
Utilizing Formal Assertions for System Design of Network Processors

Xi Chen, Yan Luo, Harry Hsieh, Laxmi Bhuyan
University of California, Riverside, CA

{xichen, yluo, harry, bhuyan}@cs.ucr.edu

Felice Balarin
Cadence Berkeley Laboratories, Berkeley, CA

felice@cadence.com

Abstract

System level modeling with executable languages such as
C/C++ has been crucial in the development of large elec-
tronic systems from general processors to application specific
designs. To make sure that the executable models behave as
they should, the designers often have to “eye-ball” the simu-
lation traces and at best, apply simple “assert” statements or
write simple trace checkers in some scripting languages. The
problem is the lack of a concise and formal method to spec-
ify and check desired properties, whether they be functional
or performance in nature. In this paper, we apply assertion
checking methodology to the system design of network proces-
sors. Functional and performance assertions, based on Linear
Temporal Logic and Logic of Constraints, are written during
the design process. Trace checkers and simulation monitors
are automatically generated to validate particular simulation
runs or to analyze their performance characteristics. Sev-
eral categories of assertions are checked throughout the de-
sign process, such as equivalence, functionality, transaction,
and performance. We demonstrate that the assertion-based
methodology is very useful for both system level verification
and design exploration.

1 Introduction

The increasing complexity of electronic systems today de-
mands more sophisticated design and test methodologies. De-
signing only at the Register Transfer Level (RTL) is no longer
sufficient. Most electronic systems, from general purpose pro-
cessors to application specific designs start out with a descrip-
tion at the higher system level. System level modeling with
executable languages such as C/C++ or other modeling frame-
works have been crucial in the development of large electronic
systems. The executability serves at least three very important
purposes. First, it allows the designers to communicate with
other designers with concrete traces and scenarios. Second,
it allows early verification of the design functionalities so the
designers can check whether what they wrote is indeed what
they want. Lastly, high level performance parameters can be
gathered to enable system level design exploration so that bet-
ter system level trade-off decisions can be made.

Unfortunately, it is not always easy to gather information
from the behavior of the executable model. The designers
often have to “eye-ball” simulation traces and at best, write
simple checkers in some scripting language (such as Perl) to
scan through the traces and analyze for specific characteris-
tics. Embedded software assertion statements have been used
by software designers for decades, but they are only suitable
for simple error-flagging and are not amenable for analyzing
more complex behavior and catching more complex bugs that
can exist at the system level. Automatic and semi-automatic
formal verification tools [8, 9] can prove the properties of a
design, but their need for extensive manual proof-writing or
high computational complexity, respectively, make them un-
suitable to be integrated into design flow for exploration. The
central problem lies in the lack of a concise and formal way
to specify the desired functional and performance properties,
and an efficient way to check the properties.

RTL assertion languages such as Sugar2.0 [7] and Open-
Vera [2] have been gaining in popularity. Functional asser-
tions, based mostly on Linear Temporal Logic (LTL) [10], can
be written and simulation monitors can be automatically gen-
erated to efficiently verify a particular run of the executable
model. Every LTL formula can be represented by an equiv-
alent finite state automaton, hence LTL cannot be used to
express higher, transaction level, functional properties which
may not be representable by finite-state automata [6]. Fur-
thermore, neither LTL, nor its associated assertion languages
(Sugar2.0 and OpenVera) have convenient ways to express
quantitative performance properties, which is crucial in per-
forming system level design exploration, as well as analyzing
the performance capability of a system level model.

To apply the assertion methodology to the system level re-
quires the ability to specify functional and performance prop-
erties at the RTL, at the transaction level, and at the system
level. We propose to utilize LTL-based assertion languages
(e.g. Sugar2.0) and Logic Of Constraints (LOC) [4], a logic
that is more suited for quantitative performance and transac-
tion level assertions, in the functional and performance verifi-
cation of system level designs.

