
Density Estimation Over Data Stream ∗

Aoying Zhou
Dept. of Computer Science,

Fudan University
220 Handan Rd.

Shanghai, 200433, P.R. China

ayzhou@fudan.edu.cn

Zhiyuan Cai
Dept. of Computer Science,

Fudan University
220 Handan Rd.

Shanghai, 200433, P.R. China

zycai@fudan.edu.cn

Li Wei
Dept. of Computer Science,

Fudan University
220 Handan Rd.

Shanghai, 200433, P.R. China

lwei@fudan.edu.cn

ABSTRACT
Density estimation is an important but costly operation for
applications that need to know the distribution of a data set.
Moreover, when the data comes as a stream, traditional den-
sity estimation methods cannot cope with it efficiently. In
this paper, we examined the problem of computing density
function over data streams and developed a novel method to
solve it. A new concept M-Kernel is used in our algorithm,
and it is of the following characteristics: (1) the running
time is in linear with the data size, (2) it can keep the whole
computing in limited size of memory, (3) its accuracy is com-
parable to the traditional methods, (4) a useable density
model could be available at any time during the processing,
(5) it is flexible and can suit with different stream models.
Analytical and experimental results showed the efficiency of
the proposed algorithm.

Keywords
Data Stream, Kernel density estimation

1. INTRODUCTION
Recently, it has been found that the technique of processing
data streams is very important in a wide range of scien-
tific and commercial applications. A data stream is such
a model that a large volume of data is arriving continu-
ously and it is either unnecessary or impractical to store
the data in some forms. For example, transaction of banks,
call records of telecommunications company, hit logs of web
server are all this kinds of data. In these applications, deci-
sions should be made as soon as various events (data) being
received. It is not likely that processing accumulated data
periodically by batches is allowed. Moreover, data streams
are also regarded as a model to access large data sets stored
in secondary memory where performance requirements ne-
cessitate access with linear scans. In most cases, comparing
∗(Produces the permission block, copyright information and
page numbering). For use with ACM PROC ARTICLE-
SP.CLS V2.0. Supported by ACM.

to the size of total data in auxiliary storage, the size of main
memory is such small that every time only a small portion of
data can be load in memory to process, and under the time
restrict only one scan is allowed to the data. Therefore, de-
spite all our efforts in scaling up data mining algorithms,
they still cannot handle such data efficiently.

How to apply an efficient way to organize and extract use-
ful information from the data stream is a problem met by
researchers from almost all fields. Though there are many
algorithms for data mining, they are not designed for data
stream.

To process the high-volume, open-ended data streams, a
method should meet some stringent criteria. In [6], Domin-
gos presents a series of designed criteria, which are summa-
rized as following:

1. The time needed by the algorithm to process each data
record in the stream must be small and constant; oth-
erwise, it is impossible for the algorithm to catch up
the pace of the data.

2. Regardless of the number of records the algorithm has
seen, the amount of main memory used must be fixed.

3. It must be a one-pass algorithm, since in most appli-
cations, either the data is still not available, or there
is no time to revisit old data.

4. It must have the ability to make a usable model avail-
able at any time, since we may never meet the end of
the stream.

5. The model must be up-to-date at any point in time,
that is to say, it must keep up with the changes of the
data.

The first two criteria are most important and hard to achieve.
Although many works have been done on scalable data min-
ing algorithms, most algorithms still require an increasing
main memory in proportion to the data size, and their com-
putation complexity is much higher than linear with the data
size. So they are not equipped to cope with data stream,
because they will exhaust all available main memory or fall
behind the data, some time or other.

Recent proposed techniques include clustering algorithms
when the objects arrive as a stream [8, 14], computing de-

cision tree classifiers when the classification examples arrive
as a stream [5, 10, 7], as well as approximate computing
medians and quantiles in one pass [12, 13, 2].

