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Abstract

System design methodology is poised to become the next
big enabler for highly sophisticated electronic products.
Design verification continues to be a major challenge and
simulation will remain an important tool for making sure
that implementations perform as they should. In this pa-
per we present algorithms to automatically generate C++
checkers from any formula written in the formal quanti-
tative constraint language, Logic Of Constraints (LOC).
The executable can then be used to analyze the simulation
traces for constraint violation and output debugging infor-
mation. Different checkers can be generated for fast analy-
sis under different memory limitations. LOC is particularly
suitable for specification of system level quantitative con-
straints where relative coordination of instances of events,
not lower level interaction, is of paramount concern. We il-
lustrate the usefulness and efficiency of our automatic trace
analysis methodology with case studies on large simulation
traces from various system level designs.

1 Introduction

The increasing complexity of embedded systems today
demands more sophisticated design and test methodolo-
gies. Systems are becoming more integrated as more and
more functionality and features are required for the product
to succeed in the marketplace. Designing at the Register
Transfer Level (RTL) or sequential C-code level, as is done
by embedded hardware and software developers today, is no
longer efficient. The next major productivity gain will come
in the form of system level design.

In this paper, we propose an efficient automatic approach
to analyze simulation traces and check whether they sat-
isfy quantitative properties specified by denotational logic
formulas. The property to be verified is written in Logic
of Constraints (LOC) [4], a logic particularly suitable for
specifying constraints at the abstract system level, where
coordination of executions, not the low level interaction, is
of paramount concern. We then automatically generate a

C++ trace checker from the quantitative LOC formula. The
checker analyzes the traces and reports any violations of the
LOC formula. Like any other simulation-based approach,
the checker can only disprove the LOC formula (if a viola-
tion is found), but it can never prove it conclusively, as that
would require analyzing infinitely many traces.

In the next section, we review the definition of LOC and
compare it with other forms of logic and constraint specifi-
cation. In section 3, we discuss the algorithm for building a
trace checker for any given LOC formula. We demonstrate
the usefulness and efficiency with a verification case study
in section 4. Finally, in section 5, we conclude this paper.

2 Logic Of Constraints (LOC)

Logic Of Constraints [4] is a formalism designed to rea-
son about simulation traces. It consists of all the terms and
operators allowed in sentential logic, with additions that
make it possible to specify system level quantitative con-
straints without compromising the ease of analysis. The
basic components of an LOC formula are events, event in-
stances, event indexes and annotations.

LOC can be used to specify some common real-time
constraints:
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By adding additional index variables and quantifiers,
LOC can be extended to be at least as expressive as S1S [3]
and Linear Temporal Logic. There are no inherent problem
in generating simulation monitor for them.
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Figure 1. Trace Analysis Methodology.

3 The LOC Checker

We analyze simulation traces for LOC constraint viola-
tion. The methodology for verification with automatically
generated LOC checker is illustrated in Figure 1. From the
LOC formula and the trace format specification, an auto-
matic tool is used to generate a C++ LOC checker. The
checker is compiled into an executable that will take in sim-
ulation traces and report any constraint violation. To help
the designer to find the point of error easily, the error report
will include the value of index � which violates the con-
straint and the value of each annotation in the formula. The
checker is designed to keep checking and reporting any vi-
olation until stopped by the user or if the trace terminates.

The algorithm progresses based on index variable � .
Each LOC formula instance is checked sequentially with
the value of � being 0, 1, 2, ...etc. A formula instance is a
formula with i evaluated to some fixed positive integer num-
ber. In addition, a memory recycling algorithm is utilized to
minimize the runtime memory usage.

4 Case Study

In this section, we apply the methodology discussed in
the previous section to an design example. It is a Syn-
chronous Data Flow (SDF) [5] design called Expression
originally specified in Ptolemy and is part of the standard
PtolemyII [1] distribution. The Expression design is respec-
ified and simulated with SystemC simulator [2].

Figure 2 shows a SDF design. The data generators
SLOW and FAST generate data at different rates, and the
EXPR process takes one input from each, performs some
operation (in this case, multiplication) and outputs the result
to DISPLAY. SDF designs have the property that different
scheduling will result in the same behavior. A snapshot of
the simulation trace is shown in Figure 2.

The following LOC formula must be satisfied for any

FAST

    EXPR

SLOW

Display

FAST output data: 0.314
SLOW output data: 0.0314
FAST output data: 0.628
SLOW output data: 0.0628
DISPLAY the result: 0.0098596
FAST output data: 0.942

Figure 2. Expression Design and Simulation
Trace.

correct simulation of the given SDF design:
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We use the automatically generated checkers to show that
the traces from SystemC simulation adhere to the property.
The analysis time is linear to the size of the trace file and
the maximum memory usage is constant regardless of the
trace file size(see table 1. The platform for the experiment
is a dual 1.5GHz Athlon system with 1GB of memory.

Table 1. Result of Constraint (1) on EXPR
Lines of Trace � (�� � (�� � (�� �)(��
Time Used(s) � 1 1 12 130
Memory Usage 8KB 8KB 8KB 8KB

5 Conclusion

In this paper, we have presented a methodology for
system-level verification through automatic trace analysis.
We have demonstrated how we take any formula written in
the formal quantitative constraint language, Logic Of Con-
straint, and automatically generate a trace checker that will
efficiently analyze the simulation traces for constraint vi-
olations. The analyzer is fast even under memory limita-
tion. We applied the methodology to many case studies and
demonstrate that automatic LOC trace analysis can be very
useful.
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