
Fast Time Series Classification Using Numerosity Reduction

Xiaopeng Xi XXI@CS.UCR.EDU
Eamonn Keogh EAMONN@CS.UCR.EDU
Christian Shelton CSHELTON@CS.UCR.EDU
Li Wei WLI@CS.UCR.EDU
Computer Science & Engineering Department, University of California, Riverside, CA 92521 USA

Chotirat Ann Ratanamahatana ANN@CP.ENG.CHULA.AC.TH
Department of Computer Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract
Many algorithms have been proposed for the
problem of time series classification. However, it is
clear that one-nearest-neighbor with Dynamic Time
Warping (DTW) distance is exceptionally difficult
to beat. This approach has one weakness, however;
it is computationally too demanding for many real-
time applications. One way to mitigate this problem
is to speed up the DTW calculations. Nonetheless,
there is a limit to how much this can help. In this
work, we propose an additional technique,
numerosity reduction, to speed up one-nearest-
neighbor DTW. While the idea of numerosity
reduction for nearest-neighbor classifiers has a long
history, we show here that we can leverage off an
original observation about the relationship between
dataset size and DTW constraints to produce an
extremely compact dataset with little or no loss in
accuracy. We test our ideas with a comprehensive
set of experiments, and show that it can efficiently
produce extremely fast accurate classifiers.

1. Introduction

The problem of time series classification has attracted great
interest recently, finding applications in domains as diverse
as medicine, finance, entertainment, and industry. Many
algorithms have been proposed for time series classification,
including decision trees (Rodriguez & Alonso, 2004), neural
networks (Nanopoulos & Manolopoulos, 2001), Bayesian
classifiers, SVM (Wu & Chang, 2004), etc. However, as we
shall show, the simple combination of one-nearest-neighbor
with Dynamic Time Warping (DTW) distance has proven
exceptionally difficult to beat. This approach has one
weakness, however; it is computationally too demanding for

—————
 Appearing in Proceedings of the 23nd International Conference on
Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by the
author(s)/owner(s).

many real-time applications. One way to mitigate this
problem is to speed up the DTW calculations, and great
progress has been made in this area in the past few years
(Keogh, 2002). Recent results, however, suggest that we are
at the asymptotic limit of speeding up DTW
(Ratanamahatana & Keogh, 2005).

Numerosity reduction (Pekalska & Duin et al, 2006; Wilson
& Martinez, 1997) offers an additional possibility to speed
up one-nearest-neighbor DTW (1NN-DTW). We can simply
discard a large fraction of the training data to improve the
performance. It is well known that for general numerosity
reduction algorithms, if we are careful in choosing which
objects we discard, we can significantly reduce the
classification time while maintaining high accuracy, in some
cases actually improving the accuracy.

While the idea of numerosity reduction for nearest-neighbor
classifiers has a long history, we show here that we can
leverage off an original observation about the relationship
between dataset size and DTW constraints to produce
extremely compact datasets with little or no loss in accuracy.
The observation is that the optimal amount of warping we
should allow the DTW algorithm to attempt, depends on
number of objects in the training set. This is only an
empirical observation; however, we have confirmed it on
thirteen diverse datasets.

The essence of our approach is therefore to limit the amount
of warping freedom given to the DTW algorithm when we
have a large dataset, but gradually increase this amount of
warping freedom as we begin to discard objects. We do this
with a simple greedy search algorithm. Because our idea
involves multiple computations of DTW for different
amounts of warping freedom, a naïve brute force
implementation would be intractable for large datasets.
However, we show that a combination of caching and
pruning based on admissible lower bounds allows us to make
our approach tractable for very large datasets.

2. Background and Related Work

Fast Time Series Classification Using Numerosity Reduction

2.1 Dynamic Time Warping

DTW may be considered simply as a tool to measure the
dissimilarity between two time series, after aligning them.

Suppose we have two time series Q and C, of length p and m,
respectively, where:

Q = q1,q2,…,qi,…,qp (1)
C = c1,c2,…,cj,…,cm (2)

To align two sequences using DTW, we construct a p-by-m
matrix where the (ith, jth) element of the matrix contains the
distance d(qi, cj) between the two points qi and cj (i.e., d(qi,
cj) = (qi - cj)2). Figure 1 illustrates this notation. Each matrix
element (i, j) corresponds to the alignment between the
points qi and cj. A warping path W, is a contiguous set of
matrix elements that defines a mapping between Q and C.
The kth element of W is defined as wk = (i, j)k; so we have:

 W = w1, w2, …,wk,…,wK max(m, p) ≤ K ≤ m+p-1 (3)

The warping path must satisfy several constraints. 1)
Boundary conditions: w1 = (1, 1) and wK = (p, m), this
requires the warping path to start and finish in diagonally
opposite corners. 2) Continuity: Given wk = (a, b) then wk-1 =
(a', b') where a – a' ≤ 1 and b - b' ≤ 1. This restricts the
allowable steps in the warping path to adjacent cells. 3)
Monotonicity: Given wk = (a, b) then wk-1 = (a', b') where a –
a' ≥ 0 and b - b' ≥ 0. This forces the points in W to be
monotonically spaced in time.

