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Abstract. Despite considerable efforts, it remains difficult to obtain
accurate multiple sequence alignments. By using additional hits from
database search of the input sequences, a few strategies have been pro-
posed to significantly improve alignment accuracy, including the con-
struction of profiles from the hits while performing profile alignment, the
inclusion of high scoring hits into the input sequences, the use of interme-
diate sequence search to link distant homologs, and the use of secondary
structure information. We develop an algorithm that integrates these
strategies to further improve alignment accuracy by modifying the pair-
HMM approach in ProbCons to incorporate profiles of intermediate se-
quences from database search and utilize secondary structure predictions
as in SPEM. We test our algorithm on a few sets of benchmark multi-
ple alignments, including BAliBASE, HOMSTRAD, PREFAB and SAB-
mark, and show that it significantly outperforms MAFFT and ProbCons,
which are among the best multiple alignment algorithms that do not uti-
lize additional information, and SPEM, which is among the best multiple
alignment algorithms that utilize additional hits from database search.
The improvement in accuracy over SPEM can be as much as 5 to 10%
when aligning divergent sequences. A software program that implements
this approach (ISPAlign) is at http://faculty.cs.tamu.edu/shsze/ispalign.

1 Introduction

Although many algorithms have been proposed for multiple sequence alignment
(Thompson et al. 1994; Morgenstern et al. 1996; Stoye 1998; Notredame et al.
2000; Lee et al. 2002; Edgar 2004; Van Walle et al. 2004; Do et al. 2005; Katoh
et al. 2005; Lassmann and Sonnhammer 2005; Pei and Grishin 2006; Roshan
and Livesay 2006; Yamada et al. 2006), it remains difficult to obtain accurate
alignments. Common techniques to improve alignment accuracy include perform-
ing iterative refinements after the initial alignment is constructed (Gotoh 1996;
Edgar 2004; Do et al. 2005; Roshan and Livesay 2006; Yamada et al. 2006), us-
ing consistency-based pairwise alignments in progressive approaches (Notredame
et al. 2000; Do et al. 2005; Pei and Grishin 2006; Roshan and Livesay 2006), and
incorporating structural alignments (O’Sullivan et al. 2004; Van Walle et al.
2004). A few other strategies combine alignments from existing algorithms to
obtain an improved alignment (Bucka-Lassen et al. 1999; Wallace et al. 2006).
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With the rapidly increasing number of sequences in biological databases, it
has been observed that the use of additional sequences from database search can
significantly improve alignment accuracy. Among the most successful approaches
that use this strategy are profile alignment algorithms that use database search
to find related sequences for each input sequence, construct a profile from the
hits, and then align the profiles instead of the sequences, including algorithms
that start from two sequences (Marti-Renom et al. 2004), and algorithms that
start from multiple sequences (Simossis et al. 2005; Zhou and Zhou 2005). Al-
ternatively, Heger et al. (2004) identified clusters of residues to form columns of
a multiple alignment by linking distant homologs through the hits.

We observe that instead of constructing a profile for each input sequence from
the hits, which only compares each hit to the input sequence that generates it,
it may be more accurate to perform a more extensive multiple alignment of the
hits together with the input sequences, which allows comparisons among all the
sequences involved. The usefulness of such a strategy has been demonstrated
during the construction of the PREFAB database (Edgar 2004), in which the
incorporation of additional hits from database search into the input sequences
significantly improves accuracy as opposed to aligning the input sequences alone.
One drawback of this approach is that the inclusion of hits that are not interme-
diate between the input sequences can introduce noise, since these hits do not
contribute to defining a better alignment between them. We will show that a
careful definition of intermediate sequences from database search in addition to
the computation of profiles for these sequences will significantly improve align-
ment accuracy.

