LCS-TRIM: Dynamic
Programming Meets XML
Indexing and Querying

S. Tatikonda, S. Parthasarathy, M. Goyder

Presented by Wanxing Xu

 Convert XML documents (tree structure) to
sequences (linear structure)

* Do the subsequence matching.
* Do the structure refinement

Approach

 Data representation

« Matching
— Subsequence matching
— Structure matching

* Indexing
e Optimizations
— Labeling Filtering
— Dominant Match Processing

Data Representation

e Convert the XML documents (tree
structure) into sequences (linear structure)

e Main idea:
— Numbering the nodes
e Post-order

— In some order, record the number and/or the
label of the nodes

» Post-order, Pre-order

Prufer Sequence

e Constructed by two seguences.
— Numbered Prufer Sequence (NPS)
— Label Sequence LS

« How to convert?
— Number the nodes by post-order traversal.

— Delete the node with the smallest number:
« To NPS, append the number of its parent.
 To LS, append the label of itself.

— PRIX uses both the number and label of the
parent of the deleted-node.

e Post-order numbering

Construct the Sequences

Each entry in
CPS cpsisan edge.
NPS: (219476789 -

' S: FBDBDCAEA
ndex: 123456789
PRIX

NPS:|219476789

LPS: |BIABACAEA

Each entry Iin
PRIX I1s about
the same node.

Approach

 Data representation

« Matching
— Subsequence matching
— Structure matching

* Indexing
e Optimizations
— Labeling Filtering
— Dominant Match Processing

Theorem 3.1 Consider a tree T and a twig
query Q with their label sequences LS
and LS, respectively. It Q Is a subtree of
T, then LS, Is a subsequence of LSy

Subtree = Subsequence
Subsequence = Subtree ?
NOT sufficient! More conditions needed!

First find subsequence, then check more
conditions and then find the subtrees.

Subsequence Matching

 LCS: Longest Common Subseguence

e Using Dynamic Programming to solve LCS

e Use a matrix R, R[i,j] records the length of
the LCS between s,[0..1] and s,[0..]].

0 1=0,]=0

R[i, j]=1R[i -1 j-1]+1 s,[i]= 5, 1]

(max (R[i -1, j1,R[i, j-11) s,[i]#s,[]]

10

Example of LCS

R[1, J] =+

-

0

R[i -1, j —1]+1
‘max (R[i—1, jI, R[, j—11) s,[i]# s,[]

i=0,j=0
s,[1]1=s,[]]

Al ° Numbers In red are

FIBIDIDICIAIE
matches.
slol1]1]2/1/2]1]1
plol1lz2l22]21212] [EBPDYAEA
Alol1l2(2]213]3]3 BID | [AF |G
Elol1l2]212314]a| [FBDDCAEA
clol1]2/2(3(3]al4 8 [D [AlE |

Subsequence Matching

* Property 3.1 If a label sequence LS, Is a
subsequence of another label sequence
LS;, then LS, Is the longest common
subsequence (LCS) of LS, and LSy.

 Each node in the query needs to match
one in the document.

e The length of the LCS should be the same
as the length of LS,

12

Subsequence Matching

e Two steps:

— Construct the R matrix, check the length of
LCS (whether LS, Is a subsequence of LSy)

— Using backtrack to get all the matches
o Complexity

— Time: O(mn)

— Space: O(mn)

13

Document

R Matrix
F| B| D| B| D| C| Al E| A
1/12|3|4|5|6|7(8|9
B|1/0[1|1|1[1|1]|1|1|1
D 2|0|1|2[2|2|2[2|2|2
A[3|0[1|2|2|2|2|3|3(3)

1/2|3|4|5|6|7|8|9
NPS |2(9(4|7|6|7|8|9) -
LS |F|BDBDCAEA

Subsequence Matches:
M1(2,3,7) M2(2,5,7)
M3(4,5,7) M4(2,3,9)
M5(2,5,9) M6(4,5,9)

14

Structure Matching

DEFINITION: 3.2. Structure Agreement: Consider two
sequentures, derwed from two trees Ty and T2, S1 = ((A1,
Bl) (Am, Bm)) and SQ — ((Clj Dl) (Cm, Dm))}
where A;’s and C;’s define the structure; B;’s and D;’s pro-
vide the labels. Both S1 and S2 are saird to agree on struc-

ture at position i if and only if the following three condi-
trons hold:

i) 1 <i<m,

in) B; is equal to D,

i) If A; is the parent of B; in Ty then C; is the parent
of D; or the nearest ancestor of C; that i1s in So must
agree on structure with Si at position A; 1.

15

Structure Agreement

* To check two nodes (NPS4;, LS+) and
(NPSq;, LSq)

* NPS;; and NPS, are their parents.
 Either the parents share the same label,

* or the NEAREST ancestor of NPS,
matches NPS-..

e (Apply some level-wise constraints for
wildcards “*”, etc).