Of the exponentially many warping paths that satisfy the
above conditions, we are only interested in the path that
minimizes the warping cost:

⎩⎨
⎧= ∑ =

K

k kwCQDTW
1

min),((4)

This path can be found using dynamic programming to
evaluate the following recurrence which defines the
cumulative distance γ(i, j) as the distance d(i, j) found in the
current cell and the minimum of the cumulative distances of
the adjacent elements:

γ(i, j) = d(qi, cj) + min{ γ(i-1, j-1),γ(i-1, j),γ(i, j-1) } (5)

An obvious observation is that an intuitive alignment path is
unlikely to drift very far from the diagonal. This observation
has been exploited by limiting the warping path to a warping
window of size r, directly above and to the right of the
diagonal. This warping window is illustrated in the right of
Figure 1 as two straight lines parallel to the diagonal. We can
specify r as a percentage of the length of the longer of the
two time series. Note that the Euclidean distance between
two sequences can be seen as a special case where r = 0%.

Clearly, the size of the warping window greatly affects the
speed of the DTW computation. If r is small, a large fraction
of the matrix does not need to be examined (or even
constructed), and the search for the optimal warping path is
correspondingly faster. In addition to this speedup by
reducing the area of matrix examined, warping windows can
be exploited to create tight lower bounds to the DTW
distance. This idea, called LB_Keogh, was introduced in
Keogh (2002) and has been used in dozens of applications

where fast DTW is required, including motion capture
indexing (Fu & Keogh et al, 2005), query by humming (Zhu
& Shaha, 2003), and P2P searching (Karydis et al, 2005).

Figure 1. Left) Two time series sequences which are similar but
out of phase. Right) To align the sequences, we construct a
warping matrix, and search for the optimal warping path (solid
squares). Note a band with width r is used to constrain the
warping.

Because the value of DTW(Q,C) can only decrease with a
larger value of r, it was widely assumed in the literature that
wider warping windows are “better” and that warping
windows are only useful for speeding up the computations. A
recent paper (Ratanamahatana & Keogh, 2005) showed that
this is a myth. Relatively tight warping windows actually
improve accuracy of classification, clustering, and query by
content. On thirteen diverse datasets, we exhaustively
searched for the value of r that maximizes the classification
accuracy. Table 1 summarizes the results (see also, Figure 3
which visually explains how this was done for Gun-Point).
Table 1. The value of r that produces the most accurate one-
nearest-neighbor classifier on thirteen diverse datasets.

DATASET SIZE BEST r (%) ERROR (%)
Cylinder-Bell-Funnel 300 1 0.00
ControlChart 600 8 0.33
ECG 200 0 10.0
Face (four) 112 3 3.57
Gun-Point 200 3 1.00
Leaf 442 8 3.85
Lighting(FORTE-2) 121 5 9.09
Pulse 100 0 1.00
Trace 200 3 0.00
Two Patterns 5000 3 0.00
Wafer 7164 1 0.07
Word Spotting 905 3 20.0
HapticX 80 15 35.0

There are still a handful of papers that do not seem to accept
this. For example, Shou & Manoulis et al. (2005) say “there
may still be cases where unconstrained warping is useful.”
Tellingly, they do not show such a case. As we can see,
relatively tight warping constraints produce more accurate
classifiers.

2.2 Time Series Classification

A central claim of this work is that 1NN-DTW is an
exceptionally competitive classifier, in spite of a massive

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

Rr

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

Rr

Fast Time Series Classification Using Numerosity Reduction

research effort on time series classification problems. We
arrived at this conclusion after an extensive literature search,
which we highlight below.

In Rodriguez & Alonso (2004), the authors use a DTW based
decision tree to classify time series. On the Two Patterns
dataset, they report an error rate of 4.9%, but our
experiments on the same dataset using 1NN give an error
rate of 1.04% for Euclidean distance and 0.0% for DTW.
Similar results apply for all the datasets they test on.

In Rodriguez & Alonso et al. (2000), the authors use first
order logic rules with boosting to classify time series. On the
ControlChart problem, they report an error rate of 3.6%, but
our experiments on the same dataset using 1NN-DTW give
an error rate of 0.33%.

In Nanopoulos & Alcock et al. (2001), the authors use a
multi-layer perceptron neural network on the ControlChart
problem to achieve their best performance of 1.9% error rate.
Using 1NN-DTW on the same dataset gives 0.33% error rate.

In Wu & Chang (2004), the authors use a “super-kernel
fusion scheme” to achieve an error rate of 0.79% on
ControlChart dataset. Using 1NN-DTW on the same dataset
gives an error rate of 0.33%.

In Chen & Kamel (2005), the authors use “Static
Minimization-Maximization approach” to build Multiple
Classifier Systems. They test several flavors of their
approach on the ControlChart problem to achieve their best
performance of 7.2% error. Using 1NN-DTW on the same
dataset gives an error rate of 0.33%.

In Kim & Smyth et al. (2004), the authors use hidden
Markov Models to achieve 98% accuracy on the PCV-ECG
classification problem, but both DTW and Euclidean
distance achieves a perfect accuracy on the same problem.