By defining an intermediate sequence as a common hit from database search
that links two input sequences, an intermediate sequence search technique
has been used successfully to establish distant homologs (Park et al. 1997;
Gerstein 1998). The strategy was later generalized to multiple intermediate se-
quence search (Salamov et al. 1999; Li et al. 2000), in which chains of interme-
diate sequences found through iterative database search are used to link very
distant homologs. Bolten et al. (2001) used such transitive homologies to cluster
protein sequences for structure predictions. Heger et al. (2004) used a graph-
theoretic approach to link intermediate sequences through transitive homologies
to detect short active site motifs, while Margelevičius and Venclovas (2005) used
the intermediate sequence search strategy to distinguish between reliable and
unreliable regions in alignments. Instead of defining intermediate sequences as
common hits, we will develop a more relaxed definition to maximize the amount
of information that can be extracted from the hits.

Since the number of hits that are also intermediate sequences can be very
large, it is not practical to simply add them to the input sequences and perform
a multiple alignment on the combined sequence set. Motivated by the fact that
similar sequences are likely to contain redundant information, our algorithm uses
a greedy strategy to choose a small subset of intermediate sequences that are
far away from each other, which, together with the original sequences form a
combined set of input sequences. Instead of aligning these sequences directly, we



Multiple Sequence Alignment 285

construct a profile for each sequence in the combined set by incorporating infor-
mation from other intermediate sequences and aligning the profiles by modifying
the pair-HMM approach (Durbin et al. 1998) in ProbCons (Do et al. 2005). This
is in contrast with the strategy used in Simossis et al. (2005) and Zhou and Zhou
(2005) which constructs a profile from the hits of an input sequence. We will show
that our strategy of constructing profiles from intermediate sequences instead of
from the hits helps to prevent the introduction of excessive noise when aligning
closely related sequences. To further improve alignment accuracy, we obtain a
secondary structure prediction for each sequence in the combined set and incor-
porate these predictions into the pair-HMM alignment. While this strategy of
using secondary structure predictions is similar to the one employed in Zhou and
Zhou (2005), it is different from the technique used in Pei and Grishin (2006)
which employs secondary structure information during HMM training without
explicitly using secondary structure predictions in alignments.

We compare the performance of our algorithm to MAFFT (Katoh et al. 2005)
and ProbCons (Do et al. 2005), which are among the best multiple alignment
algorithms that do not utilize additional information, and SPEM (Zhou and
Zhou 2005), which is among the best multiple alignment algorithms that utilize
additional hits from database search, on benchmark multiple alignments from
BAliBASE (Thompson et al. 2005), HOMSTRAD (Mizuguchi et al. 1998), PRE-
FAB (Edgar 2004), and SABmark (Van Walle et al. 2004). We will show that
our algorithm outperforms MAFFT, ProbCons and SPEM in almost all situ-
ations, with very significant improvements when aligning divergent sequences.
Before presenting the algorithm in detail, we first describe the general strategies
employed in each stage in the next few sections.

2 Finding Intermediate Sequences

Although most intermediate sequence search strategies define an intermediate
sequence either as a common hit from database search that links two input
sequences (Park et al. 1997; Gerstein 1998), or as hits that form a chain linking
two input sequences (Salamov et al. 1999; Li et al. 2000), such a requirement
is very stringent since it may not be possible to link very divergent sequences
together even if the database search is performed iteratively. We consider the
following relaxed definition of an intermediate sequence which only requires that
it is intermediate between the two input sequences.

Definition 1. Given two sequences s1 and s2, and a distance score d(s1, s2)
between them, a sequence r is intermediate between s1 and s2 if d(r, s1) <
d(s1, s2) and d(r, s2) < d(s1, s2).

The problem of finding intermediate sequences between multiple input sequences
is defined as follows.

