
Chapter 1

SIMULATION TRACE VERIFICATION FOR
QUANTITATIVE CONSTRAINTS

Xi Chen1, Harry Hsieh1, Felice Balarin2, Yosinori Watanabe2
1University of California, Riverside, CA, USA

2Cadence Berkeley Laboratories, Berkeley, CA, USA

Abstract: System design methodology is poised to become the next big enabler for
highly sophisticated electronic products. Design verification continues to be a
major challenge and simulation will remain an important tool for making sure
that implementations perform as they should. In this paper we present
algorithms to automatically generate C++ checkers from any formula written
in the formal quantitative constraint language, Logic Of Constraints (LOC).
The executable can then be used to analyze the simulation traces for constraint
violation and output debugging information. Different checkers can be
generated for fast analysis under different memory limitations. LOC is
particularly suitable for specification of system level quantitative constraints
where relative coordination of instances of events, not lower level interaction,
is of paramount concern. We illustrate the usefulness and efficiency of our
automatic trace verification methodology with case studies on large simulation
traces from various system level designs.

Key words: Quantitative constraints, Trace analysis, Logic of Constraints

1. INTRODUCTION

The increasing complexity of embedded systems today demands more
sophisticated design and test methodologies. Systems are becoming more
integrated as more and more functionality and features are required for the
product to succeed in the marketplace. Embedded system architecture
likewise has become more heterogeneous as it is becoming more
economically feasible to have various computational resources (e.g.
microprocessor, dig ital signal processor, reconfigurable logics) all utilized

2 Chapter 1

on a single board module or a single chip. Designing at the Register
Transfer Level (RTL) or sequential C-code level, as is done by embedded
hardware and software developers today, is no longer efficient. The next
major productivity gain will come in the form of system level design. The
specification of the functionality and the architecture should be done at a
high level of abstraction, and the design procedures will be in the form of
refining the abstract functionality and the abstract architecture, and of
mapping the functionality onto the architecture through automatic tools or
manual means with tools support [1, 2]. High level design procedures allow
the designer to tailor their architecture to the functionality at hand or to
modify their functionality to suit the available architectures (see Figure 1).
Significant advantages in flexibility of the design, as compared to today's
fixed architecture and a priori partitioning approach, can result in significant
advantages in the performance and cost of the product.

Figure 1. System Design Methodology

In order to make the practice of designing from high-level system
specification a reality, verification methods must accompany every step in
the design flow from high level abstract specification to low level
implementation. Specification at the system level makes formal verification
possible [3]. Designers can prove the property of a specification by writing
down the property they want to check in some logic (e.g. Linear Temporal
Logic (LTL) [4], Computational Tree Logic (CTL) [5]) and use a formal
verification tool (e.g. Spin Model checker [6, 7], Formal-Check [8], SMV
[9]) to run the verification. At the lower level, however, the complexity can
quickly overwhelm the automatic tools and the simulation quickly becomes
the workhorse for verification.

1. Simulation Trace Verification For Quantitative Constraints 3

Figure 2. System Verification Approaches

The advantage of simulation is in its simplicity. While the coverage
achieved by simulation is limited by the number of simulation vectors,
simulation is still the standard vehicle for design analysis in practical designs.
One problem of simulation-based property analysis is that it is not always
straightforward to evaluate the simulation traces and deduce the absence or
presence of an error. In this paper, we propose an efficient automatic
approach to analyze simulation traces and check whether they satisfy
quantitative properties specified by denotational logic formulas. The
property to be verified is written in Logic of Constraints (LOC) [10], a logic
particularly suitable for specifying constraints at the abstract system level,
where coordination of executions, not the low level interaction, is of
paramount concern. We then automatically generate a C++ trace checker
from the quantitative LOC formula. The checker analyzes the traces and
reports any violations of the LOC formula. Like any other simulation-based
approach, the checker can only disprove the LOC formula (if a violation is
found), but it can never prove it conclusively, as that would require
analyzing infinitely many traces. The automatic checker generation is
parameterized, so it can be customized for fast analysis for specific
verification environment. We illustrate the concept and demonstrate the
usefulness of our approach through case studies on two system level designs.
We regard our approach as similar in spirit to symbolic simulation [11],
where only particular system trajectory is formally verified (see Figure 2).
The automatic trace analyzer can be used in concert with model checker and
symbolic simulator. It can perform logic verification on a single trace where
the other approaches failed due to excessive memory and space requirement.