This paper presents two main contributions. The first is
to demonstrate that the assertion-based verification method-
ology is useful for catching errors in the design of a net-
work processor at the system level. To show this, we inte-

grate our assertion verification methodology into the design
flow for high performance network processors. Based on In-
tel IXP1200 [1] network processor model, in-house designers
have been putting together a new architecture which is capa-
ble of higher throughput, lower latency, and lower cost. The
processor model is parameterized, so that a whole range of
different architectures can be explored. Using our assertion
verification methodology, designers were able to write asser-
tions and automatically generate trace checkers or simulation
monitors throughout the design process to check functional-
ity and performance characteristics. Bugs were subsequently
found and corrected.

The second main contribution is to extend the use of as-
sertions to design exploration and performance analysis. To
this purpose, we use assertions to express performance-related
statements that should always hold, and those that should hold
as often as possible. For the latter, we generate assertion
checkers that can report not only if the statement holds, but
also how often it holds. We gather these performance num-
bers, and use them to make better design decisions.

In the next section, we discuss the essential aspects of our
network processor architecture model NePSim, which is based
on Intel IXP1200. We introduce our assertion verification
methodology in Section 3. Section 4 presents a detail design
study. We discuss the kinds of assertions we apply, the bugs
that we were able to find, and how the performance assertions
and goals can be used in design exploration. We conclude in
Section 5 and give some future directions.

2 Network Processor Models

The Intel IXP1200 [1] is chosen as the reference model
due to its overwhelming popularity in the network process-
ing applications. Given normal-size IP packets, it can achieve
up to 2.2 Gbps routing bandwidth. Being sold commercially,
the processor model has been made available to the public in
order to help the designers build systems based on IXP1200.
The basic architecture of the processor is shown in Figure 1.
IXP1200 consists of a StrongARM core, 6 multi-threaded pro-
cessing units, which are called microengines, and controllers
of peripheral units. The StrongARM core initializes the pro-
gram store of the microengines and loads necessary data into
memory before enabling the microengines. Each of the six
microengines runs up to four threads concurrently. Thus, a to-
tal of up to 24 threads can be programmed to receive, process
and transmit IP packets. The controllers of SRAM, SDRAM
and IX Bus units serve the processor as interfaces to off-chip
SRAM, typically used to store forwarding table, SDRAM, typ-
ically used to store IP packets, and network devices through
the IX Bus.

The threads in a microengine share common ALU, pipelin-
ing, and scheduling units. Inside a microengine, each thread
has an independent set of registers including general purpose
registers, local control registers, SRAM transfer registers and

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

StrongARM core

IXP 1200 IX Bus

sdram

cmd
bus

P4

P0 ME0
Register File

command
bus

arbiter

SRAM

SDRAM

IX Bus

controller

controllor

controller

P4

P0

P4

P0 ME1
Register File

ME5
Register File

RFIFO

TFIFO

sram

scratchpad

C
A
M

cmd FIFO

cmd FIFO

cmd FIFO

Figure 1. IXP1200 architecture.

SDRAM transfer registers. The microengine’s instruction set
architecture contains 33 categories of instructions. Because
each instruction may have a number of different operations,
the total number of op-codes implemented is around 120. Each
microengine has a 5-stage pipeline (P0 through P4): Instruc-
tion Fetch, Instruction Decoding, Operand Fetch, Instruction
Execution and Write-Back.

In each microengine, memory references, which are called
commands, are issued to a two-entry command FIFO. The
commands are then sent to the command bus and scheduled
by the command bus arbiter. Based on the priority of com-
mands, the command bus arbiter selects one or more reference
commands among the six command FIFOs and move them to
the corresponding memory controller. The SRAM controller
handles all SRAM reference commands issued from the mi-
croengines. Each SRAM reference command is enqueued, de-
queued, committed and finally done. SDRAM reference com-
mands are handled similarly by the SDRAM controller.