16

17

112|3/4/5/6|7|8|9

FIBBDB DGAEA

NPS |2/9/4|7/6|78|9|-

LS

Order of the Matching

* For each pair of nodes in the document
and the query, we want to check whether
their parents matches each other.

* Inthe CPS, we can see that child always
appears before its parent

e S0, we need to match the nodes from the
end of the sequence to the beginning

18

Algorithm

Algorithm 2 Subtree matching

Input: CPE(GY), CPS(T), SM=(iy, ..i.)

Output: mapping: positions at which) matches to a subtree
in T

1: mappingim| — im

2fork=m—1 101 do

by — NPSgk]

pe — N PSp[ig]

if mapping[p,] i equal to p¢ or is an ancestor of p; in T

then

f mapping[k] — i

T else

8: Heport that @) is not an embedded subtree of T

9: Report that @ is an embedded subtree of T

e

19

For each pair of nodes...

We have P : the parent of the node In Q
P.: the parent of the node In T

mapping[P,] the node in T that is already
matched with P, In Q

P, must be the same or the NEAREST
ancestor of mapping[P,]

NEAREST: search each ancestor of P,
bottom up, until the first already mapped
node, it should be the same as

mapping[P,] Z

Document

R Matrix
F| B| D| B| D| C| Al E| A
1/12|3|4|5|6|7(8|9
B|1/0[1|1|1[1|1]|1|1|1
D 2|0|1|2[2|2|2[2|2|2
A[3|0[1|2|2|2|2|3|3(3)

1/2|3|4|5|6|7|8|9
NPS |2(9(4|7|6|7|8|9) -
LS |F|BDBDCAEA

Subsequence Matches:
M1(2,3,7) M2(2,5,7)
M3(4,5,7) M4(2,3,9)
M5(2,5,9) M6(4,5,9)

21

Document

M3(4, 5, 7) 11213

1/2|3|4|5|6|7|8|9
NPS [2(9(4|7|6|7|8|9) -
LS |F|B[DBDCAEA

mp |4|5|7

Q2 matches T5?
P,=3

P,=6
mp[3]=7 *6

In T, 7 Is the parent of 6.
Match!

Q1 matches T4?
P,=3

P, =7

mp[3] =7

Match! 2

Document

M2(2, 5, 7) 11213

1/2|3|4|5|6|7|8|9
NPS [2(9(4|7|6|7|8|9) -
LS |F|BDBDCAEA

mp | X|5]| 7

Q2 matches T5?
P,=3

P,=6
mp[3]=7 *6

In T, 7 Is the parent of 6.
Match!

Q1 matches T2?

Py =3

P,=9

mp[3] =7

not the parent of 9!

« NEAREST: search each ancestor of P,
bottom up, until the first already mapped
node, it should be the same as mp|P]

« Search for the ancestors one by one, we
need O(depth of the tree), which is O(n).

 The node scope representation DOES
NOT work!

Document

112|3

NPS (4|34

LS |B|CE
112 S 8|9
NPS (2|9 6 9| -
LS |F|B DCAEA

M (4, 6,8,9) 1121 3|4

mp | X/ 6/8|9

Q1 matches T4?
P,=4

P, =7

mp[4] =9

From Pt, the first
ancestor that already
matched is E(8), which
IS not A(9)!

25

Approach

 Data representation

« Matching
— Subsequence matching
— Structure matching

* Indexing
e Optimizations
— Labeling Filtering
— Dominant Match Processing

26

 For each label, collect the documents
where It occurs.

* Only index infrequent labels (indexing

frequent labels takes much space but not
very helpful)

e a-Infrequent: appears in less then a
fraction of a trees In the database.

* For a query, find the label which occurs Iin

lest documents, only search among those
documents. 27

Totally 10,000 documents
a=50%

A occurs in 6,000 documents, so
not indexed.

B occurs in 4,000 documents;

C occurs in 3,000

E occurs in 3,500

Use the list of C to do the match.

O

- J8

28

3

2

Approach

 Data representation

« Matching
— Subsequence matching
— Structure matching

* Indexing
e Optimizations
— Labeling Filtering
— Dominant Match Processing

29

Label Filtering

e The dynamic programming asks for O(mn)
In both time and space.

* Eliminate the irrelevant labels (labels not
In the query) from the document.

Query: BDA

5D 5 Digg A A Tree: FBDBDCAEA
2134|516 78| 9
BI1jO| 1 1|1|1 |8 1|12 1 Ignore the label F, C, E
D20l 1122|2222 2 from the tree, because
A3l 112120212 313l 3 they are not in the query.

