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Abstract  
Many algorithms have been proposed for the 
problem of time series classification. However, it is 
clear that one-nearest-neighbor with Dynamic Time 
Warping (DTW) distance is exceptionally difficult 
to beat. This approach has one weakness, however; 
it is computationally too demanding for many real-
time applications. One way to mitigate this problem 
is to speed up the DTW calculations. Nonetheless, 
there is a limit to how much this can help. In this 
work, we propose an additional technique, 
numerosity reduction, to speed up one-nearest-
neighbor DTW. While the idea of numerosity 
reduction for nearest-neighbor classifiers has a long 
history, we show here that we can leverage off an 
original observation about the relationship between 
dataset size and DTW constraints to produce an 
extremely compact dataset with little or no loss in 
accuracy. We test our ideas with a comprehensive 
set of experiments, and show that it can efficiently 
produce extremely fast accurate classifiers. 

1.  Introduction 

The problem of time series classification has attracted great 
interest recently, finding applications in domains as diverse 
as medicine, finance, entertainment, and industry. Many 
algorithms have been proposed for time series classification, 
including decision trees (Rodriguez & Alonso, 2004), neural 
networks (Nanopoulos & Manolopoulos, 2001), Bayesian 
classifiers, SVM (Wu & Chang, 2004), etc. However, as we 
shall show, the simple combination of one-nearest-neighbor 
with Dynamic Time Warping (DTW) distance has proven 
exceptionally difficult to beat. This approach has one 
weakness, however; it is computationally too demanding for 
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many real-time applications. One way to mitigate this 
problem is to speed up the DTW calculations, and great 
progress has been made in this area in the past few years 
(Keogh, 2002). Recent results, however, suggest that we are 
at the asymptotic limit of speeding up DTW 
(Ratanamahatana & Keogh, 2005). 

Numerosity reduction (Pekalska & Duin et al, 2006; Wilson 
& Martinez, 1997) offers an additional possibility to speed 
up one-nearest-neighbor DTW (1NN-DTW). We can simply 
discard a large fraction of the training data to improve the 
performance. It is well known that for general numerosity 
reduction algorithms, if we are careful in choosing which 
objects we discard, we can significantly reduce the 
classification time while maintaining high accuracy, in some 
cases actually improving the accuracy.  

While the idea of numerosity reduction for nearest-neighbor 
classifiers has a long history, we show here that we can 
leverage off an original observation about the relationship 
between dataset size and DTW constraints to produce 
extremely compact datasets with little or no loss in accuracy. 
The observation is that the optimal amount of warping we 
should allow the DTW algorithm to attempt, depends on 
number of objects in the training set. This is only an 
empirical observation; however, we have confirmed it on 
thirteen diverse datasets. 

The essence of our approach is therefore to limit the amount 
of warping freedom given to the DTW algorithm when we 
have a large dataset, but gradually increase this amount of 
warping freedom as we begin to discard objects. We do this 
with a simple greedy search algorithm. Because our idea 
involves multiple computations of DTW for different 
amounts of warping freedom, a naïve brute force 
implementation would be intractable for large datasets. 
However, we show that a combination of caching and 
pruning based on admissible lower bounds allows us to make 
our approach tractable for very large datasets. 

2.  Background and Related Work 



Fast Time Series Classification Using Numerosity Reduction 

 

2.1  Dynamic Time Warping 

DTW may be considered simply as a tool to measure the 
dissimilarity between two time series, after aligning them.  