Our NePSim network processor architecture is based on the
basic IXP1200 architecture. When the architectural parame-
ters (e.g. number of microengines, number of threads in each
microengine, number and length of FIFO queues, size of the
caches, scheduling policies) are set to be that of the IXP1200,
the behaviors of the two processor models are expected to be
very similar. When we vary the parameters, the functional
“correctness” is expected to be maintained while the perfor-
mance attributes are expected to change, trading off one met-
ric against another. Ultimately, we can arrive at a design that
is most suitable to the applications at hand.

3 Assertion-Based Verification Methodology

We use LTL-based assertion language Sugar2.0 [7] and
LOC [4] to formally specify the functional and performance
properties of the network processor model. LTL and LOC
have different domains of expressiveness and indeed comple-
ment each other quite well [6]. According to our experience,

NP Model

Simulation

Simulation Trace

Sugar/LOC Assertions

Automatic
Checker Generation

Trace Checker
Standalone

Assertion Checking

Error Report

Figure 2. Assertion-Based Simulation Verifica-
tion Methodology.

most functional properties, such as mutual exclusion, non-
starvation and safety, can be easily expressed with LTL. On the
other hand, LOC is more suitable for expressing quantitative
performance properties such as rate and latency, and transac-
tion level functional properties such as I/O data consistency.
Figure 2 illustrates our methodology for assertion-based sim-
ulation verification with automatic trace checker generation.

Linear Temporal Logic [10] is defined over executions of
a system, i.e. linear sequences of state transitions. We use
Sugar2.0 [7] as the specification language for LTL formulas.
In our verification methodology for system level models, the
state transitions are modeled as event occurrences. This is
consistent with transaction abstraction since only the events
ordering are considered, not their tick by tick, cycle level be-
havior. We leverage the existing tool, FoCs [3], to generate the
checker core and then use our tool to automatically generate
wrappers that are necessary for the simulation of the proces-
sor models and for stand-along trace checkers. Since the sim-
ulation sessions are finite, we interpret the temporal operators
over the finite traces by checking the conditions only up to the
end of the traces.

Logic Of Constraints [4] is a formalism designed to reason
about execution traces with quantitative performance values
(annotations). It is also very well-suited for analyzing traces
from the execution of higher, transaction level system model.
LOC consists of all the terms and operators allowed in sen-
tential logic, with additions that make it possible to specify
quantitative assertions without compromising the ease of anal-
ysis. The basic components of an LOC formula are: event
names (e.g. pipeline and sram enq), instances of events (e.g.
pipeline[4]), indices of event instances (e.g. 0, 1, ..., etc), the
index variable i and annotations (e.g. cycle, pc and addr).
LOC can be used to specify many important system level per-
formance properties that are inconvenient, and sometimes im-
possible, to express with LTL. For example, the rate property:

cycle(pipeline[i+1])− cycle(pipeline[i]) = 10 (1)

requires that the difference between the values of annota-

tion cycle for any two consecutive instances of pipeline event
should equal to 10. There exist automatic tools [5] that can
generate trace checkers or simulation monitors for any given
LOC formula. A checker or monitor evaluates the formula in-
stance by instance, where a formula instance is a formula with
i evaluated to some fixed positive integer value. For exam-
ple, cycle(pipeline[30])− cycle(pipeline[29]) = 10 is the 29th
instance of the formula (1).

4 Verification Studies

We perform three categories of assertion verification
throughout the design process. First, we would like to know
whether NePSim, with parameters equal to that of IXP1200,
would achieve the same functionality and “similar” perfor-
mance. We then vary the design parameters (i.e. number of
microengines, number of threads, configuration of the micro-
engines, amount of caches, ..., etc,) and in each case, check
functional correctness of the new design with functional as-
sertions. Varying the design parameters obviously affect the
performance. We use performance assertion checking to de-
termine the performance of a particular design given a partic-
ular simulation input. We effectively explore the design space
with functional and performance assertions.