Definition 2. Given n input sequences s1, . . . , sn, and m hits r1, . . . , rm from
database search of these sequences, find all hits rk that are intermediate between
some pair of input sequences si and sj .
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Similar to previous approaches, our goal is to find an appropriate subset of se-
quences that contain useful information between the input sequences s1, . . . , sn.
We do not require that these intermediate sequences have a phylogenetic in-
terpretation or have an appropriate evolutionary relationship to the input se-
quences. Also, since any hit that is intermediate between some pair of input
sequences is potentially useful, it is included in the definition. Note that there is
no need to compute pairwise distances between the potentially very large num-
ber of hits. The number of pairwise distance score computations that are needed
to identify the intermediate sequences from among the hits is O(mn+n2), while
the number of score comparisons is O(mn2).

3 Choosing Intermediate Sequences

The next problem of choosing a small subset of intermediate sequences to add
to the input sequences is defined as follows. Our goal is to identify a combined
set of sequences that are as divergent as possible.

Definition 3. Given n input sequences s1, . . . , sn, m intermediate sequences
r1, . . . , rm, add k intermediate sequences from among r1, . . . , rm, denoted by
sn+1, . . . , sn+k, so that the minimum distance between sequences in the com-
bined set s1, . . . , sn+k is the largest possible when distances between the input
sequences s1, . . . , sn are ignored.

Figure 1 shows a greedy algorithm that iteratively adds an intermediate sequence
sn+j that is farthest away from the current sequence set s1, . . . , sn+j−1, in which
the minimum distance between sn+j and s1, . . . , sn+j−1 is the largest possible.
Although the greedy strategy does not guarantee optimum divergence of the
sequences s1, . . . , sn+k, they should be reasonably far away from each other. The
total number of pairwise distance score computations needed is O(m(n + k)),
and there is no need to compute distances between all pairs of the potentially
very large number of intermediate sequences.

Input: n input sequences s1, . . . , sn, m intermediate sequences r1, . . . , rm,
distance score d(r, s) between two sequences r and s.

Output: k intermediate sequences sn+1, . . . , sn+k added to s1, . . . , sn.

R ← {r1, . . . , rm};
for each ri in R do { di ← min1≤j≤n d(ri, sj); }
for j ← 1 to k do {

sn+j ← ri with the maximum di; remove ri from R;
for each ri in R do { di ← min(di, d(ri, sn+j)); } }

Fig. 1. Greedy algorithm to choose a small subset of intermediate sequences to add to
the input sequences
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4 Constructing Sequence Profiles

Instead of aligning the sequences s1, . . . , sn+k directly, a profile is constructed for
each of these sequences as follows: for each intermediate sequence ri from among
r1, . . . , rm, assign it to the sj from among s1, . . . , sn+k that is most similar to
ri. For each sequence sj with assigned sequences ri1 , . . . , rit , we combine all
the pairwise alignments between sj and each rip into a star alignment with
sj as the center (Gusfield 1993). For each column in the star alignment that
contains a residue of sj , the relative frequency of each residue within the column
is then used to construct a profile as a probability distribution of residues (gap
characters are ignored). Here the choice of scoring functions for the profile is
not very important since Edgar and Sjölander (2004) showed that most scoring
functions do not have significant performance differences. One caution is that we
need to make sure that the number of very closely related sequences assigned to
each sj is not excessively large to avoid over-contribution of these sequences to
the profile. This can be achieved by removing sequences from the original set of
intermediate sequences so that none of the remaining sequences are very similar
to each other before choosing the subset of intermediate sequences. In difference
from the approach in Simossis et al. (2005) and Zhou and Zhou (2005), hits that
are not intermediate sequences are not used to avoid noise from these hits.