In Hayashi & Mizuhara et al. (2005), the authors use DTW
distances to embed time series into a lower dimensional
space using a Laplacian eigenmap. This embedding is
designed to both improve accuracy and performance. They
show that they can achieve 100% accuracy on a subset of the
ControlChart, and show that DTW only gets 99% accuracy.
However, when we reimplemented the experiment, we found
that DTW actually gets 100% on this problem.

In Chen & Ozsu et al. (2005), the authors use a measure
based on multi-scale histograms. They try every possible
permutation of two parameters on the ControlChart problem
to achieve a best performance of 6.0% error. However, using
1NN-DTW on the same dataset gives an error rate of 0.33%.

In Eads & Glocer et al. (2005), the authors apply grammar-
guided feature extraction for time series classification, and
they get the best result for FORTE-2 of 13.22% error rate.
While using 1NN-DTW distance, we can get the
performance of 9.09%.

The above list is truncated for brevity. There are dozens of
similar examples in the literature. In addition to the above,
there are a handful of papers in the literature that do
explicitly claim to have a distance measure that beats DTW.

For example, in Megalooikonomou & Wang et al. (2005),
the authors introduce a symbolic multiresolution approach
that appears to slightly outperform DTW. However, the
approach is only tested on very small datasets, including one
of size 24 and one of size 15, and they trained and tested on
the same data (Megalooikonomou, 2006). Likewise, Lei &
Govindaraju (2004) claim that DTW gets 96.5% accuracy on
the Gun-Point problem whereas their approach gets 98.0%.
However, DTW actually gets 99.0% on that problem.

Note that the works in the list above do make contributions
in telling us something about decision trees, boosting, or
other classification methods. In addition, the authors are to
be commended for experimenting on datasets that are in the
public domain. Our point is simply that if you want accurate
classification of time series, 1NN-DTW is very hard to beat.

Finally, we make the claim that DTW is at least as accurate
as Euclidean distance for classification problems, and
generally is significantly better. To show this, we test on
thirteen datasets using leaving-one-out nearest neighbor
evaluation. Euclidean distance has no parameters, and DTW
requires one parameter, which we learn by looking only at
training data. Figure 2 sees a visual summary of the results.

Figure 2. Thirteen time series classification problems, plotted as
points with the DTW accuracy as the x-axis and the Euclidean
distance accuracy as the y-axis.

Given all the above, 1NN-DTW seems to be the best
approach for time series classification. However, if naively
implemented, it is computationally demanding. The good
news is that recent results show that the amortized cost of
DTW is essentially O(n) using LB_Keogh lower bounding
technique (Ratanamahatana & Keogh, 2005). This fact
strongly suggests that we are at the limit of speeding up
DTW; if we wish to make classification even faster, we must
look elsewhere. In the next section, we consider a possibility
of gaining speedup by using numerosity reduction.

3. Naïve Rank Numerosity Reduction

The nearest neighbor classification algorithm has linear
complexity both in storage and query time. It has long been
noted that “data reduction techniques can be applied to
obtain a reduced representative of the data set which is much
smaller in volume, yet closely maintains the integrity of the
original data” (Han & Kamber, 2000). Existing data
reduction techniques include random reduction and data
condensing/editing (Dasarathy, 1991; Pekalska et al., 2006).

0.6 0.8 1
0.6

0.8

1
In this region Euclidean
distance is
more
accurate

In this
region

DTW distance
is more accurate

Accuracy of DTW

Ac
cu

ra
cy

 o
f E

uc
lid

ea
n

D
is

ta
nc

e

0.6 0.8 1
0.6

0.8

1
In this region Euclidean
distance is
more
accurate

In this
region

DTW distance
is more accurate

Accuracy of DTW

Ac
cu

ra
cy

 o
f E

uc
lid

ea
n

D
is

ta
nc

e

Fast Time Series Classification Using Numerosity Reduction

Here, we consider the work of Wilson & Martinez (1997) in
more detail, since it is perhaps the most referenced work in
this area. Wilson and Martinez proposed three numerosity
reduction algorithms, RT1, RT2, and RT3. Their intuition is
that if the removal of an instance p will not cause any other
instances be misclassified, p can then be discarded. They also
introduced two novel definitions, nearest enemy and
associates: each instance p has a nearest enemy which is the
nearest instance in a different class, and those instances that
have p as one of their k nearest neighbors are called
associates of p. Their various algorithms decide whether an
instance p should be discarded based on its nearest
associates and enemy. These algorithms have been shown to
be able to maintain high classification accuracy while
providing substantial storage reduction. Note that the RT
algorithms require storing the k nearest neighbors, one
nearest enemy, and all associates for each instance. In this
section, we present a competitive rank-based reduction
method that only uses one nearest neighbor. Because of its
simplicity, we call it Naïve Rank Reduction.

3.1 Naïve Rank Reduction

The Naïve Rank Reduction algorithm works in two steps,
ranking and thresholding. We first assign ranks to all
instances based on their contribution in classification on the
training set. Then we use a user defined threshold n to
decide how many instances to keep and simply keep these n
highest ranked instances for future classification.