Suppose we have two time series Q and C, of length p and m, 
respectively, where: 

Q = q1,q2,…,qi,…,qp                  (1) 
C = c1,c2,…,cj,…,cm    (2) 

To align two sequences using DTW, we construct a p-by-m 
matrix where the (ith, jth) element of the matrix contains the 
distance d(qi, cj) between the two points qi and cj (i.e., d(qi, 
cj) = (qi - cj)2 ). Figure 1 illustrates this notation. Each matrix 
element (i, j) corresponds to the alignment between the 
points qi and cj. A warping path W, is a contiguous set of 
matrix elements that defines a mapping between Q and C. 
The kth element of W is defined as wk = (i,  j)k; so we have: 

   W = w1, w2, …,wk,…,wK         max(m, p) ≤ K ≤ m+p-1   (3) 

The warping path must satisfy several constraints. 1) 
Boundary conditions: w1 = (1, 1) and wK = (p, m), this 
requires the warping path to start and finish in diagonally 
opposite corners. 2) Continuity: Given wk = (a, b) then wk-1 = 
(a', b') where a – a' ≤ 1 and b - b' ≤ 1. This restricts the 
allowable steps in the warping path to adjacent cells. 3) 
Monotonicity: Given wk = (a, b) then wk-1 = (a', b') where a – 
a' ≥ 0 and b - b' ≥ 0. This forces the points in W to be 
monotonically spaced in time.  

Of the exponentially many warping paths that satisfy the 
above conditions, we are only interested in the path that 
minimizes the warping cost: 

⎩⎨
⎧= ∑ =

K

k kwCQDTW
1

min),(        (4) 

This path can be found using dynamic programming to 
evaluate the following recurrence which defines the 
cumulative distance γ(i, j) as the distance d(i, j) found in the 
current cell and the minimum of the cumulative distances of 
the adjacent elements:   

γ(i, j) = d(qi, cj) + min{ γ(i-1, j-1),γ(i-1, j),γ(i, j-1) } (5) 

An obvious observation is that an intuitive alignment path is 
unlikely to drift very far from the diagonal. This observation 
has been exploited by limiting the warping path to a warping 
window of size r, directly above and to the right of the 
diagonal. This warping window is illustrated in the right of 
Figure 1 as two straight lines parallel to the diagonal. We can 
specify r as a percentage of the length of the longer of the 
two time series. Note that the Euclidean distance between 
two sequences can be seen as a special case where r = 0%. 

Clearly, the size of the warping window greatly affects the 
speed of the DTW computation. If r is small, a large fraction 
of the matrix does not need to be examined (or even 
constructed), and the search for the optimal warping path is 
correspondingly faster. In addition to this speedup by 
reducing the area of matrix examined, warping windows can 
be exploited to create tight lower bounds to the DTW 
distance. This idea, called LB_Keogh, was introduced in 
Keogh (2002) and has been used in dozens of applications 

where fast DTW is required, including motion capture 
indexing (Fu & Keogh et al, 2005), query by humming (Zhu 
& Shaha, 2003), and P2P searching (Karydis et al, 2005). 

  
Figure 1. Left) Two time series sequences which are similar but 
out of phase. Right) To align the sequences, we construct a 
warping matrix, and search for the optimal warping path (solid 
squares). Note a band with width r is used to constrain the 
warping. 

Because the value of DTW(Q,C) can only decrease with a 
larger value of r, it was widely assumed in the literature that 
wider warping windows are “better” and that warping 
windows are only useful for speeding up the computations. A 
recent paper (Ratanamahatana & Keogh, 2005) showed that 
this is a myth. Relatively tight warping windows actually 
improve accuracy of classification, clustering, and query by 
content. On thirteen diverse datasets, we exhaustively 
searched for the value of r that maximizes the classification 
accuracy. Table 1 summarizes the results (see also, Figure 3 
which visually explains how this was done for Gun-Point). 
Table 1. The value of r that produces the most accurate one-
nearest-neighbor classifier on thirteen diverse datasets. 

DATASET SIZE BEST r (%) ERROR (%) 
Cylinder-Bell-Funnel 300 1 0.00 
ControlChart 600 8 0.33 
ECG 200 0 10.0 
Face (four) 112 3 3.57 
Gun-Point 200 3 1.00 
Leaf 442 8 3.85 
Lighting(FORTE-2) 121 5 9.09 
Pulse 100 0 1.00 
Trace 200 3 0.00 
Two Patterns 5000 3 0.00 
Wafer 7164 1 0.07 
Word Spotting 905 3 20.0 
HapticX 80 15 35.0 

There are still a handful of papers that do not seem to accept 
this. For example, Shou & Manoulis et al. (2005) say “there 
may still be cases where unconstrained warping is useful.” 
Tellingly, they do not show such a case. As we can see, 
relatively tight warping constraints produce more accurate 
classifiers.  