5 Alignment Via Modified Pair-HMM

We modify the pair-HMM approach in Durbin et al. (1998) to incorporate profiles
and secondary structure predictions. The original model consists of three states:
M emits an aligned pair of residues (x, y) with probability e(x, y), X emits a
residue x in the first sequence that is aligned to a gap with probability e(x),
while Y emits a residue y in the second sequence that is aligned to a gap with
probability e(y) (Fig. 2). In addition to the original residue, each position is
now associated with a probability distribution of residues. Let p1(x, i) be the
probability of finding the residue x at position i in the first sequence and let
p2(y, j) be the probability of finding the residue y at position j in the second
sequence. We modify the model to incorporate profiles as follows: define the
emission probability of state M as e′(i, j) =

∑
x

∑
y p1(x, i)p2(y, j)e(x, y) if the

emission is at position i in the first sequence and at position j in the second
sequence, the emission probability of state X as e′(i) =

∑
x p1(x, i)e(x) if the

emission is at position i in the first sequence, and the emission probability of
state Y as e′(j) =

∑
y p2(y, j)e(y) if the emission is at position j in the second

sequence. These changes replace the original emission probabilities of the single
residues by the average emission probabilities over a distribution of residues so
that in the degenerate case when the profiles represent simple sequences, the
effect is the same as before.

We incorporate secondary structure predictions into the pair-HMM model as
follows: in state M , we introduce an additional parameter α and subdivide the
emission probability e′(i, j) into two cases to obtain a modified state M(α) with
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Fig. 2. The original and the modified pair-HMM models. In the original model, state
M emits an aligned pair of residues, states X and Y emit a residue in the first and the
second sequences respectively that is aligned to a gap, δ is the gap opening probability,
and ε is the gap extension probability (Durbin et al. 1998). In the modified model,
the state M(α) is obtained from M with emission probability e(x, y) by defining the
emission probability to be αe(x, y) if the paired residues (x, y) have the same secondary
structure type and (1 − α)e(x, y) otherwise. The factor β is applied to δ and ε to
compensate for the change. To incorporate profiles, the residue emission probabilities
are replaced by the average emission probabilities over a distribution of residues.

emission probability αe′(i, j) if the original paired residues (x, y) at position i in
the first sequence and at position j in the second sequence have the same sec-
ondary structure type, and with emission probability (1 − α)e′(i, j) otherwise.
Since this decrease in emission probability will tend to allow more gaps than be-
fore in the ideal case in which every aligned residue pair has the same secondary
structure type, we apply the factor β to the gap opening and extension probabil-
ities to compensate for it while keeping the ratio between the two probabilities
unchanged to preserve the affine gap model (Fig. 2). This modified pair-HMM
can then be utilized within a progressive alignment strategy to obtain a multiple
alignment (Do et al. 2005).

6 Detailed Algorithm

We now describe a procedure and the associated parameters that give very good
results for our algorithm. Note that this is only among one of the many possible
ways to implement the algorithm.

Following SPEM (Zhou and Zhou 2005), for each input sequence, we use PSI-
BLAST (Altschul et al. 1997) to perform database search on a filtered version of
the non-redundant protein database (NR) that excludes low complexity regions,
transmembrane regions and likely coiled-coil regions (Jones 1999), and retain
hits that have less than 98% identity to the input sequence and have e-value
less than 0.001. One advantage of using PSI-BLAST is that it performs iterative
database search automatically to look for distant homologs. Instead of keeping
the entire sequence of a hit, only the regions within a PSI-BLAST local alignment
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are retained to avoid the introduction of noise from unrelated regions. Note that
if there are more than one PSI-BLAST local alignment that satisfy the above
condition within a hit, they are considered to be separate hits.

We then extract intermediate sequences from among these hits according to
Definitions 1 and 2. To obtain an accurate distance score d(s1, s2) between two
sequence s1 and s2, we use SSEARCH (Smith and Waterman 1981) to obtain an
optimal alignment between s1 and s2 and define d(s1, s2) as the e-value of the
alignment. Note that the use of e-values here does not pose any problems since
no addition operations are performed.

