FORMAL VERIFICATION OF EMBEDDED SYSTEM DESIGNS
AT MULTIPLE LEVELS OF ABSTRACTION

Xi Chen, Fang Chen, Harry Hsieh
Unwversity of California, Riverside, CA
E-mail: {xichen, fchen, harry} @cs.ucr.edu

Abstract

Embedded electronics today are becoming increas-
ingly complex, which makes their design and analy-
sis more and more difficult. An important approach
to overcome the increasing complexity is to divide the
system design procedure into different but interrelated
stages, and represent system designs with description
at different levels of abstraction. Design and analy-
sis tools at each stages can then be more effectively
applied onto the designs at particular level of abstrac-
tion. In this paper, we focus on the formal verification
of embedded system designs at multiple levels of ab-
straction, enabled by Metropolis design environment.
Based on Metropolis framework and the model checker
SPIN, a translation mechanism from Metropolis de-
sign to Promela description is presented and an auto-
matic translator is developed accordingly. We discuss
the challenges and solutions in semantically translat-
ing from an object-based system design language to a
procedural verification language. To demonstrate the
correctness and effectiveness of our approach for formal
verification, we verify properties of typical producer-
consumer systems.

1 Introduction

As modern embedded systems become more inte-
grated and complex, it is crucial to be able to specify
the systems at multiple levels of abstraction, so that the
design space can be effectively explored by successive
abstractions and design decisions can be made through
successive refinements [7]. Synthesis procedures can
then be used to systematically transform the specifica-
tion into manufactured products. The synthesis steps
may include structural transformations, where behav-
iors are partitioned or composed, and behavior refine-

Felice Balarin, Yosinori Watanabe

Cadence Berkeley Laboratories, Berkeley, CA

E-mail: {felice, watanabe} @cadence.com

Function Design Architecture
Specification Constraints Specification

Lt

Metropolis Infrastructure

o Design methodology

® Basetools
- Design imports
- Simulation

r e Metamodel of Computation j

Metropolis Point tools: Metropolis Point tools:
Synthesis/Refinement Analysis/Verification

Figure 1. Metropolis Design Framework

ment, where behaviors of the design are refined through
the use of constraints or implementation annotations.
A formal grounding of all system representations and
operations is important for understanding, analyzing,
optimizing, and eventually automating procedures. In
the Metropolis framework [3], designs at different levels
of abstraction are represented using Metropolis Meta-
Model (MMM) format. MMM can also be used to rep-
resent many different models of computation, so differ-
ent high-level languages can be compiled into MMM
based on their individual model semantics. Constructs
in MMM are designed to facilitate the transformations
and refinements between different abstraction levels.
Metropolis design environment can incorporate various
backend tools that allow the designers to simulate, syn-
thesize, or verify designs specified in the MMM. A flow
diagram for metropolis framework is shown in Figure 1.

In this paper, we focus on the translation mecha-
nism from Metropolis designs to Promela, a language

process P1{

void thread(){
method1();
-
void method() { }
} /linitializtion
} do

[*return*/
od;
}

chan sP1_methodl = [0] of {bool};
active proctype P1_thread(){

sP1_methodl ! invoking_message;
sP1_method1 ? notification;

active proctype P1_method1(){

:: sP1_methodl ?invoking_message;
/* do something here */
sP1_methodl ! notification;

proctype P1_thread()

Active/ldle

return

[chan sP1_methodl)

'\

Idle/Active

proctype P1_method()

Figure 2. Translation of MMM Processes.

suitable for formal verification. Spin [6, 1], a formal
verification tool for asynchronous software systems, is
chosen as a backend verification engine. Property ver-
ification is most useful at higher level of abstraction
where design representation are less complex and the
state space are more manageable. We concentrate on
formally verifying description at or near the specifica-
tion level. Verification at other abstraction levels may
be accomplished through conformance testing [8], or
through simulation.

In Metropolis, designs are specified as asyn-
chronous processes with communication specified by
the medium and the overall behavior limited by the
constraints and schedulers. Promela, the input lan-
guage for Spin, is also an asynchronous process speci-
fication language though with much simpler communi-
cation mechanism (FIFO channels or global variables)
and hierarchy . To enable verification of MMM designs,
we interpret system level primitives of MMM seman-
tically with Promela constructs and demonstrate the
correctness and feasibility of the approach through a
set of verification case studies.