Another common but useful technique used on data stream
is Density estimation. Given a sequence of independent
random variables identically drawn from a specific distribu-
tion, the density estimation problem is to construct a density
function of the distribution based on the data drawn from
it. Density estimation is a very important problem in nu-
merical analysis, data mining and many scientific research
fields [9, 15]. By knowing the density distribution of a data
set, we can have an idea of the distribution in the data set.
Moreover, based on the knowledge of density distribution,
we can find the dense or sparse area in the data set quickly;
and medians and other quantiles can be easily calculated.
So in many data mining applications, such as density-biased
sampling, density-based clustering, density estimation is an
inevitable step to them [3, 11]. Kernel density estimation is
a widely studied nonparametric density estimation method
[4]. But it becomes computationally expensive when involv-
ing large data sets. Zhang et.al. provide a method to obtain
a fast kernel estimation of the density in very large data sets
by construct a CF-tree on the data [16]. Calculating den-
sity function over data stream has many practical applica-
tions. A straightforward one is that it can be used to verify
whether two or more data streams are drawn from the same
distribution.

1.1 Our Contribution
The contributions of the paper can be summarized as:

1. To the best of our knowledge, it is the earliest work of
density estimate over data stream.

2. We bring forward a new concept of M-Kernel, which
solves the incompatibility of limited main memory and
continuously coming data. And an algorithm is pro-
posed based on it to solve density estimation problem
over data stream.

3. Analytical and experimental results prove the effec-
tiveness and efficiency of our algorithm. It is a one-
pass algorithm and needs only a fixed-size main mem-
ory. The running time is in linear with the size of the
data stream. Meanwhile, the algorithm has an accept-
able error rate when compared with traditional kernel
density estimation. Another advantage is that it can
maintain a useable model at any point in time.

4. What we provide is a basic notion to handle data
stream, which can be extended and integrated to many
data mining applications such as density-biased sam-
pling.

1.2 Paper Organization
The organization of the rest of the paper is as follows: in the
next section (Section 2) we formally define the problem. A
new density estimation method that can handle data stream
is presented in section 3. Section 4 includes the experimental
results. And we conclude in section 5.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−3

Figure 1: Construction of a fixed weight kernel den-
sity estimate(solid curve). The normal kernels are
shown as the dotted lines.

2. PROBLEM DESCRIPTION
In this section, we briefly review the kernel density estima-
tion method and show the problems when using it to deal
with stream data.

Given a sequence of independent random variables x1, x2, . . .
identically distributed with density f , the density estimation
problem is to construct a sequence of estimators f̂n(xn; x)
of f(x) based on the sample (x1, . . . , xn) ≡ xn.

The kernel method is a widely studied nonparametric den-
sity estimation method. The equation of it based on n data
points is defined as:

f̂n(x) =
1

nh

nX
i=1

K(
x−Xi

h
) =

1
n

nX
i=1

Kh(x−Xi) (1)

Note that Kh(t) = h−1K(h−1t) for h > 0. Clearly, f̂(x)
is nonnegative, integrates to one, and is a density function.
In Figure 1, the construction of such estimates is demon-
strated. The dashed lines denote the individual standard
normal shaped kernels, and the solid line the resulting es-
timate. Kernel density estimation can be thought of as be-
ing obtained by placing a ”bump” at each point and then
summing the height of each bump at each point on the X-
axis. The shape of the bump is defined by a kernel func-
tion, K(x), which is taken to be a unimodal, symmetric,
nonnegative function that centers at zero and integrates to
one. The spread of the bump is determined by a window
or bandwidth, h, which controls the degree of smoothing of
the estimation. Kernel density estimation has many desir-
able properties [16]. It is simple, no curse of dimension, no
need to know the data range in advance, and the estimate is
asymptotically unbiased, consistent in a mean-square sense,
and uniformly consistent in probability.

For low to medium data sizes, kernel estimation is a good
practical choice. However if the kernel density estimation is
applied to very large data sets, it becomes computationally
expensive and space intensive. Because there are n distinct
”bumps”, or kernel functions in f̂(x), generally speaking, it
needs O(n) space to store the n kernel functions. If we want
to calculate the density value at a specific point α, it needs

to scan all n kernel functions to compute f̂(α). And the
most great drawback of the method is that it must get the
n data before begin to estimate the density function. That
is to say, the kernel density estimation can only deal with
static data sets, it cannot handle data stream.

3. DEAL WITH DATA STREAM
In this section, we first give two observations on classical ker-
nel density estimation method, and then present a new den-
sity estimation method, which can calculate density func-
tion over data stream efficiently. The algorithm seems like
classical kernel density estimation, but there is one great
difference between them, that is, the efficiency. It only uses
a fix-sized main memory, which is irrespective of the total
number of records in the stream, all through the processing.
And the time complexity is in linear with the size of the
data stream.