O(3*9) -> O(3*6) 30

Dominant Match

e Dominant match:
—LS;[1]=LSq ()]

—-R[1L]]=
e Consider only dominant matches, ignore
other cells.
A B DBID ClA El A Numbers in red are dominant
matches.
112(3{4|5/6|7|8|9
Notice that R[3, 1] is only a
B101111)1/11/1 match, but not dominant. It
D210|11121212121212|2 cannot appears in any result.
A3|11|1112/2(2|2|3|3|3
7 31

Put All Together

° For eaCh q u ery Q Algorithm 3 The unified subtree matching algorithm

Input: A database tree T and a twig query Q

- - . labelFilter (T, @) {T' contains the filtered sequence}
o USIng IndeXIng to get a R — computeLesMatriz (T, Q)

: ; if R[m,n|! = m then
Short IISt Of Candldate Report that @ is not a subtree of T’
SM — null
documents processLCS (m, n, m)
— For each document T: P ction
nction:
° USing L abel Fllterlng processLCS (Qind, T'ind, matchLen)
_ 1: if matchLen = 0 then
e Construct R matrix 2: Report SM as the twig match
3: for i =Tind to 1 do
 Check the Iength of the 4:if R[Qind|[i] is dominant & R[Qind][T'ind] = matchLen
LCS then
D if isInAgreement(CPS(Q), SM, Qind) then
. 0: SM[Qind| — CPSp[Tind]
* Back track: T processLCS (Qind-1, Tind-1, matchLen-1)

— Find each dominant
match

— do the structure match

at the same time 39

Early prune

e Subsequence matches: aliblbiala
1(2|3(4|5|7|9

-M1(2,3,7) M2(2,5, 7) sl1lol1l 1111111
—-M3(4,5, 7) M4(2, 3, 9) D 2|0|1(2)2(X)2|2
—M5(2, 5,9) M6(4, 5, 9) A3[1]1]2]2]2|3(3]

* In the backtrack, say A9 is a match but D5
IS not a match, we won’t continue to
process B4 or B2. Prune M5 and M6 early!
Instead, check D3.

o With/without optimization
« Compare with PRIX
e Compare with TwigStack

34

Run Time {maec)

]] -l
L= L= 1 L= L=

-l -l
(<] i,] o,

With/without optimization

 No Opt

 Label Filtering
& Dominant
Match

e LCS-TRIM
(back tract and

B R A structure match

together)

35

Compare with PRIX

10’ o’ = 1w’
Swinsquot i Calgs.
Ce-TrIM L cE-TR
- — o r [J=rix 1 '| W
i - 1 - 1 -
H H 2 RS
E s £ g 1 £
E E 1 E E
g g §] g 10’
- = = =
10 'l
1] o
| 1
G 03 G4 6 05 07 8 Qs Qo ! afl @z ed: o @b aie @ir oie oie o@D el dm a: oM L wh e 0F 0@ ok o a
Cluery d Query Id Cuery Id Cuery id
Figure 4: Performance comparison with PRIX on different data sets
1 o ' 000
- 1C5-TR = - - ™
MLk - 022 [_ Lo -ﬁxm MM - 232 -i_n;-nl LM - T34 ;:::‘rmu [TRT . ~
1’ _ 000
- ' 1 _ | = —
—_ N) L — = on
§ g i i
E E E [i @ s
g 1" g § 'E
= - = £ oo
oy 1
1’ 1000
5 | | I mi M | | | o | | o - = Nl
05 p 25 [1 25 o5 10 20 25 [1 25

[15 20 E 15 20 15 7] 1.5 20
Data set sze (GE) Drata set size (G8)] Ciata set size (38) Diata set size (GB)

Figure 5: Performance and Index size comparison on NLM data set

36

PRIX

 PRIX: subsequence matching + structure
refinements (3 phases)

Esrmap o
[}
T
] 7
q:'
q::' ‘
q:'-

Ly I = R L 22 OE Ay L8 - L~ By

Query Id

Run Time {meag]
[=

37

 PRIX uses B+tree, virtual trie and node
scope to do the subsequence match. LCS-
TRIM uses dynamic programming.

 PRIX takes all the subsequences (false
positive intermediate results) to do the
structure refinements. LCS-TRIM prunes
them very early.

38

Compare with TwigStack

Twigstack

LZZ-TRM

Time {meec)

@i Q@ Q3 94 Q@ QfF OQF Q8 4 Qig

ali @z @3 @4 @is @6 adT
Cluery Id

Chuerv Id

Tre=hank

Tirme {msec)
=

i [

1I2Ir

L+41:] afa 230 Q@1 Qzz Q3 Qza

@25 @2é @er @@ @@ QI aH 39
Cuery Id

Ceery Id

Conclusion

* Novel sequence based representations
e Using dynamic programming of LCS

e Using inverted tree index

e Using several optimizations

* Prune out false candidate matches early

 Magnitude speedup over PRIX and
TwigStack

40

Thank you!

Questions?

41