In the next section, we review the definition of LOC and compare it with
other forms of logic and constraint specification. In section 3, we discuss the
algorithm for building a trace checker for any given LOC formula. We
demonstrate the usefulness and efficiency with two verification case studies

4 Chapter 1

in section 4. Finally, in section 5, we conclude and provide some future
directions.

2. LOGIC OF CONSTRAINTS (LOC)

Logic Of Constraints [10] is a formalism designed to reason about
simulation traces. It consists of all the terms and operators allowed in
sentential logic, with additions that make it possible to specify system level
quantitative constraints without compromising the ease of analysis. The
basic components of an LOC formula are:

§ event names: An input, output, or intermediate signal in the system.
Examples of event names are “in”, “out”, “Stimuli”, and “Display”;

§ instances of events: An instance of an event denotes one of its
occurrence in the simulation trace. Each instance is tagged with a
positive integer index, strictly ordered and starting from “0”. For
example, “Stimuli[0]” denotes the first instance of the event
“Stimuli” and “Stimuli[1]” denotes the second instance of the event;

§ index and index variable: There can be only one index variable i, a
positive integer. An index of an event can be any arithmetic
operations on i and the annotations. Examples of the use of index
variables are “Stimuli[i]”, “Display[i-5]”;

§ annotation: Each instance of the event may be associated with one or
more annotations. Annotations can be used to denote the time, power,
or area related to the event occurrence. For example, “t(Display[i-
5])” denotes the “t” annotation (probably time) of the “i -5”th
instance of the “Display” event. It is also possible to use annotations
to denote relationships between different instances of different event.
An example of such a relationship is causality. “t(in[cause(out[i])])”
denotes the “t” annotation of an instance of “in” which in turn is
given by the “cause” annotation of the “i”th instance of “out”.

LOC can be used to specify some very common real-time constraints:

§ rate, e.g. “a new Display will be produced every 10 time units”:

 t(Display[i+1]) - t(Display[i]) = 10 (1)

§ latency, e.g. “Display is generated no more than 45 time units after
Stimuli”:

 t(Display[i]) - t(Stimuli[i]) ≤ 45 (2)

1. Simulation Trace Verification For Quantitative Constraints 5

§ jitter, e.g. “every Display is no more than 15 time units away from the

corresponding tick of the real-time clock with period 15”:

 | t(Display[i]) - i * 10 | ≤ 15 (3)

§ throughput, e.g. “at least 100 Display events will be produced in any
period of 1001 time units”:

 t(Display[i+100]) - t(Display[i]) ≤ 1001 (4)

§ burstiness, e.g. “no more than 1000 Display events will arrive in any
period of 9999 time units”:

 t(Display[i+1000]) - t(Display[i]) > 9999 (5)

As pointed out in [10], the latency constraints above is truly a latency
constraint only if the Stimuli and Display are kept synchronized. Generally,
we will need an additional annotation that denotes which instance of Display
is “caused” by which instance of the Stimuli. If the cause annotation is
available, the latency constraints can be more accurately written as:

 t(Display[i]) - t(Stimuli[cause(Display[i])]) ≤ 45 (6)

and such an LOC formula can easily be analyzed through the simulation
checker presented in the next section. However, it is the responsibility of the
designer, the program, or the simulator to generate such an annotation.