3.1 Incremental Density Estimation
Traditionally, f̂n(x)(n = 1, 2, . . .) is calculated independently
from random variables X1, X2, Here, we want to calcu-
late f̂t+1(x) based on f̂t(x) and the random variable Xt+1.

Observation 1. The classical kernel density estimation can
be calculated in an incremental manner.

If the main memory is unlimited, then the density function
can be calculated in an incremental way. That is to say,
the data stream can be scanned only once. Naively, we
can estimate the density function in such an incremental
manner.

f̂t+1(x) =
1

t + 1

t+1X
i=1

Kh(
x−Xi

h
)

=
1

t + 1

tX

i=1

Kh(
x−Xi

h
) + Kh(

x−Xt+1

h
)

!
=

1
t + 1

�
tf̂t(x) + Kh(

x−Xt+1

h
)
�

=
t

t + 1
f̂t(x) +

1
t + 1

Kh(
x−Xt+1

h
) (2)

Obviously, in equation (2), f̂t+1(x) can be calculated from
f̂t(x) and Xt+1. So when a new data record comes, only
some predetermined calculations are needed, while we need
to keep t kernels in main memory when processing the t + 1
data record.

3.2 Kernel Merging
When the amount of data increases, what we need to record
expands accordingly and it will be difficult to keep them in
the limited main memory when the data is tremendous. Fur-
thermore, it is also computationally expensive since totally
there are still n terms in the f̂n(x), and for the density on a
specific point α, it still needs to scan all n kernel functions
to compute f̂(α).

How to solve the conflict of increasing data and limited mem-
ory? We observe that with some acceptable information lost
we can summary the kernel functions, and keep them all in
the main memory.

Traditionally, each data is represented by a kernel function.
If the sample size from the distribution is n then there are
n kernels to be calculated and stored in f̂n(x). Now we try
to reduce it and fix the amount of kernels when calculating
f̂n(x). A weight value is given to the kernel function, so
it can represent more than one data. Then the amount of
kernels can be smaller than the amount of data points. We
call kernel represent only one data simple kernel and kernel
represent more than one data M-Kernel.

Observation 2. The sum of two kernel functions can be
approximated by a large kernel function (M-Kernel) whose
weight equates to the amount of data it will represented.

Based on the observation 2, two simple kernels (i and j) can
be represented by one M-Kernel (m) with weight two. That
is,

1
hi

K(
x−Xi

hi
) +

1
hj

K(
x−Xj

hj
) ∼=

2
h∗m

K(
x−X∗

m

h∗m
) (3)

The left of the equation stands for the sum of two kernels
placed at point Xi and Xj with bandwidth hi and hj . At
most time, we cannot find a kernel with parameter X∗

m and
h∗m to make the two side of Equation 3 absolutely equiva-
lent. But analysis and experiments will show the difference
between them is very small.

More generally, two M-Kernels (s and t) can also be repre-
sented by a single M-Kernel (u).

p∗s
h∗s

K(
x−X∗

s

h∗s
)+

p∗t
h∗t

K(
x−X∗

t

h∗t
) ∼=

p∗s + p∗t
h∗u

K(
x−X∗

u

h∗u
) (4)

With Equations 3 and 4, after (n − m) times of merging,
we get m M-kernel with parameter X∗

i , h∗i , p∗i i = (1 . . . m)
from X1, . . . , Xn. Then the estimator can be written as

f̂∗n(x) =
1
n

mX
j=1

p∗j
h∗j

K(
x−X∗

j

h∗j
) (5)

where
mX

j=1

p∗j = n (6)

Figure 2 illustrates the kernel merging operation. Kernel 1
and kernel 2 are two different kernels (simple kernel or M-
kernel), and we want to find a kernel (M-kernel) to represent
the two kernel functions. Intuitively, it must be very close
to the dashed-line in the figure, which is the sum of the two
kernel functions.