The main challenge of this work is therefore to pre-
cisely interpret and represent the semantics of MMM
designs with Promela. Our main contribution is an
effective solution to enable the formal verification of
MMM designs and an automatic translator. To arrive
at this solution, we carefully interpret each MMM con-
structs and represent them with groups of Promela con-
structs without overly increasing the complexity. The
limitations of the approach follows directly from the
limitation of the model checker. When the size of a

design increases, perhaps through refinement or map-
ping onto particular architecture, the running time and
memory usage of the verifier increase exponentially.
The designer will need to resort to conformance check-
ing or simulation when resource thresholds are reached.

In the next section, we discuss specific aspects of
the translation from a high-level object-oriented sys-
tem specification to a procedural format [2] suitable
for verification with Spin. In specific, we concentrate
on the semantically correct representation of system
processes, communication media, and communication
primitives (i.e. the “await” statement.) In Section 3,
we present a case study of property verification of a
system level specification in Metropolis. In Section 4,
we transform and refine the high-level specification, as
would be done during synthesis, and show, through a
verification case study, that our verification methodol-
ogy can effectively verify designs at different levels of
abstraction.

2 Connecting Metropolis and Spin

In this section, we briefly describe the Metropo-
lis Meta-Model (MMM), the input representation for
Metropolis design environment, and Promela, the in-
put language for Spin model checker. We then describe
the translation procedure and highlight the interesting
aspects of dealing with the two semantic domains.

/lother statements /linitidization

await { do

od;

B0 { active proctype B(){

(quard; testlist1; setlist1) {stmts1} ;s channel ? message; //receive ainvoking message . domic]
/lother statements Guard & Test 1 :
(quardk; testlistk; setlistk) { stmtsk} do /*start of await*/ ‘ 3
} ;- atomic { !
/lother statements — /levaluation of guards and testlists
} /lselect one critical section and set its setlist Guard & Testk
}
od; R o

/lenter and execute a critical section
/lother statements
s channel ! syncReturn; //send back a notification

await

none
-
pass one

exit await

Figure 3. Translation of await statements.

2.1 Metropolis Meta-Model and Promela

Metropolis meta-model is a system representation
formalism capable of representing designs at different
levels of abstraction. In MMM, systems are represented
as networks of processes that communicates through
media. Processes execute concurrently, each at its own
pace. The relative speed of progress of processes may
arbitrarily change at any time, unless they synchronize
with each other using the synchronization primitive
called await, or some constraints are placed on system
executions. Similar to Java or C++ objects, processes
and media have member functions and member vari-
ables. Processes communicate to each other and the en-
vironment through execution of member functions im-
plemented in the shared media. Figure 4 shows an ex-
ample of processes communicating through a medium.

Probably the single most important system-level
MMM construct is the await statement used to es-
tablish mutually exclusive sections and synchronize
processes. An aewait statement contains one or more
statements called critical sections, each controlled by a
triple (guard; testlist; setlist), where guard is a Boolean
expression, and testlist and setlist denote sets of inter-
face functions of other processes. A critical section is
said to be enabled if its guard is true, and none of the
interface functions in the testlist are being executed at
that moment. A critical section may start executing
only if it is enabled. In addition, while the critical sec-
tion is being executed, no interface functions included
in the setlist can begin their executions. Whenever an

await is encountered in the execution flow, one and
only one of the enabled critical sections is executed. If
no critical section is enabled, the execution blocks. If
more than one critical sections are enabled, the choice
is non-deterministic.

Promela is a procedural language suitable for for-
mal verification. Each thread of execution is also mod-
eled by a process. Processes may communicate either
through a fixed size FIFO buffer, or shared memory
variables. Coordination between processes are accom-
plished through the use of atomic statement, where
if one process entered the atomic section, all other
processes stop execution until the given process exits
the atomic section. To avoid deadlock, the seman-
tic of Promela dictates that if an execution is ever
blocked waiting inside an atomic section, the atomic
property is nullified and all other processes are allow
to resume their execution immediately. Dynamic cre-
ation and destruction of threads are supported within
Promela. However, due to efficiency consideration, the
total number of processes are limited to 256. This, cou-
pled with very conservative process destruction mech-
anism, renders the feature very limited in its usage.

2.2 Translation Mechanism

Two main issues in the translation from MMM to
Promela are modeling of MMM communication mech-
anisms in Promela and modeling of constructs specific
to MMM. The former is an issue because the semantics
of the communication can be more general than those

supported in Promela.