In the ranking step, we begin by removing duplicated
instances, if any. Then we apply one-nearest-neighbor
classification on the training set. We give lowest ranks to
misclassified instances. This is motivated by the observation
in Wilson & Martinez (1997) that these instances tend to be
noisy and may drastically change the ranking of other
instances. For correctly classified instances, we assign their
ranks by the following formula

otherwise 2

)class()(class if 1
)(∑

⎩
⎨
⎧

−

=
=

j

jxx
xrank (5)

where xj is the instance having x as its nearest neighbor. The
intuition is that we attempt to keep good instances by giving
positive value to the instances that help correctly classify
other data, and giving more negative value to those that
misclassify others.

If two instances have the same rank, we break the tie by
assigning different priorities to them. The priority of an
instance x is calculated by:

 ∑=
j jxxd

xpriority 2),(
1)((6)

where xj is the instance having x as its nearest neighbor and
d(x,xj) is the distance between instances x and xj. The
intuition is that if an instance is far away from its nearest
neighbor, it may be noisy or simply atypical of its class,
which suggests that it should be discarded earlier. So, if two
instances have the same rank, the one with lower priority
will be discarded first. Since we have already removed

duplicate instances before calculating eq. 6, we can be
assured that the denominator of the fraction is non-zero.

Note that our algorithm ranks the instances iteratively.
Assuming the training set size is N, the algorithm will run N
times, where in each round it disregards the instance with
lowest rank and continues to re-rank the rest of the instances.

Table 2 formalizes the Naïve Rank algorithm. Given the
training set T, the algorithm will store the instances in list S
according to their ranks.

Table 2. Naïve Rank Reduction.

Function S = Naïve_Rank_Reduction(T)
1
2
3
4
5
6
7
8
9
10
11
12
13
14

remove any duplicate instances from T ;
leave-one-out 1-NN classification on T ;
N = size of T;
S = { };
loop_num = 0 ;
while loop_num < N
 for each instance xi in T - S
 rank(xi) is calculated using eq.5 ;

end
adjust the rank ties by priorities using eq. 6;
worst_index = arg i (min(rank[xi] & min(priority[xi])));
push(S, xworst_index); // discard instance with lowest rank
loop_num = loop_num + 1;

end

In the thresholding step, we keep the n highest ranking
instances in S as the training set for future classification,
where n is the threshold given by the user. This threshold
may be given based on the maximum space or time the user
has for a problem. For example, in recent work on
classifying insects with resource limited sensors (Wei &
Keogh, 2005), the authors can only afford 200k memory to
store the entire training database. It is also possible to give
the threshold in other formats, such as “give me the smallest
training dataset with an expected error rate of less than
5%,” or “give me the smallest training dataset with a leave-
one-out error that does not differ from the error rate on the
entire dataset by more than 1%.”

4. Fast Numerosity Reduction with Adaptive
Warping Window

As we will show in our empirical evaluation, at least for time
series problems, the Naïve Rank Reduction algorithm is
competitive with the more complicated RT algorithms. In
this section, we will show an observation which when used
together with the Naïve Rank Reduction algorithm produces
a dramatic improvement in the accuracy/dataset size tradeoff.

4.1 Adaptive Warping Window

When calculating the DTW distance, warping window
constraints (recall Figure 1) are used to prevent pathological
warpings, where a uniform constraint (i.e., the “Sakoe-Chiba
band” in Sakoe & Chiba, 1978) is widely accepted in the
data mining community. People may think that wider
warping window would contribute to higher accuracy.

Fast Time Series Classification Using Numerosity Reduction

However, according to recent research by Ratanamahatana &
Keogh (2005), too large a warping window constraint may
actually hurt accuracy rather than improving it. Their claim
is summarized in the maxim “a little warping is good while
too much warping is bad.” To verify the claim, we
experimented on the Gun-Point Dataset using one-nearest-
neighbor DTW (a description of the dataset can be found in
Ratanamahatana & Keogh, 2005). Each time, half of the
instances are randomly removed from the dataset. We try all
the warping window size, and show the accuracy in Figure 3.

Figure 3. With fewer objects in the dataset, the accuracy
decreases and peaks at larger window size.

Figure 3 shows that no matter how big the dataset is, the
warping window size r that achieves best accuracy is always
quite small (We did experiments on other datasets, and
obtained similar results; see Keogh, 2006). This is consistent
with the claim in Ratanamahatana & Keogh (2005). In
addition, two other observations can be made:
• The classification accuracy declines when the size of the

dataset decreases, an obvious and expected result.
• Larger warping window size gives better accuracy on

smaller datasets, a fact that appears unknown outside of
Ratanamahatana & Keogh (2005).

Motivated by the above observations, we propose the
algorithm AWARD (Adaptive WARping winDow), which
dynamically adjusts warping window size during numerosity
reduction. The pseudo-code is shown in Table 3. The
algorithm first tries all possible warping window sizes from
0% to 100% on the training set T, and initializes the warping
window size r to the one yielding the highest leave-one-out
classification accuracy (we call this preprocessing step).
Then, the algorithm begins numerosity reduction by calling
Naïve Rank Reduction function in Section 3.1.