To avoid over-contribution of very similar intermediate sequences in the later
profile construction step, we use CD-HIT (Li et al. 2002) to remove some of the
closely related sequences so that the identity between the remaining interme-
diate sequences is less than 85%. We then use Definition 3 and the algorithm
in Fig. 1 with k = 5 to add at most five intermediate sequences to the input
sequences to obtain s1, . . . , sn+k. We choose k = 5 so that the final multiple
alignment step will not become much slower than simply aligning the original
input sequences. The identity of a pairwise alignment from SSEARCH is used
to obtain an accurate distance score d(s1, s2) between two sequences s1 and s2
by defining d(s1, s2) as 1 − identity (note that this distance is different from
what we use above). Note that CD-HIT cannot be used for this purpose since
it initially uses counts of short tuples to estimate pairwise similarity, which is
inaccurate when the identity level between the sequences s1, . . . , sn+k is low.

We then construct profiles according to the algorithm in Section 4 in which
an intermediate sequence ri is assigned to the sequence from among s1, . . . , sn+k

that has the best SSEARCH alignment to ri. To obtain a secondary structure
prediction for each of the sequences s1, . . . , sn+k, we follow SPEM (Zhou and
Zhou 2005) and use PSIPRED (Jones 1999) to assign one of the three possible
types (helix, strand or coil) to each residue.

With the profiles and secondary structure predictions, we modify ProbCons
(Do et al. 2005) by changing its pair-HMM model according to Section 5. The
parameters in Fig. 2 are as follows: the original residue emission probabilities and
the transition probabilities δ and ε are from ProbCons. The parameter α that
modifies the emission probabilities is 0.65, while the parameter β that modifies
the transition probabilities is 0.75. These two parameters are determined by
testing a few combinations and choosing one that gives satisfactory performance
in PREFAB (Edgar 2004). We use the default setting in ProbCons that utilizes
two sets of gap states with the same modifying parameter β for both sets. There
is no change in the later progressive alignment or the iterative refinement steps
and the alignment on the original input sequences is returned.

7 Performance on Benchmark Sets

We test our algorithm (ISPAlign) on benchmark multiple alignments from
BAliBASE 3.0 (Thompson et al. 2005), HOMSTRAD (Mizuguchi et al. 1998),
PREFAB 4.0 (Edgar 2004), and SABmark 1.65 (Van Walle et al. 2004). We
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Table 1. Average SPS and CS scores (in %) on the full length sequence set in BAl-
iBASE 3.0. Reference 1 is further subdivided into two subsets: 1V1 (< 25% identity),
and 1V2 (20–40% identity). The number in braces denotes the number of alignments
in each subset. Within each subset, the best accuracy value is in bold. The values in
parentheses denote the p-values, with — indicating insignificant differences. Since most
of the subsets are very small, p-values are computed only for reference 1 and the entire
set. Twenty-two cases are omitted due to unavailability of results from SPEM.

SPS CS
MAFFT ProbCons SPEM ISPAlign MAFFT ProbCons SPEM ISPAlign

1V1 {38} 64.8 64.5 73.1 76.0 44.6 40.4 51.6 56.9
1V2 {42} 92.8 93.4 92.1 93.5 83.9 85.6 82.6 85.8
1 (V1–V2) {80} 79.5 79.7 83.1 85.2 65.2 64.2 67.9 72.1
(vs MAFFT) (4e–5) (5e–8) (0.01) (2e–7)
(vs ProbCons) (7e–4) (2e–6) (0.01) (2e–5)
(vs SPEM) (0.002) (9e–5)
2 {37} 91.8 89.7 88.0 91.9 46.0 40.8 47.1 53.8
3 {29} 81.4 78.8 82.8 83.5 56.8 54.3 51.4 59.9
4 {36} 89.2 86.8 87.5 90.3 67.9 60.9 55.4 63.3
5 {14} 88.2 87.5 87.0 90.3 57.6 59.4 55.9 63.9
All (1–5) {196} 84.5 83.3 85.0 87.5 60.3 57.3 58.3 64.6
(vs MAFFT) (0.005) (2e–11) (—) (2e–10)
(vs ProbCons) (5e–4) (2e–13) (—) (4e–10)
(vs SPEM) (3e–7) (5e–11)

compare our performance to MAFFT 5.8 (using the most accurate linsi strat-
egy, Katoh et al. 2005), ProbCons 1.10 (Do et al. 2005) and SPEM (Zhou and
Zhou 2005).