In MMM, communication between processes is
made by calling functions defined in media. There
are two ways of modeling function calls in Promela.
One is to directly model it by inlining the called func-
tions, where the callers are modeled as active process
of Promela. Another way is to use active processes to
model all instances of meta-model functions, which in-
cludes all the member functions of processes, media and
other objects in the meta-model. Figure 2 illustrates
this approach. Each member function is translated into
an active Promela process, a process that is instanti-
ated and initiated at the very beginning of the execu-
tion, and a function call in MMM is translated as invok-
ing an execution of the corresponding Promela process
(e.g., see thread() and methodl() in Figure 2). The in-
vocation is accomplished through message passing us-
ing a rendezvous channel (i.e. FIFO channel of size
0). Figure 2 shows the function thread() of process P1
makes a function call to method1(). In Promela, this
is interpreted as process P1_thread sending a message
to process P1_methodl through a rendezvous channel
sP1_methodl (using operator !). The function return
follows the same paradigm. When P1 methodl fin-
ishes, it sends back a notification message through the
same channel to P1_thread. P1_thread receives the
message(using operator ?) and continues its execution.
Thus, the sequential execution flows and control trans-
fers of the MMM processes are assured. Due to Spin’s
limitation on the number of running processes and its
resource recycling mechanism [1], dynamically creating
new processes is prohibitively expensive. Instead, all
Promela processes, except the processes representing
meta-model constructors and threads, are initialized at
the beginning of execution as active processes blocked
waiting for a invoking message from their calling pro-
cesses through the corresponding rendezvous channels.
Member variables of a MMM process or medium are
represented by global variables of Promela after they
are renamed appropriately.

In MMM, an interface is used to define the I/O
data ports of the process or medium and the I/O con-
trol points of the process or medium. To implement the
control point, the MMM interface is used as an integer
semaphore in the setlist and testlist of an await state-
ment. We translate each interface into a pair of integer
semaphores in Promela. The first semaphore, called
ACTIVE is used to indicate whether the interface (and
its member functions) are in active state (whether they
are being executed), another one called EXCLUSIVE
indicates whether this interface semaphore is set (i.e.
whether it is included in the setlist of some await state-

Environment

Figure 4. The bytelink example.

ment that is currently executing). Figure 3 illustrates
how an await statement is translated in Promela, where
Promela constructs such as atomic, repetition do-od
and case selection if-fi are utilized to guarantee the ex-
act semantics equivalence. We use these semaphores
to signal that interface functions appearing in testlist’s
are being executed and to prevent, when appropriate,
interface functions appearing in setlist’s from being ex-
ecuted.

3 Property Checking

Property checking searches the state space of a sys-
tem design and checks whether some design property
holds. Spin provides two powerful methods to specify
properties of a design: Assertion and Linear Temporal
Logic (LTL) properties [5]. Assertion is an annotation
construct in Promela that is targeted for checking local
condition in a design. If an assertion condition is speci-
fied at the MMM level, it can be directly translate down
to an assertion in Promela. In fact, we use this method
to verify that await statement was correctly translated
into Promela (i.e. semaphores correctly locked and re-
leased). For example, to verify that critical sections
controlled by semaphores S1 and S2 are always mutu-
ally exclusive, we put the following assertion into the
design itself:

assert(S1 == 0 || 52 == 0).

And Spin model checker confirms that assertion indeed
hold. Since assertion property represents a strict subset
of LTL property, we will focus on the LTL property
verification for the rest of this paper.

LTL property specifications allow us to specify
properties at the MMM level and hence is more inte-
gral to our verification methodology. In Spin, LTLs are
implemented as never claims. And these never claims
are then used to monitor the execution sequence dur-
ing formal verification. If no violation is found, the
property of the design is verified to hold.

Let us consider a simple example written in MMM
format (Figure 4). A network that includes two pro-
ducer processes (PO and P1) and one consumer process
(C0). A single space data storage medium (MO) is used
for communication. The producers and consumers may
perform arbitrary operation to the data. Our system
level design focus on how these the communication and
coordination are accomplished so in fact the exact data
value may be abstracted away at this level. We want
to check the property: “Whenever the producer start
to write an item into the medium, there must be some
space in the medium”. The property can be expressed
as:

Globally((PO-write or P1_write) — MO0_empty).

The property is proven to hold under one minute of
CPU time.

Another property we want to check is: “when con-
sumer wants to read and there is no data in medium
and neither producer has started to write, the con-
sumer cannot finish reading until either producer starts
to write”. This property is expressed as:

Globally((CO-start and M0O_empty and
(not PO_start) and (not P1_start)) —
((not CO-end) Untilsirong (PO_start or P1_start))).

where the strong until operation, A Untils¢rong B, be-
ing true means that A is true all the time, or A is true
until B is true. The weak version of the operator, A
Untilyeqr B, being true means that eventually B has
to become true. This property is verified in under one
minute of CPU time. All the verification parameters
involved are listed in Table 1.