Table 1. List of Event Types.
Event Type Comments
pipeline an instruction enters the pipeline
sram enq an SRAM access request is enqueued
sram deq an SRAM access request is dequeued
sram done an SRAM access request is committed
ip lookup start an IP address lookup starts
ip lookup done an IP address lookup finishes
f orward an IP packet is forwarded

The simulation traces generated from processor architec-
tural models contain a set of architectural execution events
that occur during the simulation run. They include instruc-
tions entering or leaving the pipeline, memory reference com-
mands being put into or removed from the command queues
in memory controllers, signals being generated from or con-
sumed by functional units and threads. Table 1 lists some
events that we are interested in for our verification studies. To
differentiate events generated by different microengine, dif-
ferent threads, and different architecture models, each event
could be appropriately prefixed and suffixed. For example,
m2 t1 pipeline IXP represents the pipelining event from the
microengine 2, thread 1 of the Intel IXP1200 model. An event
is annotated with timing, identification, and other quantitative
information. In our study, each event instance is associated
with four annotations, cycle, pc, addr and data, where cycle
is used to measure time in clock cycles, pc is the PC (Program
Counter) value for the current instruction. Depending on the
event, addr may represent memory address or next PC (NPC)
address, and data may represent data read from memory or
ALU operation result.

The trace from NePSim is taken “as is” and fed into our
automatically generated trace checkers. The log traces from
Intel IXP1200 are preprocessed in a straightforward manner
before being fed into the trace checker so that each event has
the above annotations on the same line, though there is no dif-
ficulty in writing a separate trace format for the IXP1200. A
snapshot of the simulation trace from NePSim is shown in Fig-
ure 3.

In the following verification studies, we run a trie-based
route lookup benchmark [11] on NePSim and Intel IXP1200
processor models. The benchmark program is an infinite loop
which continuously look up the route for a list of IP addresses.
The trie data structure is stored in SRAM and accessed through
the SRAM instructions.

1733 19 00000300 00000000 m0_t0_sram_enq

1731 68 00120100 00000000 m2_t2_pipeline

1733 20 00000300 00000000 m0_t0_sram_deq

1733 30 00000300 00000000 m1_t0_pipeline
1733 30 00000300 00000000 m2_t0_pipeline
1733 30 00000300 00000000 m3_t0_pipeline

1732 34 0000FFF8 00000000 m5_t1_receive

1734 69 0000003F 0000050C m2_t2_pipeline
1735 34 00000300 00000518 m5_t2_pipeline
1736 35 0000001B 0000051C m5_t2_forward
1736 36 00178000 00000520 m5_t2_pipeline
1737 72 00020100 00000524 m2_t2_pipeline
1737 20 00000300 00000000 m0_t0_sram_done

Figure 3. NePSim Simulation Trace.

4.1 Checking with Reference Model

Using LOC, we can formally and accurately specify both
functional equivalence and performance similarity of two de-
signs. We run the same benchmark on NePSim and Intel
IXP1200 models, and use the simulation trace from IXP1200
as the reference trace. First, we check if the NePSim model
is functionally equivalent to the reference model. The primary
function of the model resides in the forwarding table lookup
for IP packets being processed, which involves correct read-
ing from the SRAM. More specifically, we want to check the
following property:

“For each SRAM access on NePSim and IXP1200, the
memory address referenced and data read out should be the
same, and all the SRAM references are executed with the same
order.”

This property can be expressed with an LOC formula:

addr(sram enq[i]) = addr(sram enq IXP[i])∧

data(sram done[i]) = data(sram done IXP[i]) . (2)

We run the benchmark on NePSim and IXP1200 for one
million cycles to obtain traces of about 3× 105 lines. Both
models are configured with a single working microengine and
a single working thread so that the packet processing order is
deterministic. With the automatically generated trace checker,
we show that this formula pass with the given benchmark
trace in under 6 seconds of CPU time (see Table 2.) All the

trace checkings presented in this paper were run on our Athlon
1.5GHz Linux machine with 1GB memory, though the simula-
tion sessions were run by the designers on their own machines.
We report time and memory usage only for the trace checking
operations.