For BAliBASE, two score measures are used to perform accuracy assessment
of each multiple alignment on the original input sequences: the sum-of-pairs score
(SPS) evaluates the percentage of residue pairs that an algorithm can align cor-
rectly in the reference alignment, while the column score (CS) evaluates the
percentage of entire columns that an algorithm can align correctly (Thompson
et al. 1999). For PREFAB, evaluations are made on the original pairs of input
sequences using the Q score defined in Edgar (2004), which has the same mean-
ing as the SPS score. For BAliBASE and PREFAB, evaluations are made only
on the core regions that are assigned to the reference alignments. While we test
MAFFT and ProbCons both on the original pairs in PREFAB and on the full
set of sequences that includes random hits from database search, we test SPEM
and ISPAlign only on the original pairs since these algorithms utilize hits from
database search automatically. For SABmark, reference sequences are specified
in pairs and evaluations are based on the fD and the fM scores in Van Walle et al.
(2004), in which fD has the same meaning as SPS and fM evaluates the percent-
age of correctly aligned residue pairs in the test alignment. We define the fD score
and the fM score for each alignment as the average fD score and the average
fM score respectively over all these pairs. For each test set, we use the Wilcoxon
matched-pairs signed-ranks test (Wilcoxon 1947) over large enough subsets with
0.05 as the p-value cutoff for significance.

Table 1 shows performance comparisons on the full length sequence set in
BAliBASE 3.0. For both reference 1 and the entire set, ISPAlign improved over
MAFFT, ProbCons and SPEM very significantly, with the biggest improvements
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Table 2. Average SPS and CS scores (in %) on HOMSTRAD. Each subset includes
all alignments with average pairwise identity within the specified range, with * indicat-
ing worse performance in p-value. Since ProbCons consistently performs better than
MAFFT, comparisons are made only between ProbCons, SPEM and ISPAlign. Only
the p-values for the CS scores are shown.

SPS CS SPEM ISPAlign ISPAlign

ProbCons SPEM ISPAlign ProbCons SPEM ISPAlign (vs ProbCons) (vs ProbCons) (vs SPEM)
0–20% {156} 49.7 67.2 68.5 43.1 61.0 62.7 (4e–23) (5e–24) (4e–5)
20–40% {459} 80.5 85.6 86.8 74.7 80.4 81.9 (2e–29) (2e–53) (7e–7)
40–70% {348} 94.8 94.9 95.5 92.2 92.3 93.2 (0.03) (2e–9) (0.003)
70–100% {69} 99.1 98.5 99.0 99.1 98.4 98.9 (0.007*) (—) (—)
All {1032} 81.9 86.8 87.8 77.4 82.7 84.0 (2e–46) (8e–87) (1e–12)

Table 3. Average Q scores (in %) on PREFAB 4.0. Each subset includes all structure
pairs with identity within the specified range, with * indicating worse performance in
p-value. Comparisons are made between MAFFT and ProbCons using two sequences
(MAFFT2, ProbCons2) and using all (at most 50) sequences (MAFFT50, ProbCons50),
SP2 (which is a specialized version of SPEM for two sequences), and ISPAlign2 (IS-
PAlign starting from two sequences). Since MAFFT50 has the best accuracy among
MAFFT and ProbCons, p-value comparisons are made only against MAFFT50.