2.2  Time Series Classification 

A central claim of this work is that 1NN-DTW is an 
exceptionally competitive classifier, in spite of a massive 
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research effort on time series classification problems. We 
arrived at this conclusion after an extensive literature search, 
which we highlight below. 

In Rodriguez & Alonso (2004), the authors use a DTW based 
decision tree to classify time series. On the Two Patterns 
dataset, they report an error rate of 4.9%, but our 
experiments on the same dataset using 1NN give an error 
rate of 1.04% for Euclidean distance and 0.0% for DTW. 
Similar results apply for all the datasets they test on. 

In Rodriguez & Alonso et al. (2000), the authors use first 
order logic rules with boosting to classify time series. On the 
ControlChart problem, they report an error rate of 3.6%, but 
our experiments on the same dataset using 1NN-DTW give 
an error rate of 0.33%.  

In Nanopoulos & Alcock et al. (2001), the authors use a 
multi-layer perceptron neural network on the ControlChart 
problem to achieve their best performance of 1.9% error rate. 
Using 1NN-DTW on the same dataset gives 0.33% error rate.  

In Wu & Chang (2004), the authors use a “super-kernel 
fusion scheme” to achieve an error rate of 0.79% on 
ControlChart dataset. Using 1NN-DTW on the same dataset 
gives an error rate of 0.33%.  

In Chen & Kamel (2005), the authors use “Static 
Minimization-Maximization approach” to build Multiple 
Classifier Systems. They test several flavors of their 
approach on the ControlChart problem to achieve their best 
performance of 7.2% error. Using 1NN-DTW on the same 
dataset gives an error rate of 0.33%.  

In Kim & Smyth et al. (2004), the authors use hidden 
Markov Models to achieve 98% accuracy on the PCV-ECG 
classification problem, but both DTW and Euclidean 
distance achieves a perfect accuracy on the same problem.  

In Hayashi & Mizuhara et al. (2005), the authors use DTW 
distances to embed time series into a lower dimensional 
space using a Laplacian eigenmap. This embedding is 
designed to both improve accuracy and performance. They 
show that they can achieve 100% accuracy on a subset of the 
ControlChart, and show that DTW only gets 99% accuracy. 
However, when we reimplemented the experiment, we found 
that DTW actually gets 100% on this problem.  

In Chen & Ozsu et al. (2005), the authors use a measure 
based on multi-scale histograms. They try every possible 
permutation of two parameters on the ControlChart problem 
to achieve a best performance of 6.0% error. However, using 
1NN-DTW on the same dataset gives an error rate of 0.33%.  

In Eads & Glocer et al. (2005), the authors apply grammar-
guided feature extraction for time series classification, and 
they get the best result for FORTE-2 of 13.22% error rate. 
While using 1NN-DTW distance, we can get the 
performance of 9.09%. 

The above list is truncated for brevity. There are dozens of 
similar examples in the literature. In addition to the above, 
there are a handful of papers in the literature that do 
explicitly claim to have a distance measure that beats DTW. 

For example, in Megalooikonomou & Wang et al. (2005), 
the authors introduce a symbolic multiresolution approach 
that appears to slightly outperform DTW. However, the 
approach is only tested on very small datasets, including one 
of size 24 and one of size 15, and they trained and tested on 
the same data (Megalooikonomou, 2006). Likewise, Lei & 
Govindaraju (2004) claim that DTW gets 96.5% accuracy on 
the Gun-Point problem whereas their approach gets 98.0%. 
However, DTW actually gets 99.0% on that problem. 