Comparing the simulation trace from NePSim to the refer-
ence IXP1200, we also want to make sure that the instruction
pipelining behavior of NePSim is “similar” in performance to
that of IXP1200. More specifically, this property requires that

“On the two models, all the instructions in the benchmark
are executed with the same order, and the execution time of ev-
ery pipelining instruction by NePSim is no more than certain
clock cycles away from the execution time of the correspond-
ing instruction by Intel IXP1200.”

This property can be expressed with an LOC formula:

(pc(pipeline[i]) = pc(pipeline IXP[i])) ∧

(|cycle(pipeline[i])− cycle(pipeline IXP[i])| ≤ A · i+B),(3)

where A and B are constants. The second part of the formula
holds if and only if, for a particular pipeline event, the differ-
ence in time of occurrence in NePSim and Intel IXP1200 is
within A · i + B. As simulation progress, the difference accu-
mulates, which is reflected by A · i. The difference in startup
time is accounted for by the constant B. If the two designs
are truly identical, both values should be zero. The designers
decided that, to account for the differences in the two designs,
the acceptable values of A and B should be 0.05, and 8, respec-
tively. The formula failed almost immediately, and after going
through the error report and debugging the NePSim design,
it was found that the SRAM access latency was not modeled
correctly. Once the error was fixed, the performance assertion
passed (see Table 2). This performance margin is sufficient for
designers to declare that NePSim and IXP1200 are similar in
performance.

With the same formula (3) and substituting for the pipeline
event, we can check the performance similarity of other criti-
cal events such as sram enq, sram done, and sdram enq, with
different acceptable values of A and B, determined by the de-
signers.

4.2 Functional Verification

Due to the non-determinism in thread handling within the
network processor models, it is difficult to perform determinis-
tic functional equivalence trace checking when there are more
than one thread enabled. For normal multi-thread operations,
functional property verification, based on both LTL and LOC,
can be very useful. Designers can write their functional asser-
tions in LTL-based Sugar2.0 or LOC. For Sugar2.0 assertions,
we use FoCs to generate the assertion checking code in C++,
and our tool then generates the necessary wrappers for trace
checking.

To verify the normal operation of the NePSim processor
model, We configure it with 6 working microengines (4 of

them (m0 - m3) used for forwarding table lookup and 2 of
them (m4, m5) used for IP packet transmission) and 4 work-
ing threads for each microengine, and run the benchmark on
NePSim for one million cycles. Using Sugar2.0, we specify a
non-starvation property for the SRAM controller of NePSim:
“Once an SRAM access request from a thread (e.g. thread 0)
of a microengine (e.g. microengine 0) is enqueued, it must
be eventually committed within the next 300 SRAM related
event occurrences.” This property can be expressed with the
Sugar2.0 formula:

always(m0 t0 sram enq → next e[1 : 300](m0 t0 sram done))
(4)

To check this property, we only produce the events that are
related to SRAM references to get a trace of 2.8× 105 lines.
The parameterized wrapper generator can easily generate this
assertion for all threads in all microengines, and for SDRAM
controller and IX bus controller.

Another important property of the memory access sched-
uler is the correct occurring order of the events sram enq,
sram deq and sram done, which requires that “after an SRAM
request by a thread (e.g. thread 1) of a microengine (e.g. mi-
croengine 0) is issued and put into the scheduling FIFO, it can-
not be done before it is dequeued”. This property of occurring
order can be expressed with the formula:

always(m0 t1 sram enq →

! m0 t1 sram done until m0 t1 sram deq) . (5)

Note that if the simulation trace ends, the verification of the
formula will be interpreted on a finite trace. For example, for-
mula (5) will not be violated if sram enq occurs and then nei-
ther sram done nor sram deq occurs when the trace ends.

Using LOC, we can express the data consistency properties
for different functional units. For example, when an SRAM
access request is put into to the scheduling FIFO by a thread
(e.g. thread 2) of a microengine (e.g. microengine 1) and then
eventually committed, the memory address it refers to should
be the same. We express this property with the LOC formula:

addr(m1 t2 sram enq[i]) = addr(m1 t2 sram done[i]) ,

(6)
where the annotation addr is used to represent the refer-
enced memory address. With the automatically generated
trace checkers, formula (4) - (6) are checked with no error.
The verification results are listed in Table 2.