In Figure 3, we merge some kernel functions into M-kernel
(the dotted line). Compared to Figure 1, there are only
four M-Kernel left after merging, so the merging operation

0
0

kernel 1

kernel 2

kernel after merge

sum of kernel 1 and kernel 2

Figure 2: Kernel merging operation

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−3

Figure 3: Construction of a distinct weight kernel
density estimate (solid curve). The M-kernel are
shown as the dotted lines

can significantly reduce the memory used by the algorithm.
However, the final density curve (the solid line) is very close
to the one synthesized by ten kernel functions. The differ-
ence between the two curves is the accuracy lost when we do
the merging, which we call it merging cost. Our experiments
will show that the difference between the two density curves
is very small, and can be controlled by some parameters.

3.3 Applied to Data Stream
Based on the two observations we proposed above, by us-
ing the incremental and merging techniques, now we can
extend the classical kernel density estimation to cope with
data stream. We keep a fixed-size kernel function list in the
main memory. Every time a new data record comes, the
density function, which we put on the data point, is added
to the kernel function list. When the list is full, we merge
some kernel functions having the lowest merging cost in the
list to empty some entries. We can see that the memory
used by the algorithm is fixed, and it only requires short
constant time to process each record in the stream. At any
time of the processing, we can synthesize the kernel function
by summing all the kernel functions in the list. Because the
amount of kernel functions in the list is fixed, the synthe-
sization can also be done in constant time.

3.4 Algorithm
The detailed algorithm is shown in Figure 4. In the course
of the processing, an m-entry buffer is maintained in main
memory. It contains an array of elements with the format
〈µ, σ, ρ, m cost〉. The element denotes that kernel K(x) have
parameters µ, bandwidth σ, and weight ρ, which means the
kernel function is like ρ

σ K(x−µ
σ), and m cost is the merging

cost with next kernel in the buffer. A heuristic method is
applied here, that is, kernels with small distance in value
µ will have smaller merging cost than kernels with large
distance in value µ. So the buffer is sorted by µ, and we just
need to calculate the merging cost of neighboring kernels in
the buffer since it will smaller than that of the kernels which
are not neighboring in the buffer. When a new data comes,
an element will be generated and inserted into the buffer.
If the buffer is full, an element with the smallest m cost
will be picked out. Suppose that it is the ith element in
the buffer, then the ith element and (i + 1)th element will
be merged into a new element. Then a buffer entry will be
freed. And the procedure will go on to deal with next data
in the stream.

Line 2 to Line 17 is the main loop of the algorithm. Every
time a new data comes, we generate an element for it and
insert it into the buffer (Line4∼5). Then we sort the buffer
and count the merging value of the new data (Line6∼7). If
the buffer is full, we need to find a pair of kernels with the
lowest merging cost and merge them (Line9∼14). Line 7
and line 14 are very important in the algorithm, for they
take charge of maintaining the list of merging cost. At most
time, only one element in the buffer changed, so at most two
merging costs (in 1-dimensional) need to be updated.

3.5 Algorithm Analysis
It is easy to see that during the procedure, the buffer size
is kept constant. So the space complexity of the algorithm
is O(m), where m is irrespective with the size of the data

Algorithm DensityOverStream ()
input: Data stream (x1, x2, . . .)
output: Density function f̂(x)
procedure

1. Initiate a buffer with m entries;

2. While the stream is not end

3. Read a new data point xi from the stream;

4. Fill the element 〈µ, σ, ρ, m cost〉 with
〈xi, h, 1, max cost〉

5. Insert the element into the buffer

6. Sort the buffer by µ

7. Update the column m cost.

8. If the buffer is full

9. Find the entry with the smallest m cost
value in the buffer;

10. Merge the two entries into one

11. Insert the merged entry into the buffer

12. Free an entry

13. Sort the buffer by µ

14. Update the column m cost.

15. End If

16. Output the buffer and synthesize the
density function f̂(x) if needed

17. End While

endprocedure

Figure 4: Stream algorithm

stream. And for every record processed, we only have to
calculate the merging cost with its neighboring kernel func-
tions, and do the merging if the list is full. So, we can
see that the computational cost of each record is within a
constant value. That is to say, the total calculating cost is
in linear with the size of the data stream. We have detail
analysis about it in our experiments.

We use some merging methods to reduce the memory re-
quirement of the algorithm, but the cost is the calculation
results would definitely have variances from the previous re-
sults.