AWARD differs from the Naïve Rank Reduction in having
an additional operator during the reduction procedure. This
operator tests the accuracy achieved by window size r+1. If
this is greater than the accuracy achieved by current window
size r, we update the window size to r+1. In other words, as
we search for instances to discard, we also consider the
possibility of slightly expanding the warping window.

Note that AWARD algorithm is used in the training phase to
find the warping window sizes for all possible threshold
values from the size of training set to the number of classes.
The pairs of the threshold and the corresponding warping

window size are recorded in the table WarpingT. Later, when
we start classifying the test set, given a user-defined
threshold n, we would know which subset of instances to
keep and which window size to use by simple table lookup.

For example, if the size of the training set is 1,000, and
initially, we find r = 3 is the best window size to use, we will
insert an entry (1000, 3) into the table. If, after discarding
200 instances, we find that the window size should be
changed to 4 to maintain the accuracy, we then insert another
entry (800, 4) into the table. We will show later that keeping
track of this table also helps us easily adapt the algorithm to
an anytime algorithm in Section 4.3. Note that the
1NN_DTW_LB function (line 6, 7) uses dataset S to classify
dataset T with one-nearest-neighbor approach, and the
distance measure used is DTW with warping window size r.
To accelerate classification, it adopts the widely used
LB_Keogh lower bounding technique proposed in Keogh
(2002) to locate the nearest neighbor.

Table 3. Numerosity reduction with adaptive warping window.

Function [WarpingT] = AWARD(T)
1
2
3
4
5
6
7
8
9
10
11
12
13

initialize r to best warping window size on T;
N = size of T;
S = Naïve_Rank_Reduction (T);
while (N > num_of_class)
 remove the instance with lowest rank from S ;
 accuracy1 = 1NN_DTW_LB (S, T, r);
 accuracy2 = 1NN_DTW_LB (S, T, r + 1);
 if (accuracy2 > accuracy1) // should we expand r ?
 r = r + 1;
 end
 insert (N, r) into WarpingT;
 N = N -1 ;
end

The time complexity of AWARD is O(n3) since the loop will
be executed n times, and each time it calls function
1NN_DTW_LB once whose time complexity is O(n2). This is
already much faster than the brute force approach which
finds the nearest neighbor directly without using LB_Keogh
lower bounding. In the next section, we explore the
possibility of reusing the results of previous computation to
speed up the algorithm even more.

4.2 Fast Numerosity Reduction

In AWARD algorithm, every time one instance is discarded
from the training set, we compute the classification accuracy
using warping window size r and r+1 from scratch, which is
actually unnecessary. Recall that when we are looking for the
best warping window size at the beginning, we have already
found the nearest neighbor for each instance (along with the
distance between them). We can keep this information for
future use and thus reduce the computational complexity.
For this purpose, we keep three structures during the
computation, nearest neighbor matrix A, distance matrix B,
and accuracy array ACC. Matrix Ar records the nearest
neighbor of each instance using warping window size r. Its
entries are defined as

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

W a rp in g W in d o w r (%)

A
cc

ur
ac

y(
%

)

6 in s ta n c e s

1 0 0 in s ta n c e s

5 0 in s ta n c e s

2 4 in s ta n c e s

1 2 in s ta n c e s

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

W a rp in g W in d o w r (%)

A
cc

ur
ac

y(
%

)

6 in s ta n c e s

1 0 0 in s ta n c e s

5 0 in s ta n c e s

2 4 in s ta n c e s

1 2 in s ta n c e s

6 in s ta n c e s

1 0 0 in s ta n c e s

5 0 in s ta n c e s

2 4 in s ta n c e s

1 2 in s ta n c e s

Fast Time Series Classification Using Numerosity Reduction

⎩
⎨
⎧

=
otherwise 0

neighbornearest ' is if1
),(soo

jiA ij
r

 (7)

Matrix Br records the distance between two instances using
warping window size r. Since we use LB_Keogh lower
bound here, we do not need to actually calculate the distance
between each pair of instances. To differentiate the actual
DTW distance and the distance lower bound, we represent
the bounds as negative values. More concretely, the entries in
matrix Br are defined as

 boundlower theis),(if),(

distance actual theis),(if),(
),(

⎩
⎨
⎧
−

=
 oodood

oodood
jiB

jiji

jiji
r

 (8)

Array ACC records the accuracy achieved by different
warping window. The rth element of ACC is the number of
objects being correctly classified with warping window r.

During the numerosity reduction procedure, every time an
instance op is discarded from the training set, we need to
update Ar, Br, ACC, and check whether ACC[r+1] is greater
than ACC[r]. This is easy since only those instances that
chose op as their nearest neighbors will be affected and their
corresponding entries need to be updated. The algorithm is
given in Table 4. As we will show, this optimization speeds
up the reduction process by many orders of magnitude.

Table 4. Fast classification with numerosity reduction.