Table 2. Verification Results for Formulas(2-6)
Formula Formula Instances Trace Lines Mem Time
(2) 10267 3×105 40KB 6s
(3) 295582 3×105 64.8 KB 7s
(4) 5690 2.8×105 0.4KB 77s
(5) 5739 7.0×106 50 Bytes 24s
(6) 5708 7.0×106 12 Bytes 59s

4.3 Performance Assertions

The goal of design exploration for network processor is to
find an architecture which would perform “better” than the ex-
isting model. It is therefore very important to be able to an-
alyze quantitative properties of a design. With LOC, we can
express the performance requirements or expected quantita-
tive features. In this section, we continue with the parameter
setting of 4 microengine for IP address lookup and 2 micro-
engines for IP packet transmission. For each microengine do-
ing IP address lookup, we experiment with either running 2
threads or 4 threads. As a consequence, we compare the per-
formance metrics for an 8-thread processor model against the
one with 16 threads. We run our benchmark on both configu-
rations for one million cycles, and get traces of about 3 million
lines.

One primary function of the network processor is to per-
form IP address lookup, which requires very frequent access
to SRAM. Therefore, we want to check the latency between
an SRAM access request enqueued and when it is committed.
We first check the SRAM access latency from a thread (e.g.
thread 0) of a microengine (e.g. microengine 2) for the two
configurations. We consider the maximum latency constraint,
which can be expressed with the following LOC formula:

cycle(m2 t0 sram done[i])− cycle(m2 t0 sram enq[i]) ≤ l1 . (7)

We iteratively search for the smallest l1 that will allow the
traces to pass the performance assertion (e.g. with a simple
bi-partition approach on the range). For the 8-thread config-
uration, we were able to set l1 = 50, and the assertion can
pass the trace checking without any error. For the 16-thread
configuration, in order to make the assertion pass, we have to
increase the l1 to 100. More threads can cause more mem-
ory access contention, and degrade the latency for individual
memory accesses. See Table 3 for a summary of the result.

The total number of running threads can actually affect the
latency for individual IP address lookups. The maximum la-
tency of IP address lookups in a thread (e.g. thread 1) of a
microengine (e.g. microengine 0) can be expressed in LOC
using the formula:

cycle(m0 t1 ip lookup start[i])−

cycle(m0 t1 ip lookup done[i]) ≤ l2 . (8)

For the 8-thread configuration, we set l2 to be 900 for the as-
sertion to pass. For the 16-thread configuration, l2 needs to
be 1200. Using the formula (8), we have explicitly shown that
the 8-thread configuration has lower latency for individual IP
address lookups than the 16-thread configuration.

Of course, latency does not tell the whole story. Through-
put is an equally important design characteristic for net-
work processors. More threads should achieve better overall
throughput. At the instruction level, we can check the through-
put of pipelining instructions for the processor using the LOC

formula:

cycle(pipeline[i+10000])− cycle(pipeline[i])≤ t1 , (9)

which requires that within t1 cycles, at least 10000 instructions
need to be issued to the pipeline of the processor. For the 8-
thread configuration, we need to set t1 = 4200 for the assertion
to pass. This corresponds to a minimum throughput of 2.3
instructions per cycle. For the 16-thread configuration, t1 need
to be set to 3500, which corresponds to a minimum throughput
of 2.8 instructions per cycle. The 16-thread configuration has
better instruction throughput according to the analysis using
the performance assertion (9).