The cost of a single merge operation, which is shown in
Equation 4 is
∞Z

−∞

(
p∗s
h∗s

K(
x−X∗

s

h∗s
)+

p∗t
h∗t

K(
x−X∗

t

h∗t
)−p∗s + p∗t

h∗u
K(

x−X∗
u

h∗u
))2dx

(7)

and the total cost of the estimator (Equation 5) is

∞Z
−∞

(f̂n(x)− f̂∗n(x))2dx (8)

where f̂n(x) is the traditional estimation result and f̂∗n(x) is
the result.

3.6 Discussion
The algorithm can run in two models: the complete model
and the window model. In complete model, all data in the
stream are of equal interest. While in window model, we
take more emphasis on the recent data than the old data.
With a ”fadeout” function to decrease the contribution of
the old data to the result, the complete model can be eas-
ily extended to window model. The function can be im-
plemented differently according to users’ requirement. For
example, one fadeout function, which decreases the weight
of old data gradually, may work in following way. Suppose
at one time, there are m kernels in the buffer. Then a new
data comes, and we decrease the weight of the original m
kernels by a small proportion, say 0.1%, and assign corre-
sponding weight to the new coming data to keep the sum
of the weight of all kernels equal to the amount of the data.
In this way, new data will be drawn more emphasis than
the old data. Since we are discussing how to handle data
stream efficiently in this paper, we focus on complete model
and omit the details of fadeout functions here.

The algorithm can cope with multi-dimensional data as well
as 1-dimensional data. In traditional kernel density estima-
tion, multivariate estimator has the same form with univari-
ate estimator. Because our algorithm is based on the result
of traditional kernel estimate, so it can be easily generalized
to any dimension.

4. EXPERIMENTS
The algorithm is implemented in C++. The program runs
on a PC workstation with 1.4GHz Pentium IV processor and
256Mb RAM using Windows 2000 Server.

Table 1: Test Data sets
Distribution Density function
Distribution I f1(x) = N(1200, 200)
Distribution II f2(x) = 0.4N(200, 100) + 0.3N(800, 200)

+0.2N(1900, 50) + 0.1N(1100, 50)

Distribution III f3(x) =
10P

i=1
0.1N(i ∗ 300− 100, 50)

Table 2: Test Data Streams
Data Streams Size Distribution Type
Data Stream 1 100,000 Distribution I Random
Data Stream 2 100,000 Distribution II Random
Data Stream 3 100,000 Distribution III Random
Data Stream 4 100,000 Distribution II Ordered

We construct four large synthetic data sets and carry out
a series of experiments on them to test the performance of
our algorithm. The goal of the experiments is to evaluate
the accuracy of the proposed algorithm, and to prove that
the time cost by per record is within a small constant value,
which means the algorithm can output the results in lin-
ear time. We also do experiments to show the relationship
between the buffer size and the precision of the result. Ad-
ditionally, experiments show the ability of the algorithm to
output a usable model at any point of the processing.

4.1 Experimental Setup
Some synthesized data streams are generated to test our
algorithm. First, we choose three distribution functions,
shown in Table 1. The distribution of these three density
functions are illustrated in Figures 5, 6 and 7, respectively.
Next, data streams are drawn randomly and independently
from these distributions. Table 2 shows that. Data Stream
1-3 are drawn randomly from distribution I-III, accordingly.
Data Stream 4 is also drawn from distribution II, but it is
ordered by the value.

The classical kernel density estimation can be regarded as
the best nonparametric density estimation algorithm. So we
take the result produced by kernel density estimation as the
base line to measure the accuracy of our algorithm. The
difference between the outputs of the two algorithms can be
regarded as the error of our algorithm.

The results of kernel density estimation (KDE) that will be
used as the criteria are calculated by Beardah’s program [1]
implemented in MATLAB.

The accuracy of our algorithm can be evaluated by absolute
error=

R
|f̂(x) − f̃(x)|dx, where f̂(x) is the kernel density

estimation result on static data set and f̃(x) is the result of
our algorithm over the corresponding data stream.

4.2 Experimental Results
The experiments are divided into three parts:

• Firstly, test of the running time on data streams of
different sizes reveals that the running time of our al-
gorithm is in linear with the data size.