Function [WarpingT] = FastAWARD(T)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

initialize r to best warping window size on T;
initialize Ak, Bk and ACC for k = 0 to 100;
N = size of T;
S = Naïve_Rank_Reduction (T);
while (N > num_of_class)
 remove the instance op with lowest rank from S ;
 for k = r to 100
 [Ak, Bk, ACC [k]] = Update(Ak, Bk, ACC [k], op);
 end
 if (ACC [r +1] > ACC [r])
 r = r + 1;
 end
 insert (N, r) into WarpingT ;
 N = N – 1;
end

Function [A, B, accuracy] = Update(A, B, accuracy, op)
1
2
3
4
5
6
7
8
9
10
11
12
13

A(:, p) = 0; // set column p in A to zero
B(:, p) = inf; // set column p in B to infinity
for each object oi having op as its nearest neighbor
 find a new nearest neighbor op’ for oi ;
 A(i, p’) = 1; // update matrix A
 update the i th row of B accordingly; // update matrix B
 if label(oi) == label(op) && label(oi) != label(op’)
 accuracy = accuracy – 1;
 end
 if label(oi) != label(op) && label(oi) == label(op’)
 accuracy = accuracy + 1;
 end
end

Since FastAWARD gives identical accuracy results to
AWARD by definition, we will use the two interchangeably
except when discussing efficiency.

4.3 Anytime Classification Algorithm

Classification of truly massive time series datasets may be
very time consuming (for example, it may take days or even
weeks to run). In some domains, it can be useful if users can
interrupt the algorithm at any time and still get an output of a
certain quality. Algorithms allowing this are called anytime
algorithms (Grass & Zilberstein, 1996). Fortunately, we can
take our AWARD algorithm and trivially convert it into an
anytime algorithm, by visiting the instances in the order
defined by the ranking algorithm, the experimental results
are given in Section 5.3.

5. Experimental Results

In this section, we test our approach with a comprehensive
set of experiments. Note that in order to allow
reproducibility, all the datasets and additional experiment
results are freely available in Keogh (2006).

5.1 Effectiveness of Our Approach

We begin by considering four approaches: the AWARD
algorithm introduced in this work; RankFix, fixed window
with naïve rank reduction; RandomFix, fixed window with
random reduction; RandomEu, random reduction using
Euclidean distance. Among the four approaches, AWARD,
RankFix, and RandomFix use DTW distance, while Random-
Eu uses Euclidean distance. Note that AWARD changes the
size of the warping window adaptively, while RankFix and
RandomFix first find the best warping window on the whole
training set and stick to this best window during reduction.

In each experiment, we randomly split the data into training
set and test set, which have zero intersection. For AWARD
approach, we use the training set to learn the thresholding
(subset of data to keep) and the corresponding warping
window size, which are recorded in table WarpingT as
shown in Table 4. The other three approaches follow the
same procedure, except that their warping window sizes are
fixed (RankFix and RandomFix) at the value that maximizes
accuracy for the full training dataset, or they have no
warping window size to record (RandomEu). We evaluate
the accuracy on the test set for every possible user threshold
n from the num_of_class to the full size of training set.

5.1.1 TWO PATTERNS DATASET
The Two Patterns Dataset was introduced in Geurts (2002).
It contains 5,000 instances, each of length 128. There are
four classes, denoting the presence of two patterns in a
definite order, namely, down-down, up-down, down-up, and
up-up. We randomly choose 1,000 instances as training set,
and use the remaining 4,000 instances as test set. Figure 4
shows the classification accuracies obtained on the test set by
four approaches for different values of n. The numbers above
the x-axis show the warping window size used by the
AWARD approach in that area. However, RankFix and
RandomFix always use warping window size of 4%.

Fast Time Series Classification Using Numerosity Reduction

There are two obvious observations from Figure 4. First, the
AWARD approach always achieves the highest accuracy,
even when a large fraction of the training data has been
discarded. This empirically demonstrates the utility of
adjusting the warping window when the size of the training
set changes. Second, the three approaches (AWARD,
RankFix, and RandomFix) using DTW distance measure
obtain significantly higher accuracy than the one using the
Euclidean distance (RandomEu). This verifies the claim in
Section 2.2 that generally DTW is better than Euclidean in
time series classification.

Figure 4. Classification accuracies of four different approaches
on Two Patterns test set. The x-axis represents n, the number of
instances in the training set. Note that since we discard instances
from the training set gradually, the x-axis should be read from
right to left.

We have already shown that AWARD gives better accuracy
than RankFix. And then we will compare our AWARD
approach to the most referenced approaches in the
numerosity reduction literature, namely RT1, RT2, and RT3
(Wilson & Martinez, 1997). As in the previous experiments,
we split the data into training and test sets and use the
information learned from the training set to classify data in
the test set. The results are shown in Figure 5. It is easy to
see that AWARD always beats fixed window algorithms, no
matter which numerosity reduction technique is used. This
strongly suggests that it is the strategy of changing warping
window size dynamically that dominates the performance.

Figure 5. Classification accuracies of four different approaches
on Two Patterns test set. Note that for this experiment, the
performances of RT2 and RT3 are similar; so, their curves
overlap.