The overall performance of the network processor is mea-
sured by the throughput of IP packet forwarding, which can be
expressed with the following LOC formula:

cycle(f orward[i+1000])− cycle(f orward[i])≤ t2 . (10)

In order for the performance assertion to pass, We need to
set t2 = 3.7×105 for the 8-thread configuration, and set t2 =
3×105 for the 16-thread configuration. If we assume the NeP-
Sim processor is running at 200MHz, we get the throughput
for IP packet forwarding of 5.4×105 packets/sec and 6.6×105

packets/sec for the 8-thread and 16-thread configuration, re-
spectively. Given the average packet size of 64 bytes, the rout-
ing throughput will be 2.8 Gbps and 3.3 Gbps respectively for
the two configurations. Indeed, the designers need to trade off
latency and throughput for any given application to achieve the
best design. LOC assertion checking allows them to quantita-
tively analyze the performance of a system level specification.
During the design process, the designers can also experiment
with increasing the number of microengines, changing the size
of scheduling FIFOs, or putting more caches between storage
hierarchies. All these design space explorations may bring
various performance trade-offs, which can be easily specified
and analyzed by the formal performance assertions.

The verification results of these LOC performance asser-
tions are listed in Table 3. Since a typical simulation session
can take half an hour or longer, the CPU time and memory us-
age for the trace checkers are trivial by comparison. Without
them, however, it becomes very difficult for the designers to
conclude anything about the design except in very vague terms
(e.g. “looks good”). Our assertion-based verification and de-
sign exploration methodology is indeed efficient for dealing
with large designs.

5 Conclusions

In this paper, we have presented a verification methodology
for functional and performance properties of system-level de-
signs utilizing formal assertions. We have applied our method-
ology on the system design of network processors. We use
LTL-based assertions to express and verify functional proper-
ties such as non-starvation and execution ordering. We also

Table 3. Results for Performance Assertions
Formula Conf. Param. Time Mem

(7) 8-thread l1 = 50 18sec 12Bytes
16-thread l1 = 100 23sec 16Bytes

(8) 8-thread l2 = 900 46sec 8Bytes
16-thread l2 = 1200 44sec 8Bytes

(9) 8-thread t1 = 4200 20sec 40KB
16-thread t1 = 3500 26sec 40KB

(10) 8-thread t2 = 3.7×105 44sec 4KB
16-thread t2 = 3×105 44sec 4KB

use LOC assertions to express quantitative performance and
functional properties such as latency, throughput and data con-
sistency. All these assertions can be checked with automati-
cally generated trace checkers on the simulation traces using
small amounts of CPU time and memory. Through a set of
verification studies, we show that formal assertions, based on
LTL and LOC, are very useful for concisely specifying and au-
tomatically verifying both functional and performance prop-
erties of system level designs. The ability to carry out per-
formance evaluation at the system level also opens up design
exploration avenue uncharted before.

We are planning to extend the Sugar2.0 language to sup-
port our LOC formalism so that designers can have a unified
frontend to specify both functional and performance assertions
easily. We are also considering adding automatic design ex-
ploration capability to NePSim.

References

[1] Intel IXP1200 Network Processor Family: Hardware Reference Manual,
Dec. 2001.

[2] OpenVera assertions white paper. Synopsys, Inc, 2002.

[3] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs -
automatic generation of simulation checkers from formal specifications.
Technical Report, IBM Haifa Research Laboratory, Israel, 2003.

[4] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and
A. Sangiovanni-Vincentelli. Constraints specification at higher levels
of abstraction. In Proceedings of International Workshop on High Level
Design Validation and Test, Nov. 2001.

[5] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Automatic trace anal-
ysis for logic of constraints. In Proceedings of the 40th Design Automa-
tion Conference, June 2003.

[6] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Verifying LOC based
functional and performance constraints. In Proceedings of International
Workshop on High Level Design Validation and Test, Nov. 2003.

[7] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the accellera
formal verification technical committee. Mar. 2002.

[8] M. Gordon and T. Melham, editors. Introduction to HOL: a theo-
rem proving environment for higher order logic. Cambridge University
Press, 1992.

[9] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–258, May 1997.

[10] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th

IEEE Symposium on Foundation of Computer Science, pages 46–57,
1977.

[11] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP
address lookup algorithms. IEEE Network Magazine, 15(2):8–23, 2001.