Note that the works in the list above do make contributions 
in telling us something about decision trees, boosting, or 
other classification methods. In addition, the authors are to 
be commended for experimenting on datasets that are in the 
public domain. Our point is simply that if you want accurate 
classification of time series, 1NN-DTW is very hard to beat.   

Finally, we make the claim that DTW is at least as accurate 
as Euclidean distance for classification problems, and 
generally is significantly better. To show this, we test on 
thirteen datasets using leaving-one-out nearest neighbor 
evaluation. Euclidean distance has no parameters, and DTW 
requires one parameter, which we learn by looking only at 
training data. Figure 2 sees a visual summary of the results. 

 

Figure 2. Thirteen time series classification problems, plotted as 
points with the DTW accuracy as the x-axis and the Euclidean 
distance accuracy as the y-axis. 

Given all the above, 1NN-DTW seems to be the best 
approach for time series classification. However, if naively 
implemented, it is computationally demanding. The good 
news is that recent results show that the amortized cost of 
DTW is essentially O(n) using LB_Keogh lower bounding 
technique (Ratanamahatana & Keogh, 2005). This fact 
strongly suggests that we are at the limit of speeding up 
DTW; if we wish to make classification even faster, we must 
look elsewhere. In the next section, we consider a possibility 
of gaining speedup by using numerosity reduction. 

3.  Naïve Rank Numerosity Reduction 

The nearest neighbor classification algorithm has linear 
complexity both in storage and query time. It has long been 
noted that “data reduction techniques can be applied to 
obtain a reduced representative of the data set which is much 
smaller in volume, yet closely maintains the integrity of the 
original data” (Han & Kamber, 2000). Existing data 
reduction techniques include random reduction and data 
condensing/editing (Dasarathy, 1991; Pekalska et al., 2006). 
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Here, we consider the work of Wilson & Martinez (1997) in 
more detail, since it is perhaps the most referenced work in 
this area. Wilson and Martinez proposed three numerosity 
reduction algorithms, RT1, RT2, and RT3. Their intuition is 
that if the removal of an instance p will not cause any other 
instances be misclassified, p can then be discarded. They also 
introduced two novel definitions, nearest enemy and 
associates: each instance p has a nearest enemy which is the 
nearest instance in a different class, and those instances that 
have p as one of their k nearest neighbors are called 
associates of p. Their various algorithms decide whether an 
instance p should be discarded based on its nearest 
associates and enemy. These algorithms have been shown to 
be able to maintain high classification accuracy while 
providing substantial storage reduction. Note that the RT 
algorithms require storing the k nearest neighbors, one 
nearest enemy, and all associates for each instance. In this 
section, we present a competitive rank-based reduction 
method that only uses one nearest neighbor. Because of its 
simplicity, we call it Naïve Rank Reduction. 

3.1  Naïve Rank Reduction 

The Naïve Rank Reduction algorithm works in two steps, 
ranking and thresholding. We first assign ranks to all 
instances based on their contribution in classification on the 
training set.  Then we use a user defined threshold n to 
decide how many instances to keep and simply keep these n 
highest ranked instances for future classification. 

In the ranking step, we begin by removing duplicated 
instances, if any. Then we apply one-nearest-neighbor 
classification on the training set. We give lowest ranks to 
misclassified instances. This is motivated by the observation 
in Wilson & Martinez (1997) that these instances tend to be 
noisy and may drastically change the ranking of other 
instances. For correctly classified instances, we assign their 
ranks by the following formula 

  
otherwise                              2

)class(  )(class  if              1
)( ∑

⎩
⎨
⎧

−

=
=

j

jxx
xrank (5) 

where xj is the instance having x as its nearest neighbor. The 
intuition is that we attempt to keep good instances by giving 
positive value to the instances that help correctly classify 
other data, and giving more negative value to those that 
misclassify others.  