5.1.2 LEAF DATASET
This dataset comprises of 1,125 Swedish leaf images with 15
classes. It has been shown that images can be converted into
“pseudo time series” (Ratanamahatana & Keogh, 2005).
Here, we have converted each leaf image into a time series
by measuring the distances between the contour points to its
centroid. We randomly choose 500 leaf images as training
set and the remaining 625 as test set. From Figure 6, we can
see that AWARD outperforms the RT algorithms that use
fixed warping window. This again demonstrates that
changing the warping window size is more effective than
simply pruning the instances from the training set. Note that
with our algorithm, we can discard all but one example of
each class and still achieve high accuracy.

Figure 6. Classification accuracies of four different approaches
on Swedish Leaf test set.

5.2 Efficiency of Our Approach

We compare AWARD and FastAWARD to brute force
approach, to see how much speedup could be achieved by
our various optimizations in Section 4.2. Brute force is the
most straightforward approach that implements DTW with
Sakoe-Chiba band. For these three algorithms, because the
time spent in preprocessing step is essentially identical, i.e.,
finding the best warping window size r, which only counts
for a small fraction of total execution time, we only compare
the time spent on DTW computation during numerosity
reduction, which is computationally expensive.

We conduct the experiments on Two Patterns dataset, and
the results are shown in Table 5. It is easy to see that
AWARD is already more than ten times faster than brute
force, in terms of both the processing time and the DTW
computation involved. The speedup achieved by Fast-
AWARD is even more dramatic.

Table 5. Time comparison on Two Patterns dataset.

 FastAWARD AWARD Brute Force

Number of DTW computation 53 7×107 6×108
Processing Time (sec) 2 2×105 3×106

5.3 Anytime Classification

0 100 200 300 400 500 600 700 800 900 1000
30

40

50

60

70

80

90

100

data instances

ac
cu

ra
cy

(%
)

5%

11%

14% 9% 4%

6%
7%8%

10%

12%
13%

RT1
RT2
RT3
AWARD

0 100 200 300 400 500 600 700 800 900 1000
30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
30

40

50

60

70

80

90

100

data instances

ac
cu

ra
cy

(%
)

5%

11%

14% 9% 4%

6%
7%8%

10%

12%
13%

RT1
RT2
RT3
AWARD

14%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

14%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

500 800

14%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

0 100 200 300 400 600 700 900 1000
data instances

ac
cu

ra
cy

(%
)

30

40

50

60

70

80

90

100

5%

11%

14% 9% 4%

6%
7%8%

10%

12%
13%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

14%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

14%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

500 800

14%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

0 100 200 300 400 600 700 900 1000
data instances

ac
cu

ra
cy

(%
)

30

40

50

60

70

80

90

100

5%

11%

14% 9% 4%

6%
7%8%

10%

12%
13%

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

Random, Euclidean
Random, Fixed
NaiveRank , Fixed
NaiveRank , Adaptive

RandomEu
RandomFix
RankFix
AWARD

0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

80

90

data instances

ac
cu

ra
cy

(%
)

3%4%5%6%

RT1
RT2
RT3
AWARD

0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

80

90

data instances

ac
cu

ra
cy

(%
)

3%4%5%6%

RT1
RT2
RT3
AWARD

Fast Time Series Classification Using Numerosity Reduction

In Section 4, we show how to make fast classification using
numerosity reduction. Note that we could trivially convert
AWARD into an anytime algorithm through selecting the
instances with highest ranks first, instead of pruning
instances. For Two Patterns dataset, with trained warping
window sizes from the 1000-instance training set, we apply
an interruptible classification algorithm to test set and
compare four strategies: RandomEu, RandomFix, RankFix,
and AWARD. We choose instances in the descending order of
their ranks. At the beginning, AWARD uses wider window
size of 14%, and decreases it gradually as more instances are
selected. Result shows that AWARD is much better than other
three algorithms in Figure 7. If only first 120 instances are
examined before the algorithm is interrupted, AWARD can
achieve accuracy as high as 99.85%, while RankFix and
RandomFix (which use 4% as fixed warping window size)
get about 87%.

Figure 7. Anytime classification of Two Patterns test set.
AWARD gives almost 100% accuracy at very early stage. The x-
axis should be read from left to right, and the number above the
x-axis shows the warping window size used by AWARD.

6. CONCLUSIONS

In this work, we have summarized the vast literature on time
series classification and shown that the simple combination
of one-nearest-neighbor with DTW distance is exceptionally
difficult to beat. We further show that we can leverage a
little-known relationship between dataset size and warping
constraints to produce very compact classifiers that lose little
or nothing in terms of accuracy.

References
Chen, L. & Kamel, M.S. (2005). Design of Multiple Classifier

Systems for Time Series Data. Multiple Classifier Systems, pp.
216-225.

Chen, L., Özsu, M.T., & Oria, V. (2005). Using Multi-Scale
Histograms to Answer Pattern Existence and Shape Match
Queries. SSDBM '05.

Dasarathy, B.V. (1991). Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques. IEEE Computer Society
Press, pp. 388-397.

