints specification at
higher levels of abstraction. International Workshop on High
Level Design Validation and Test - HLDVT01, Sept. 2001.

[5] J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter,
and W. J. M. Smits. Communication refinement in video sys-
tems on chip. In Proceedings of the 7th International Work-
shop on Hardware/Software Codesign, pages 142–146, 1999.

[6] X. Chen, F. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. For-
mal verification of embedded system designs at multiple levels
of abstraction. International Workshop on High Level Design
Validation and Test - HLDVT02, Sept. 2002.

[7] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Automatic
trace analysis for logic of constraints. 40th Design Automation
Conference, June 2003.

[8] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the
accellera formal verification technical committee. Mar. 2002.

[9] O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and
flexible data synchronization scheme for embedded hw-sw
shared-memory systems. Proceedings of International Sym-
posium on System Synthesis, Oct. 2001.

[10] P. Godefroid and G. J. Holzmann. On the verification of tem-
poral properties. Proc. IFIP/WG6.1 Symposium on Protocols
Specification, Testing, and Verification, June 1993.

[11] G. J. Holzmann. The model checker SPIN. IEEE Trans. on
Software Engineering, 23(5):279–258, May 1997.

[12] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
languages and Computation. Addison Wesley, 1979.

[13] G. Kahn. The semantics of a simple language for parallel pro-
gramming. Proceedings of IFIP Congress 74, pages 471–475,
1974.

[14] E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel,
W. Kruijtzer, P. Lieverse, and K. Vissers. Yapi: application
modeling for signal processing systems. Proceedings of the
37th Design Automation Conference, 2000.

[15] M. Y. Vardi. An automata-theoretic approach to linear tempo-
ral logic. Logics for Concurrency. Structure versus Automata,
LNCS Vol 1043, Springer-Verlag, pages 238–266, 1996.