By adding additional index variables and quantifiers, LOC can be
extended to be at least as expressive as S1S [12] and Linear Temporal Logic.
There is no inherent problem in generating simulation monitor for them.
However, the efficiency of the checker will suffer greatly as memory
recycling becomes impossible (as will be discussed in the next section). In
similar fashion, LOC differs from existing constraint languages (e.g. Rosetta
[13], Design Constraints Description Language [14], and Object Constraint
Language [15]) in that it allows only limited freedom in specification to
make the analysis tractable. The constructs of LOC are precisely chosen so
system-level constraints can be specified and efficiently analyzed.

3. THE LOC CHECKER

We analyze simulation traces for LOC constraint violation. The
methodology for verification with automatically generated LOC checker is
illustrated in Figure 3. From the LOC formula and the trace format
specification, an automatic tool is used to generate a C++ LOC checker. The

6 Chapter 1

checker is compiled into an executable that will take in simulation traces and
report any constraint violation. To help the designer to find the point of error
easily, the error report will include the value of index i which violates the
constraint and the value of each annotation in the formula (see Figure 4).
The checker is designed to keep checking and reporting any violation until
stopped by the user or if the trace terminates.

Figure 3. Trace Analysis Methodology

Figure 4. Example of Error Report

The algorithm progresses based on index variable i. Each LOC formula
instance is checked sequentially with the value of i being 0, 1, 2, ...etc. A
formula instance is a formula with i evaluated to some fix positive integer
number. The basic algorithm used in the checker is given as follows:

1. Simulation Trace Verification For Quantitative Constraints 7

Algorithm of LOC Checker:

i = 0;
memory_used = 0;

Main {
 while(trace not end){
 if(memory_used < MEM_LIMIT){
 read one line of trace;
 store useful annotations;
 check_formula();
 }
 else{
 while(annotations for current
 formula instance is not
 available && trace not end)
 scan the trace for annotation;
 check_formula();
 }
 }
}

check_formula {
 while (can evaluate formula instance i) {
 evaluate formula instance i;
 i++;
 memory recycling;
 }
}

The time complexity of the algorithm is linear to the size of the trace.
The memory usage, however, may become prohibitively high if we try to
keep the entire trace in the memory for analysis. As the trace file is scanned
in, the proposed checker attempts to store only the useful annotations and in
addition, evaluate as many formula instances as possible and remove from
memory parts of the trace that are no longer needed (memory recycling). The
algorithm tries to read and store the trace only once. However, after the
memory usage reaches the preset limit, the algorithm will not store the
annotation information any more. Instead, it scans the rest of the trace
looking for needed events and annotations for evaluating the current formula
instance (current i). After freeing some memory space, the algorithm
resumes the reading and storing of annotation from the same location. The
analysis time will certainly be impacted in this case (see Table 3). However,
it will also allow the checker to be as efficient as possible, given the memory
limitation of the analysis environment.

8 Chapter 1

For many LOC formulas (e.g. constraints 1 - 5), the algorithm uses a
fixed amount of memory no matter how long the traces are (see table 2).
Memory efficiency of the algorithm comes from being able to free stored
annotations as their associated formula instances are evaluated (memory
recycling). This ability is directly related to the choice made in designing
LOC. From the LOC formula, we often know what annotation data will not
be useful any more once all the formula instance with i less than a certain
number are all evaluated. For example, let's say we have an LOC formula:

t(input[i+10]) - t(output[i+5]) < 300 (7)

and the current value of i is 100. Because the value of i increases
monotonically, we know that event input’s annotation t with index less than
111 and event output’s annotation t with index less than 106 will not be
useful in the future and their memory space can be released safely. Each
time the LOC formula is evaluated with a new value of i, the memory
recycling procedure is invoked, which ensures minimum memory usage.