SP2 ISPAlign2 ISPAlign2

MAFFT2ProbCons2MAFFT50ProbCons50 SP2 ISPAlign2(vs MAFFT50)(vs MAFFT50) (vs SP2)
0–20% {887} 36.2 38.9 56.7 55.6 64.6 64.8 (3e–36) (5e–46) (0.03)
20–40% {588} 81.0 82.8 87.1 87.2 89.7 90.1 (2e–16) (6e–28) (0.01)
40–70% {112} 96.2 96.4 96.0 95.4 95.3 97.6 (0.02*) (—) (—)
70–100% {95} 97.9 97.8 98.0 97.3 97.2 98.0 (6e–4*) (—) (0.005)
All {1682} 59.4 61.4 72.3 71.7 77.3 77.7 (1e–46) (7e–69) (2e–4)

in the 1V1 subset when identity is very low (improvement in the CS score was
over 5%). SPEM improved over MAFFT and ProbCons very significantly for
the SPS score. For the CS score, SPEM significantly improved over MAFFT
and ProbCons for reference 1, but the overall improvement was not significant
for the entire set.

Table 2 shows performance comparisons on HOMSTRAD. Except for 70 to
100% identity, all the p-values of ISPAlign over SPEM, ISPAlign over ProbCons,
and SPEM over ProbCons were highly significant. For 70 to 100% identity, SPEM
performed significantly worse than ProbCons, while the differences between IS-
PAlign and ProbCons or SPEM were not significant. In general, as identity
increases, less improvements were observed for both SPEM and ISPAlign.

Table 3 shows performance comparisons on PREFAB 4.0 using two versions
of MAFFT and ProbCons: MAFFT2 and ProbCons2 use the original input pair,
while MAFFT50 and ProbCons50 use the full sequence set that includes random
hits from database search and has at most 50 sequences. For 0 to 20% identity
and 20 to 40% identity, the improvements of SPEM or ISPAlign over MAFFT50

were highly significant, while the improvements of ISPAlign over SPEM were sig-
nificant but not as much. For 40 to 70% identity, SPEM performed significantly
worse than MAFFT50, while the differences between ISPAlign and MAFFT50
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Table 4. Average fD and fM scores (in %) on the Twilight and Superfamily sub-
sets of SABmark 1.65. Four cases are omitted in the Twilight subset and three cases
are omitted in the Superfamily subset since no reference alignments of sufficiently good
quality are available. None of these subsets include false positive sequences. Since Prob-
Cons consistently performs better than MAFFT, comparisons are made only between
ProbCons, SPEM and ISPAlign.

fD fM
ProbCons SPEM ISPAlign ProbCons SPEM ISPAlign

Twilight {205} 29.3 44.2 46.1 21.0 30.8 32.0
(vs ProbCons) (2e–26) (6e–29) (1e–27) (3e-29)
(vs SPEM) (0.01) (0.005)
Superfamily {422} 57.1 68.3 69.0 43.6 50.9 51.6
(vs ProbCons) (4e–49) (1e–51) (1e–48) (1e–51)
(vs SPEM) (0.02) (7e–4)

Table 5. Average CS scores (in %) on HOMSTRAD and average Q scores (in %) on
PREFAB 4.0 using a few methods that are of increasing levels of complexity. Method 1
constructs a profile from the hits of each input sequence and performs profile alignment
using the modified HMM model that incorporates profiles but not secondary structure
predictions. Method 2 removes the hits that are not intermediate sequences before
performing profile alignment. Method 3 adds intermediate sequences to the input se-
quences, constructs profiles based on the intermediate sequences and performs profile
alignment on the combined sequence set. Method 4 is the full ISPAlign algorithm that
also utilizes secondary structure predictions. For PREFAB, ProbCons uses the original
input pair while all the methods start from this input pair. The p-value comparisons
are made against the previous method to the left, with * indicating worse performance.

