
1

LCS-TRIM: Dynamic
Programming Meets XML

Indexing and Querying
S. Tatikonda, S. Parthasarathy, M. Goyder

Presented by Wanxing Xu

2

Main Idea
• Convert XML documents (tree structure) to

sequences (linear structure)
• Do the subsequence matching.
• Do the structure refinement

3

Approach
• Data representation
• Matching

– Subsequence matching
– Structure matching

• Indexing
• Optimizations

– Labeling Filtering
– Dominant Match Processing

4

Data Representation
• Convert the XML documents (tree

structure) into sequences (linear structure)
• Main idea:

– Numbering the nodes
• Post-order

– In some order, record the number and/or the
label of the nodes

• Post-order, Pre-order

5

Prüfer Sequence
• Constructed by two sequences:

– Numbered Prüfer Sequence (NPS)
– Label Sequence LS

• How to convert?
– Number the nodes by post-order traversal.
– Delete the node with the smallest number:

• To NPS, append the number of its parent.
• To LS, append the label of itself.

– PRIX uses both the number and label of the
parent of the deleted-node.

6

Example
A

B E

F A

B C

D D

• Post-order numberingA

B E

F A

B C

D D

7

Construct the Sequences
CPS
NPS:
LS:

PRIX
NPS:
LPS:

2
F

2
B

9
B

9
A

4
D

4
B

7
B

7
A

6
D

6
C

7
C

7
A

8
A

8
E

9
E

9
A

-
A

Each entry in
CPS is an edge.

Each entry in
PRIX is about
the same node.

Index: 1 2 3 4 5 6 7 8 9

8

Approach
• Data representation
• Matching

– Subsequence matching
– Structure matching

• Indexing
• Optimizations

– Labeling Filtering
– Dominant Match Processing

9

Main Idea
• Theorem 3.1 Consider a tree T and a twig

query Q with their label sequences LST
and LSQ, respectively. If Q is a subtree of
T, then LSQ is a subsequence of LST

• Subtree Subsequence
• Subsequence Subtree ?
• NOT sufficient! More conditions needed!
• First find subsequence, then check more

conditions and then find the subtrees.

10

Subsequence Matching
• LCS: Longest Common Subsequence
• Using Dynamic Programming to solve LCS
• Use a matrix R, R[i,j] records the length of

the LCS between s1[0..i] and s2[0..j].

()⎪
⎩

⎪
⎨

⎧

≠−−
=+−−

==
=

][][]1,[],,1[max
][][1]1,1[

0,00
],[

21

21

jsisjiRjiR
jsisjiR

ji
jiR

11

Example of LCS

44332210C
44322210E
33322210A
22222210D
11111110B
AEACDDBF • Numbers in red are

matches.

()⎪
⎩

⎪
⎨

⎧

≠−−
=+−−

==
=

][][]1,[],,1[max
][][1]1,1[

0,00
],[

21

21

jsisjiRjiR
jsisjiR

ji
jiR

A
CEADB

EACDDBF

A
CEADB

EACDDBF

12

Subsequence Matching
• Property 3.1 If a label sequence LSQ is a

subsequence of another label sequence
LST, then LSQ is the longest common
subsequence (LCS) of LSQ and LST.

• Each node in the query needs to match
one in the document.

• The length of the LCS should be the same
as the length of LSQ

13

Subsequence Matching
• Two steps:

– Construct the R matrix, check the length of
LCS (whether LSQ is a subsequence of LST)

– Using backtrack to get all the matches
• Complexity

– Time: O(mn)
– Space: O(mn)

14

Example

A

B E

F A

B C

D D

1

2

3

4

5

6

7

8

9

987654321

B
7

E
9

AACDDBFLS
-876492NPS

321

ADBLS
-33NPS

Document Query

3
2
1

AEACDBDBF

222222210D

987654321

2

1

3

1

3322210A

1111110B

R Matrix

Subsequence Matches:
M1(2, 3, 7) M2(2, 5, 7)
M3(4, 5, 7) M4(2, 3, 9)
M5(2, 5, 9) M6(4, 5, 9)

15

Structure Matching

16

Structure Agreement

• To check two nodes (NPSTi, LSTi) and
(NPSQj, LSQj)

• NPSTi and NPSQj are their parents.
• Either the parents share the same label,
• or the NEAREST ancestor of NPSQj

matches NPSTi.
• (Apply some level-wise constraints for

wildcards “*”, etc).

17

Example

987654321

B
7

E
9

AACDDBFLS
-876492NPS

321

ADBLS
-33NPS

18

Order of the Matching
• For each pair of nodes in the document

and the query, we want to check whether
their parents matches each other.