4. CASE STUDIES

In this section, we apply the methodology discussed in the previous
section to two very different design examples. The first is a Synchronous
Data Flow (SDF) [16] design called Expression originally specified in
Ptolemy and is part of the standard Ptolemy II [17] distribution. The
Expression design is respecified and simulated with SystemC simulator [18].
The second is a Finite Impulse Response (FIR) filter written in SystemC and
is actually part of the standard SystemC distribution. We use the generated
trace checker to verify a wide variety of constraints.

4.1 Expression

Figure 5. Expression Design Example

Figure 5 shows a SDF design. The data generators SLOW and FAST
generate data at different rates, and the EXPR process takes one input from

1. Simulation Trace Verification For Quantitative Constraints 9

each, performs some operations (in this case, multiplication) and outputs the
result to DISPLAY. SDF designs have the property that different scheduling
will result in the same behavior. A snapshot of the simulation trace is shown
in Figure 6.

Figure 6. Expression Simulation Trace

The following LOC formula must be satisfied for any correct simulation
of the given SDF design:

SLOW[i] * FAST[i] = DISPLAY[i] (8)

We use the automatically generated checker to show that the traces from
SystemC simulation adhere to the property. This is certainly not easy to
infer from manually inspecting the trace files, which may contain millions of
lines. As expected, the analysis time is linear to the size of the trace file and
the maximum memory usage is constant regardless of the trace file size (see
table 1). The platform for experiment is a dual 1.5GHz Athlon system with
1GB of memory.

Table 1. Results of Constraint (8) on EXPR
Lines of Traces 104 105 106 107
Time Used (s) < 1 1 12 130
Memory Usage 8KB 8KB 8KB 8KB

4.2 FIR Filter

Figure 7 shows a 16-tap FIR filter that reads in samples when the input is
valid and writes out the result when output is ready. The filter design is
divided into a control FSM and a data path. The test bench feeds sampled
data of arbitrary length and the output is displayed with the simulator.

10 Chapter 1

Figure 7. FIR Design Example

We utilize our automatic trace checker generator and verify the properties
specified in constraints (1) - (5). The same trace files are used for all the
analysis. The time and memory requirements are shown in table 2. We can
see that the time required for analysis grows linearly with the size of the
trace file, and the maximum memory requirement is formula dependent but
stays fairly constant. Using LOC for verification of common real-time
constraints is indeed very efficient.

Table 2. Result of Constraints (1 – 5) on FIR
Lines of Traces 104 105 106 107

Time(s) < 1 1 8 89 Constraint
(1) Memory 28B 28B 28B 28B

Time(s) < 1 1 12 120 Constraint
(2) Memory 28B 28B 28B 28B

Time(s) < 1 1 7 80 Constraint
(3) Memory 24B 24B 24B 24B

Time(s) < 1 1 7 77 Constraint
(4) Memory 0.4KB 0.4KB 0.4KB 0.4KB

Time(s) < 1 1 7 79 Constraint
(5) Memory 4KB 4KB 4KB 4KB

We also verify constraint (6) using the simulation analyzer approach.

Table 3 shows that the simulation time grows linearly with the size of the
trace file. However, due to the use of an annotation in an index expression,
memory can no longer be recycled with the algorithm in the previous section
and we see that it also grows linearly with the size of the trace file. Indeed,
since we will not know what annotation will be needed in the future, we can
never remove any information from memory. If the memory is a limiting
factor in the simulation environment, the analysis speed must be sacrificed to
allow the verification to continue. This is shown in Table 3 where the
memory usage is limited to 50KB. We see that the analysis takes more time
when the memory limitation has been reached. Information about trace
pattern can be used to dramatically reduce the running time under memory
constraints. Aggressive memory minimization techniques and data structures
can also be used to further reduce time and memory requirements. For most

1. Simulation Trace Verification For Quantitative Constraints 11

LOC formulas, however, the memory space can be recycled and the memory
requirements are small.