HOMSTRAD CS PREFAB Q
ProbCons Method1 Method2 Method3 Method4 ProbCons Method1 Method2 Method3 Method4

0–20% 43.1 59.1 59.2 59.4 62.7 38.9 58.2 58.6 61.3 64.8
(vs previous) (3e–22) (—) (0.04) (6e–8) (2e–103) (—) (6e–12) (7e–29)
20–40% 74.7 79.1 79.6 81.4 81.9 82.8 88.7 89.0 89.7 90.1
(vs previous) (2e–24) (0.003) (7e–14) (0.005) (9e–45) (—) (2e–4) (0.004)
40–70% 92.2 92.1 92.5 93.1 93.2 96.4 94.4 96.6 97.8 97.6
(vs previous) (—) (8e–4) (0.001) (—) (—) (0.002) (—) (0.008*)
70–100% 99.1 98.2 99.1 99.2 98.9 97.8 97.0 96.9 98.1 98.0
(vs previous) (6e–4*) (1e–4) (—) (0.003*) (0.04*) (0.02) (—) (—)
All 77.4 81.7 82.2 83.2 84.0 61.4 73.5 73.9 75.7 77.7
(vs previous) (5e–38) (1e–6) (1e–14) (1e–6) (7e–146) (—) (2e–15) (4e–28)

or SPEM were not significant. For 70 to 100% identity, ISPAlign performed
significantly better than SPEM but did not improve over MAFFT50, while SPEM
performed significantly worse than MAFFT50. For the entire set, all the p-values
of ISPAlign over MAFFT50, ISPAlign over MAFFT50 and SPEM over MAFFT50

were highly significant.
Table 4 shows performance comparisons on the Twilight and Superfamily

subsets of SABmark 1.65. While the improvements of SPEM or ISPAlign over
ProbCons for both subsets were highly significant, the improvements of ISPAlign
over SPEM were significant but not as much.
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In all the subsets that we have assessed, ISPAlign always performs at least as
well as ProbCons and SPEM and is much better in many cases, especially when
the input sequences are divergent in which the improvements are always signif-
icant and in many cases highly significant. Also, the improvements in the CS
scores are sometimes more significant than the improvements in the SPS scores.
In general, the contribution from utilizing additional sequences from database
search decreases as the input sequences become more closely related. When the
input sequences become very similar, while SPEM has significant accuracy de-
creases in many cases, ISPAlign still always performs at least as well. Since not
many intermediate sequences are added to the input sequences before performing
the profile alignment step, ISPAlign is efficient enough to perform an individual
multiple alignment of moderate size in a reasonable time. In most cases, ISPAlign
is only slightly slower than SPEM, with at most about a two times slowdown in
some cases.

To evaluate contributions from various components of the algorithm to the
alignment accuracy under different identity levels, we compare the performance
of a few methods that are of increasing levels of complexity on HOMSTRAD and
PREFAB 4.0 (Table 5). When the identity is low, the biggest improvements were
from the use of profiles, while significant improvements were obtained from the
addition of intermediate sequences to the input sequences and from the use of
secondary structure predictions. When the identity is high, improvements were
mainly from the removal of hits that are not intermediate sequences.

8 Discussion

While we have described a procedure for ISPAlign that gives very good perfor-
mance, there are still many opportunities to further improve its accuracy. Instead
of adding a fixed number of intermediate sequences to the input sequences, it
may be better to add more sequences as the number of input sequences increases.
Alternatively, intermediate sequences can be added until all the minimum dis-
tances between each of the remaining intermediate sequences and the current set
of sequences fall below a threshold. Also, instead of modifying the parameters
used by ProbCons by applying the factors α and β, it may be better to re-train
the pair-HMM using a set of confirmed secondary structures. This can be done
in a framework suggested by Do et al. (2006). It is also possible to use other
multiple alignment algorithms to perform the profile alignment step as long as
profiles and secondary structure predictions can be incorporated, which can lead
to further improvements as better multiple alignment algorithms become avail-
able. It may also be beneficial to utilize three-dimensional structures when they
are available.
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