If two instances have the same rank, we break the tie by 
assigning different priorities to them. The priority of an 
instance x is calculated by: 

                  ∑=
j jxxd

xpriority 2),(
1)(              (6) 

where xj is the instance having x as its nearest neighbor and 
d(x,xj) is the distance between instances x and xj. The 
intuition is that if an instance is far away from its nearest 
neighbor, it may be noisy or simply atypical of its class, 
which suggests that it should be discarded earlier. So, if two 
instances have the same rank, the one with lower priority 
will be discarded first. Since we have already removed 

duplicate instances before calculating eq. 6, we can be 
assured that the denominator of the fraction is non-zero. 

Note that our algorithm ranks the instances iteratively. 
Assuming the training set size is N, the algorithm will run N 
times, where in each round it disregards the instance with 
lowest rank and continues to re-rank the rest of the instances. 

Table 2 formalizes the Naïve Rank algorithm. Given the 
training set T, the algorithm will store the instances in list S 
according to their ranks.  

Table 2. Naïve Rank Reduction. 

Function S = Naïve_Rank_Reduction( T ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

remove any duplicate instances from T ; 
leave-one-out 1-NN classification on T ; 
N = size of T; 
S = { };                                         
loop_num = 0 ; 
while  loop_num < N 
    for each instance xi  in T - S 
          rank(xi) is calculated using eq.5 ; 

end    
adjust the rank ties by priorities using eq. 6;    
worst_index = arg i (min(rank[xi] & min( priority[xi])));    
push(S, xworst_index);      // discard instance with lowest rank 
loop_num = loop_num + 1;                  

end 

In the thresholding step, we keep the n highest ranking 
instances in S as the training set for future classification, 
where n is the threshold given by the user. This threshold 
may be given based on the maximum space or time the user 
has for a problem. For example, in recent work on 
classifying insects with resource limited sensors (Wei & 
Keogh, 2005), the authors can only afford 200k memory to 
store the entire training database. It is also possible to give 
the threshold in other formats, such as “give me the smallest 
training dataset with an expected error rate of less than 
5%,” or “give me the smallest training dataset with a leave-
one-out error that does not differ from the error rate on the 
entire dataset by more than 1%.”  

4.  Fast Numerosity Reduction with Adaptive 
Warping Window 

As we will show in our empirical evaluation, at least for time 
series problems, the Naïve Rank Reduction algorithm is 
competitive with the more complicated RT algorithms. In 
this section, we will show an observation which when used 
together with the Naïve Rank Reduction algorithm produces 
a dramatic improvement in the accuracy/dataset size tradeoff.   

4.1  Adaptive Warping Window 

When calculating the DTW distance, warping window 
constraints (recall Figure 1) are used to prevent pathological 
warpings, where a uniform constraint (i.e., the “Sakoe-Chiba 
band” in Sakoe & Chiba, 1978) is widely accepted in the 
data mining community. People may think that wider 
warping window would contribute to higher accuracy. 
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However, according to recent research by Ratanamahatana & 
Keogh (2005), too large a warping window constraint may 
actually hurt accuracy rather than improving it. Their claim 
is summarized in the maxim “a little warping is good while 
too much warping is bad.” To verify the claim, we 
experimented on the Gun-Point Dataset using one-nearest-
neighbor DTW (a description of the dataset can be found in 
Ratanamahatana & Keogh, 2005). Each time, half of the 
instances are randomly removed from the dataset. We try all 
the warping window size, and show the accuracy in Figure 3.  

 

Figure 3. With fewer objects in the dataset, the accuracy 
decreases and peaks at larger window size. 

Figure 3 shows that no matter how big the dataset is, the 
warping window size r that achieves best accuracy is always 
quite small (We did experiments on other datasets, and 
obtained similar results; see Keogh, 2006). This is consistent 
with the claim in Ratanamahatana & Keogh (2005). In 
addition, two other observations can be made: 
• The classification accuracy declines when the size of the 

dataset decreases, an obvious and expected result. 
• Larger warping window size gives better accuracy on 

smaller datasets, a fact that appears unknown outside of 
Ratanamahatana & Keogh (2005). 