−500 0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−3

Figure 5: Distribution I

−1000 −500 0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10−3

Figure 6: Distribution II

−1000 −500 0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10−4

Figure 7: Distribution III

Table 3: Running Time at different Stream Size
Running Time (sec)

Stream Size Stream 1 Stream 2 Stream 3 Stream 4
10,000 147.482 156.064 147.442 95.607
20,000 306.851 310.005 307.381 194.309
30,000 466.881 471.277 467.051 292.370
40,000 626.721 629.774 625.589 391.172
50,000 786.210 858.844 786.791 489.013
60,000 944.968 953.671 945.098 586.483
70,000 1105.369 1104.428 1103.426 684.964
80,000 1263.476 1262.885 1263.576 781.864
90,000 1491.815 1423.236 1423.777 879.684

100,000 1597.176 1597.677 1596.936 978.476

0 1 2 3 4 5 6 7 8 9 10 11

x 104

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Points

Ru
nn

in
g

Ti
m

e
(s

ec
)

dataset1
dataset2
dataset3
dataset4

Figure 8: Running Time vs Stream Size

• Secondly, studying the effect of the buffer size on the
precision of the result, this shows that the error rates
decrease with the increasing of the buffer size. And
we can make the conclusion that, given a large enough
buffer size, the accuracy of our algorithm will be rather
high.

• Thirdly, we demonstrate the ability of our algorithm
to output the result at any point of the processing.

Running Time: The crucial character of stream algorithm
is that it must keep up with the continuously coming data
stream, that is to say, the running time must be in linear
with the data size. We test data streams of different sizes
and record corresponding running time of the algorithm,
which is shown in Table 3. Figure 8 shows how the running
times scale up on the four data sets. We can see that as the
size of the data sets increases, the running time increases
linearly. This figure also exhibits that one curve has a dis-
tinctly low slope compared with the other three curves. We
notice that this curve represents the data stream in which
data increases strictly. Apparently, a sorted data set will
consume less time while being processed, because the sort-
ing procedure in the algorithm will run faster on a sorted
data.

Buffer Size:The buffer size is an important parameter in
this algorithm; it has large infection on the accuracy of es-
timation result. In this experiment, on data stream 2, the
buffer size used by the algorithm is ranged from 500 to 2,000

Table 4: Absolute error & Running Time at different
Buffer Size
Buffer Size Absolute error Running Time(sec)

500 2.499939213600023e-002 1603.505
600 1.697454938451870e-002 1603.315
700 1.437965286060358e-002 1603.976
800 1.087668066985989e-002 1603.736
900 8.520659939131679e-003 1603.826

1,000 7.163892404911190e-003 1608.603
1,100 4.576511431885187e-003 1606.009
1,200 4.816045369671360e-003 1610.225
1,300 3.979656974547638e-003 1602.694
1,400 3.088250626503199e-003 1603.185
1,500 2.629348819357051e-003 1607.641
1,600 2.450198291522439e-003 1602.914
1,700 2.051291947776107e-003 1603.996
1,800 1.866623460766134e-003 1606.459
1,900 1.499587474588055e-003 1629.983
2,000 1.333507266908428e-003 1637.915

500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Buffer Size

Ac
cu

ra
cy

500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

R
un

ni
ng

 T
im

e
(s

ec
)

Figure 9: Buffer size vs accuracy and running time

to check the change in accuracy rate. Table 4 shows the re-
sult and in Figure 9 the solid line denotes the error rate while
dotted line the running time. It can know from the figure
that when the buffer size increases, the error rate decreases,
while the running time keeps almost consistent. And ob-
viously, if the buffer size equals to the data size, our algo-
rithm is generalized to kernel density estimation, the error
rate drop to zero.