Table 3. Result of Constraint (6) on FIR
Lines of Traces 2×104 3×104 4×104 5×104

Time (s) < 1 < 1 < 1 1 Unlimited
Memory Mem (KB) 40 60 80 100

Time (s) < 1 61 656 1869 Memory
Limit (50KB) Mem (KB) 40 50 50 50

5. CONCLUSION

In this paper we have presented a methodology for system-level
verification through automatic trace analysis. We have demonstrated how
we take any formula written in the formal quantitative constraint language,
Logic Of Constraints, and automatically generate a trace checker that can
efficiently analyze the simulation traces for constraint violations. The
analyzer is fast even under memory limitation. We have applied the
methodology to many case studies and demonstrate that automatic LOC
trace analysis can be very useful.

We are currently considering a few future enhancements and novel
applications. One such application we are considering is to integrate the
LOC analyzer with a simulator that is capable of non-deterministic
simulation, non-determinism being crucial for design at high level of
abstraction. We will use the checker to check for constraint violations, and
once a violation is found, the simulation could roll back and look for another
non-determinism resolution that will not violate the constraint.

ACKNOWLEDGEMENTS

We gratefully acknowledge the preliminary work by Artur Kedzierski
who did experiments on LOC formula parsing and checker generation. We
also would like to thank Lingling Jin who wrote and debug the Metropolis
Meta-Model source code for the EXPR example.

12 Chapter 1

REFERENCES

1. K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. “System
level design: orthogonalization of concerns and platform-based design”. IEEE
Transactions on Computer-Aided Design, 19(12), December 2000.

2. F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and Y.
Watanabe. “Modeling and designing heterogeneous systems”. Technical Report 2001/01
Cadence Berkeley Laboratories , November 2001.

3. X. Chen, F. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. “Formal verification of
embedded system designs at multiple levels of abstraction”. Proceedings of International
Workshop on High Level Design Validation and Test - HLDVT02, September 2002.

4. P. Godefroid and G. J. Holzmann. “On the verification of temporal properties”. Proc.
IFIP/WG6.1 Symposium on Protocols Specification, Testing, and Verification, June 1993.

5. T. Hafer and W. Thomas. “Computational tree logic and path quantifiers in the monadic
theory of the binary tree”. Proceedings of International Colloquium on Automata,
Languages, and Programming, July 1987.

6. Gerard J. Holzmann. “The model checker Spin”. IEEE Transactions on Software
Engineering, 23(5):279-258, May 1997.

7. Spin manual, “http://netlib.bell-labs.com/netlib/spin/whatispin.html”.
8. FormalCheck, “http://www.cadence.com/products/formalcheck.html”.
9. K. McMillan. “Symbolic Model Checking”. Kluwer Academic Publishers, 1993.
10. F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and A. Sangiovanni-

Vincentelli. “Constraints specification at higher levels of abstraction”. Proceedings of
International Workshop on High Level Design Validation and Test - HLDVT01, November
2001.

11. C. Blank, H. Eveking, J. Levihn, and G. Ritter. “Symbolic simulation techniques: state-of-
the-art and applications”. Proceedings of International Workshop on High-Level Design
Validation and Test – HLDVT01, November 2001.

12. A. Aziz, F. Balarin, R.K. Brayton and A. Sangiovanni-Vincentelli. “Sequential synthesis
using S1S”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19(10):1149-62, October 2000.

13. P. Alexander, C. Kong, and D. Barton. “Rosetta usage guide”. http://www.sldl.org, 2001.
14. Quick reference guide for the Design Constraints Description Language,

http://www.eda.org/dcwg, 2000.
15. Object Constraint Language specification, http://www.omg.org, 1997.
16. E. Lee and D. Messerschmitt. “Synchronous data flow”. Proceedings of IEEE, 55-64,

September 1987.
17. Ptolemy home page, “http://www.ptolemy.eecs.berkeley.edu”.
18. SystemC home page, “http://www.systemc.org”.