Table 1. Summary of verification parameters

589790
1.65642e+06
6.34532e4-06

Depth reached
State generated
State transitions

Total memory used 317.251 MB
(Partial Order Reduction)
CPU time elapsed 43.79s

CPU type Athlon 1.5GHz

4 Transformation and Refinement

Synthesis procedures transform and refine the
specification and produce a detailed description of the

@

Environment

(b)

Figure 5. Example of a refinement.

implementation. MMM can be used to formally repre-
sent the design before and after a particular synthesis
step. We describe an example where such a synthesis
step is taken and show how properties can be verified
at different levels of abstraction.

Consider Figure 5. In (a), two producer-consumer
data streams are running independently and two single
space medium are used for each to provide storage. It
is straight-forward to verify using Spin that

Globally((CO_start and M0O_empty and
(not P0_start)) —
((not CO-end) Untilsirong PO-start)).

Now, consider (b) where a single medium is used. SPIN
verifies that the property does not hold. An error trace
is produced by Spin when a verification fails which in-
cludes each step with which the system executes until a
violation is encountered. Analyzing the error trace al-
lows one to catch and fix the undesired behaviors of an
incorrect design. The error trace shows clearly that for
the property to hold, extra constraints must be added
such that the two streams of data do not mix. MMM
format provides constructs for constraints specification
also in LTL:

Globally(PO_write — (not Cl_read) Untilsirong
C0_read)

and

Globally(P1_write — (not CO_read) Untilsirong
C1_read) .

Such constraints can be guaranteed by a correct
scheduling algorithm (e.g. Round robin scheduling
with P0,C0,P1,C1 ordering).

With these constraints, the property may be veri-
fied by Spin using the LTL formula of the form

Constraints — Property .

The verification completes without error. However, due
to the increased state space, it takes more than 9 hours
on a 1.5GHz Athlon machine with 1GByte of memory.
Table 2 lists the detailed resource usage of this ver-
ification. We have obviously reached the limit with
this approach. Work is underway where the transla-
tor automatically inlines the active processes whenever
possible. Preliminary results are very promising.

Table 2. Summary of verification parameters

Depth reached 13224645

State generated 7.27328e+07

State transitions 9.40072e+08

Total memory used 464.541 MB
(Graph Encoding)

CPU time elapsed 9h:44m:48s

CPU type Athlon 1.5GHz

5 Conclusion and Future Directions

In this paper, we present a verification approach
for embedded system designs. This approach is unique
in that it is able to operate at different levels of abstrac-
tion, enabled by Metropolis framework. Integral to the
approach is a semantically correct translator from sys-
tem level language, Metropolis Meta-Model, to verifi-
cation/protocol language, Promela. Case studies have
been performed to show the power of such an approach
both in terms of property verification and formal veri-
fication of designs before and after a synthesis step.

There is obviously a trade-off between invoking
process dynamically and in-lining the methods into
the process whenever we could. We are currently con-
ducting experiment to better understand this trade-off.
Preliminary result indicate that the verification limit of
the previous section can be ameliorated. We are also
working on integrating more system level constructs
into the translator, including scheduler and quantita-
tive logic constraints [4]. Another avenue of future re-
search is in the formal verification of platform architec-
ture, where the property of a platform, as oppose to the
property of the design, will be verification. This will
enable the formal understanding, analysis, and verifi-
cation of the embedded system design from high level
specification all the way down to low level implemen-
tation.

References

[1] Spin manual, http://netlib.bell-labs.com/netlib/spin
/whatispin.html.

[2] A. W. Appel. Modern Compiler Implementation in
Java. Cambridge University Press, 1998.

[3] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, M. Sgroi, and Y. Watanabe. Modeling
and designing heterogeneous systems. Technical Report
2001/01 Cadence Berkeley Laboratories, Nov. 2001.

[4] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno,
R. Passerone, and A. Sangiovanni-Vincentelli. Con-
straints specification at higher levels of abstraction. In-
ternational Workshop on High Level Design Validation
and Test - HLDVTO01, Sept. 2001.

[6] P. Godefroid and G. J. Holzmann. On the verification
of temporal properties. Proc. IFIP/WG6.1 Symp. on
Protocols Specification, Testing, and Verification, June
1993.

[6] G.J. Holzmann. The model checker spin. IEEE Trans.
on Software Engineering, 23(5):279-258, May 1997.

[7] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: or-
thogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design, Dec.
2000.

[8] J. Tretmans and A. Belinfante. Automatic testing with
formal methods.