Motivated by the above observations, we propose the 
algorithm AWARD (Adaptive WARping winDow), which 
dynamically adjusts warping window size during numerosity 
reduction. The pseudo-code is shown in Table 3. The 
algorithm first tries all possible warping window sizes from 
0% to 100% on the training set T, and initializes the warping 
window size r to the one yielding the highest leave-one-out 
classification accuracy (we call this preprocessing step). 
Then, the algorithm begins numerosity reduction by calling 
Naïve Rank Reduction function in Section 3.1.  

AWARD differs from the Naïve Rank Reduction in having 
an additional operator during the reduction procedure. This 
operator tests the accuracy achieved by window size r+1. If 
this is greater than the accuracy achieved by current window 
size r, we update the window size to r+1. In other words, as 
we search for instances to discard, we also consider the 
possibility of slightly expanding the warping window. 

Note that AWARD algorithm is used in the training phase to 
find the warping window sizes for all possible threshold 
values from the size of training set to the number of classes. 
The pairs of the threshold and the corresponding warping 

window size are recorded in the table WarpingT. Later, when 
we start classifying the test set, given a user-defined 
threshold n, we would know which subset of instances to 
keep and which window size to use by simple table lookup.  

For example, if the size of the training set is 1,000, and 
initially, we find r = 3 is the best window size to use, we will 
insert an entry (1000, 3) into the table. If, after discarding 
200 instances, we find that the window size should be 
changed to 4 to maintain the accuracy, we then insert another 
entry (800, 4) into the table. We will show later that keeping 
track of this table also helps us easily adapt the algorithm to 
an anytime algorithm in Section 4.3. Note that the 
1NN_DTW_LB function (line 6, 7) uses dataset S to classify 
dataset T with one-nearest-neighbor approach, and the 
distance measure used is DTW with warping window size r. 
To accelerate classification, it adopts the widely used 
LB_Keogh lower bounding technique proposed in Keogh 
(2002) to locate the nearest neighbor. 

Table 3. Numerosity reduction with adaptive warping window. 

Function [WarpingT ] = AWARD(T ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

initialize r  to best warping window size on T; 
N = size of T; 
S = Naïve_Rank_Reduction (T ); 
while (N > num_of_class) 
  remove the instance with lowest rank from S ;     
  accuracy1  = 1NN_DTW_LB (S, T, r ); 
  accuracy2  = 1NN_DTW_LB (S, T, r + 1 ); 
  if (accuracy2   > accuracy1 )                // should we expand r ? 
       r  = r + 1; 
  end 
  insert (N, r ) into WarpingT; 
  N = N -1 ; 
end 

The time complexity of AWARD is O(n3) since the loop will 
be executed n times, and each time it calls function 
1NN_DTW_LB once whose time complexity is O(n2). This is 
already much faster than the brute force approach which 
finds the nearest neighbor directly without using LB_Keogh 
lower bounding. In the next section, we explore the 
possibility of reusing the results of previous computation to 
speed up the algorithm even more.  

4.2  Fast Numerosity Reduction 

In AWARD algorithm, every time one instance is discarded 
from the training set, we compute the classification accuracy 
using warping window size r and r+1 from scratch, which is 
actually unnecessary. Recall that when we are looking for the 
best warping window size at the beginning, we have already 
found the nearest neighbor for each instance (along with the 
distance between them). We can keep this information for 
future use and thus reduce the computational complexity. 
For this purpose, we keep three structures during the 
computation, nearest neighbor matrix A, distance matrix B, 
and accuracy array ACC. Matrix Ar records the nearest 
neighbor of each instance using warping window size r. Its 
entries are defined as 
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Matrix Br records the distance between two instances using 
warping window size r. Since we use LB_Keogh lower 
bound here, we do not need to actually calculate the distance 
between each pair of instances. To differentiate the actual 
DTW distance and the distance lower bound, we represent 
the bounds as negative values. More concretely, the entries in 
matrix Br are defined as 

 
  boundlower       theis ),( if),(

distance   actual    theis ),( if),(
),(

⎩
⎨
⎧
−

=
 oodood

oodood
jiB

jiji

jiji
r

     (8) 

Array ACC records the accuracy achieved by different 
warping window. The rth element of ACC is the number of 
objects being correctly classified with warping window r. 