Incremental: One of the main characteristics of stream
data is that it may be infinitive. So the ability to output
result at any point of the processing is of great importance to
data stream algorithms. To test this capability, we run our
program on data stream 2 and 4. The two data stream are
drawn from the same distribution, while stream 4 has been
sorted, stream 2 has not. The two data streams both have
100k points of data and we output the results after every 10k
points of data are processed. For each data steam, we get
10 small figures, shown in Figures 10 and 11 respectively.
The dotted curves represent the density estimation made
over the whole data set and the solid curves represent the
density estimation got in the midst of processing. In both
figures, we can see that the medial results accord with the
final result, but they approach it in different ways. Since

data stream 2 is not sorted, the data points are distributed
randomly all through the data set. We can get a rough
outline of the final density curve at any output point. The
more data we get, the closer the medial result is to the final
result, while it is not the case to the sorted data stream
4. In the middle of the processing, only part of the data is
available. And because it has been sorted, it concentrates
on one area of the data set. So the density curve we get at
each interval is only part of the final curve. But the part is
very precise compared with the final result, since nearly all
data needed to generate the part has been obtained.

5. CONCLUSIONS AND FUTURE WORK
Density estimation over data stream has become more and
more interesting in database community, while classical ker-
nel method cannot handle data stream effectively. In this
paper, we bring forward a new concept of M-Kernel and
propose a novel density estimation algorithm based on it.
The former guarantees that the latter only needs a fixed-
size memory, regardless the amount of data in the stream.
Analysis and experiments prove that our algorithm is capa-
ble to process data stream and build up its density function
at the speed data arrival. The result is comparable to that
of the kernel density estimation. And this method is supe-
rior than the existent methods for it can output a useable
model at any time of the processing.

In the future, we will integrate this algorithm to more data
mining applications to testify its efficiency. Another im-
provement we are going to make is to incorporate the bandwidth-
decision technique into our algorithm so that the bandwidth
can be self-adapted to data streams.

6. ADDITIONAL AUTHORS
Additional authors: Weining Qian (Dept. of Computer Sci-
ence, Fudan University, email: wnqian@fudan.edu.cn) .

7. REFERENCES
[1] C. C. Beardah and M. J. Baxter. Matlab routines for

kernel density estimation and the graphical
representation of archaeological data. Technical
report, Department of Mathematics, Statistics and
Operational Research, The Nottingham Trent
University,
http://science.ntu.ac.uk/msor/ccb/densest.html, 1995.

[2] F. Chen, D. Lambert, and J. C. Pinheiro. Incremental
quantile estimation for massive tracking. In
Proceedings of International Conference on Knowledge
Discovery and Data Mining (KDD), pages 579–522,
2000.

[3] Y. Cheng. Mean shift, mide seeking, and clustering.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(8):790–799, August 1995.

[4] D. Comaniciu and P. Meer. Distribution free
decomposition of multivariate data. In Int’l Workshop
on Statistical Techniques in Pattern Recognition, 1998.

[5] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 71–80, 2000.

[6] P. Domingos and G. Hulten. Catching up with the
data: Research issues in mining data streams. In
Workshop on Research Issues in Data Mining and
Knowledge Discovery, 2001.

[7] P. Domingos and G. Hulten. Learning from infinite
data in finite time. In Advances in Neural Information
Processing Systems, 2002.

[8] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In Proceedings of Symposium
on Foundations of Computer Science (FOCS), pages
359–366, 2000.

[9] D. Gunopulos, G. Kollios, V. J. Tsotras, and
C. Domeniconi. Approximating multi-dimensional
aggregate range queries over real attributes. In
Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 463–474,
2000.

[10] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In Proceedings of
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 97–106, 2001.

[11] G. Kollios, D. Gunopoulos, N. Koudas, and
S. Berchtold. An efficient approximation scheme for
data mining tasks. In Proceedings of International
Conference on Data Engineering (ICDE), pages
453–462, 2001.

[12] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
with limited memory. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, pages 426–435, 1998.

[13] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. In
Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 251–262,
1999.

[14] L. O’Callaghan, N. Mishra, A. Meyerson, and
S. Guha. Streaming-data algorithms for high-quality
clustering. In Proceedings of International Conference
on Data Engineering (ICDE), 2002.

[15] S. R. Sain. Adaptive Kernel Density Estimation. PhD
thesis, Rice University, August 1994.

[16] T. Zhang, R. Ramakrishnan, and M. Livny. Fast
density estimation using cf-kernel for very large
databases. In Proceedings of International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 312–316, 1999.

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

Figure 10: The medial outputs of data stream 2

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

0 10002000
0

0.5

1

1.5

2
x 10−3

Figure 11: The medial outputs of data stream 4