Eads, D., Glocer, K., Perkins, S., & Theiler, J. (2005).
Grammar-guided feature extraction for time series
classification. NIPS ‘05.

Fu, A.W., Keogh, E., Lau, L.Y.H., & Ratanamahatana, C.A.
(2005). Scaling and Time Warping in Time Series
Querying. VLDB ‘05, pp. 649-660.

Geurts, P. (2002). Contributions to decision tree induction:
bias/variance tradeoff and time series classification. Ph.D.
thesis, University of Liege.

Grass, J. & Zilberstein, S. (1996). Anytime Algorithm Develop-
ment Tools. Sigart Artificial Intellligence, Vol 7, ACM Press.

Han, J. & Kamber, M. (2000). Data Mining Concepts and
Techniques. Morgan Kaufmann Publishers.

Hayashi, A., Mizuhara, Y., & Suematsu, N. (2005). Embedding
Time Series Data for Classification. Machine Learning and
Data Mining in Pattern Recognition, pp. 356-365.

Karydis, I., Nanopoulos, A., Papadopoulos, A., &
Manolopoulos, Y. (2005). Music Retrieval in P2P Networks
Under the Warping Distance, 7th International Conference on
Enterprise Information Systems.

Keogh, E. (2002). Exact Indexing of Dynamic Time Warping.
VLDB ‘02, pp. 406-417, Hong Kong, Aug 20-23.

Keogh, E. (2006). UCR Time Series Archive
www.cs.ucr.edu/~eamonn/TSDMA/

Kim, S., Smyth, P., & Luther, S. (2004). Modeling waveform
shapes with random effects segmental hidden Markov Models.
Technical Report, UCI-ICS 04-05.

Lei, H. & Govindaraju, V. (2004). Regression Time Warping for
Similarity Measure of Sequence. CIT’04, pp. 826-830.

Megalooikonomou, V., Wang, Q., Li, G., & Faloutsos, C. A.
(2005). Multiresolution Symbolic Representation of Time
Series. ICDE ‘05, pp. 668-679.

Megalooikonomou, V. (2006). Personal Communication.
Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001).

Feature-based Classification of Time-series Data.
International Journal of Computer Research, pp. 49-61.

Pekalska, E., Duin, R. P.W., & Paclik, P. (2006). Prototype
Selection for Dissimilarity-Based Classifiers. Pattern
Recognition, 39:2, pp. 189-208.

Ratanamahatana, C.A. & Keogh, E. (2005). Three myths about
Dynamic Time Warping Data Mining. SDM '05 .

Rodríguez, J.J. & Alonso, C.J. (2004). Interval and dynamic
time warping-based decision trees. In Proceedings of the 2004
ACM symposium on Applied computing (SAC), pp. 548-552.

Rodríguez, J.J., Alonso, C.J., & Boström, H. (2000). Learning
First Order Logic Time Series Classifiers: Rules and Boosting.
PKDD ‘00, pp. 299-308.

Sakoe, H. & Chiba, S. Dynamic programming algorithm
optimization for spoken word recognition. (1978). IEEE
Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-26.

Shou, Y., Mamoulis, N., & Cheung, D.W. (2005). Fast and exact
warping of time series using adaptive segmental
approximations. Machine Learning, Vol 28, pp. 231-267.

Wei, L., Keogh, E., Van Herle, H., & Mafra-Neto, A. (2005).
Atomic Wedgie: Efficient Query Filtering for Streaming Time
Series. ICDM ’05, pp. 490-497.

Wilson, D.R. & Martinez, T.R. (1997). Instance Pruning
Techniques. ICML’97, Morgan Kaufmann, pp. 403-411.

Wu, Y. & Chang, E.Y. (2004). Distance-function design and
fusion for sequence data. CIKM ‘04, pp. 324-333.

Zhu, Y. & Shasha, D. (2003). Query by Humming: a Time
Series Database Approach, SIGMOD ‘03.

0 50 0 1000 1500 2000 2500 3000 3500 4000
50

60

70

80

90

100

d a ta ins tances

ac
cu

ra
cy

(%
)

4%5%
6%

8%

10%
14%

R ando m , E uclidean
R ando m , F ixed
N a ive R ank, F ixed
N a ive R ank, A d ap tive

R ando m E u
R ando m F ix
R ankF ix
A W A R D

0 50 0 1000 1500 2000 2500 3000 3500 4000
50

60

70

80

90

100

d a ta ins tances

ac
cu

ra
cy

(%
)

4%5%
6%

8%

10%
14%

0 50 0 1000 1500 2000 2500 3000 3500 4000
50

60

70

80

90

100

d a ta ins tances

ac
cu

ra
cy

(%
)

4%5%
6%

8%

10%
14%

R ando m , E uclidean
R ando m , F ixed
N a ive R ank, F ixed
N a ive R ank, A d ap tive

R ando m E u
R ando m F ix
R ankF ix
A W A R D

R ando m , E uclidean
R ando m , F ixed
N a ive R ank, F ixed
N a ive R ank, A d ap tive

R ando m E u
R ando m F ix
R ankF ix
A W A R D

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