• In the CPS, we can see that child always
appears before its parent

• So, we need to match the nodes from the
end of the sequence to the beginning

19

Algorithm

20

For each pair of nodes…
• We have Pq: the parent of the node in Q
• Pt: the parent of the node in T
• mapping[Pq] the node in T that is already

matched with Pq in Q
• Pt must be the same or the NEAREST

ancestor of mapping[Pq]
• NEAREST: search each ancestor of Pt

bottom up, until the first already mapped
node, it should be the same as
mapping[Pq]

21

Example

A

B E

F A

B C

D D

1

2

3

4

5

6

7

8

9

987654321

B
7

E
9

AACDDBFLS
-876492NPS

321

ADBLS
-33NPS

Document Query

3
2
1

AEACDBDBF

222222210D

987654321

2

1

3

1

3322210A

1111110B

R Matrix

Subsequence Matches:
M1(2, 3, 7) M2(2, 5, 7)
M3(4, 5, 7) M4(2, 3, 9)
M5(2, 5, 9) M6(4, 5, 9)

22

Example

987654321

B
7

E
9

AACDDBFLS
-876492NPS

321

ADBLS
-33NPS

Document Query M3(4, 5, 7) 321
7mp

Q2 matches T5?
Pq = 3
Pt = 6
mp[3] = 7 ≠ 6
In T, 7 is the parent of 6.
Match!

5

Q1 matches T4?
Pq = 3
Pt = 7
mp[3] = 7
Match!

4

23

Example

987654321

B
7

E
9

AACDDBFLS
-876492NPS

321

ADBLS
-33NPS

Document Query M2(2, 5, 7) 321
7mp

Q2 matches T5?
Pq = 3
Pt = 6
mp[3] = 7 ≠ 6
In T, 7 is the parent of 6.
Match!

5

Q1 matches T2?
Pq = 3
Pt = 9
mp[3] = 7
not the parent of 9!

X

24

Nearest
• NEAREST: search each ancestor of Pt

bottom up, until the first already mapped
node, it should be the same as mp[Pq]

• Search for the ancestors one by one, we
need O(depth of the tree), which is O(n).

• The node scope representation DOES
NOT work!

25

Example

987654321

B
7

E
9

AACDDBFLS
-876492NPS

E
4
3 421

ACBLS
-34NPS

Document Query M (4, 6, 8, 9)

8
3 421

96mp

Q1 matches T4?
Pq = 4
Pt = 7
mp[4] = 9

From Pt, the first
ancestor that already
matched is E(8), which
is not A(9)!

XA

B E

C

1

2

3

4

26

Approach
• Data representation
• Matching

– Subsequence matching
– Structure matching

• Indexing
• Optimizations

– Labeling Filtering
– Dominant Match Processing

27

Indexing
• For each label, collect the documents

where it occurs.
• Only index infrequent labels (indexing

frequent labels takes much space but not
very helpful)

• α-infrequent: appears in less then a
fraction of α trees in the database.

• For a query, find the label which occurs in
lest documents, only search among those
documents.

28

Example
• Totally 10,000 documents
• α=50%
• A occurs in 6,000 documents, so

not indexed.
• B occurs in 4,000 documents;
• C occurs in 3,000
• E occurs in 3,500
• Use the list of C to do the match.

A

B E

C

1

2

3

4

29

Approach
• Data representation
• Matching

– Subsequence matching
– Structure matching

• Indexing
• Optimizations

– Labeling Filtering
– Dominant Match Processing

30

Label Filtering
• The dynamic programming asks for O(mn)

in both time and space.
• Eliminate the irrelevant labels (labels not

in the query) from the document.

3
2
1

AEACDBDBF

222222210D

987654321

2

1

3

1

3322210A

1111110B

Query: BDA
Tree: FBDBDCAEA

Ignore the label F, C, E
from the tree, because
they are not in the query.

O(3*9) -> O(3*6)

31

Dominant Match
• Dominant match:

– LST [i]=LSQ [j]
– R [i, j]=i

• Consider only dominant matches, ignore
other cells.

3
2
1

AEACDBDBA

222222210D

987654321

2

1

3

1

3322211A

1111110B

Numbers in red are dominant
matches.

Notice that R[3, 1] is only a
match, but not dominant. It
cannot appears in any result.

32

Put All Together
• For each query Q:

– Using indexing to get a
short list of candidate
documents.

– For each document T:
• Using Label Filtering
• Construct R matrix
• Check the length of the

LCS
• Back track:

– Find each dominant
match

– do the structure match
at the same time

33

Early prune
• Subsequence matches:

– M1(2, 3, 7) M2(2, 5, 7)
– M3(4, 5, 7) M4(2, 3, 9)
– M5(2, 5, 9) M6(4, 5, 9)

• In the backtrack, say A9 is a match but D5
is not a match, we won’t continue to
process B4 or B2. Prune M5 and M6 early!
Instead, check D3.

3
2
1

AADBDBA

2222210D

9754321

2

1

332211A

111110B
X

34

Results
• With/without optimization
• Compare with PRIX
• Compare with TwigStack

35

With/without optimization
• No Opt
• Label Filtering

& Dominant
Match

• LCS-TRIM
(back tract and
structure match
together)

36

Compare with PRIX

37

PRIX
• PRIX: subsequence matching + structure

refinements (3 phases)

38

Why?
• PRIX uses B+tree, virtual trie and node

scope to do the subsequence match. LCS-
TRIM uses dynamic programming.

• PRIX takes all the subsequences (false
positive intermediate results) to do the
structure refinements. LCS-TRIM prunes
them very early.

39

Compare with TwigStack

40

Conclusion
• Novel sequence based representations
• Using dynamic programming of LCS
• Using inverted tree index
• Using several optimizations
• Prune out false candidate matches early
• Magnitude speedup over PRIX and

TwigStack

41

Thank you!

Questions?