During the numerosity reduction procedure, every time an  
instance op is discarded from the training set, we need to 
update Ar, Br, ACC, and check whether ACC[r+1] is greater 
than ACC[r]. This is easy since only those instances that 
chose op as their nearest neighbors will be affected and their 
corresponding entries need to be updated. The algorithm is 
given in Table 4. As we will show, this optimization speeds 
up the reduction process by many orders of magnitude.  

Table 4. Fast classification with numerosity reduction. 

Function  [WarpingT ] = FastAWARD( T  ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

initialize r  to best warping window size on T;    
initialize Ak, Bk and ACC  for k = 0 to 100; 
N = size of T; 
S = Naïve_Rank_Reduction (T ); 
while (N > num_of_class) 
   remove the instance op with lowest rank from S ; 
   for k = r  to 100 
       [ Ak, Bk, ACC [k ] ] = Update(Ak, Bk, ACC [k ], op );  
   end 
   if  (ACC [r +1] > ACC [r ] ) 
       r  = r  + 1; 
   end 
   insert (N, r ) into WarpingT ;  
  N = N  – 1; 
end 

Function  [A, B, accuracy ] = Update( A, B, accuracy, op ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

A(:, p) = 0;                               // set column p in A to zero 
B(:, p) = inf;                            // set column p in B to infinity 
for each object oi  having op as its nearest neighbor 
  find a new nearest neighbor op’   for oi ; 
  A(i, p’ ) = 1;                                             // update matrix A 
  update the i th row of B accordingly;       // update matrix B 
  if  label(oi ) == label(op) &&  label(oi ) != label(op’ ) 
    accuracy = accuracy – 1; 
  end 
  if label(oi) != label(op)  &&  label(oi) == label(op’) 
    accuracy = accuracy + 1; 
  end 
end 

Since FastAWARD gives identical accuracy results to 
AWARD by definition, we will use the two interchangeably 
except when discussing efficiency. 

4.3  Anytime Classification Algorithm 

Classification of truly massive time series datasets may be 
very time consuming (for example, it may take days or even 
weeks to run). In some domains, it can be useful if users can 
interrupt the algorithm at any time and still get an output of a 
certain quality. Algorithms allowing this are called anytime 
algorithms (Grass & Zilberstein, 1996). Fortunately, we can 
take our AWARD algorithm and trivially convert it into an 
anytime algorithm, by visiting the instances in the order 
defined by the ranking algorithm, the experimental results 
are given in Section 5.3.  

5.  Experimental Results 

In this section, we test our approach with a comprehensive 
set of experiments. Note that in order to allow 
reproducibility, all the datasets and additional experiment 
results are freely available in Keogh (2006). 

5.1  Effectiveness of Our Approach 

We begin by considering four approaches: the AWARD 
algorithm introduced in this work; RankFix, fixed window 
with naïve rank reduction; RandomFix, fixed window with 
random reduction; RandomEu, random reduction using 
Euclidean distance. Among the four approaches, AWARD, 
RankFix, and RandomFix use DTW distance, while Random- 
Eu uses Euclidean distance. Note that AWARD changes the 
size of the warping window adaptively, while RankFix and 
RandomFix first find the best warping window on the whole 
training set and stick to this best window during reduction. 

In each experiment, we randomly split the data into training 
set and test set, which have zero intersection. For AWARD 
approach, we use the training set to learn the thresholding 
(subset of data to keep) and the corresponding warping 
window size, which are recorded in table WarpingT as 
shown in Table 4. The other three approaches follow the 
same procedure, except that their warping window sizes are 
fixed (RankFix and RandomFix) at the value that maximizes 
accuracy for the full training dataset, or they have no 
warping window size to record (RandomEu). We evaluate 
the accuracy on the test set for every possible user threshold 
n from the num_of_class to the full size of training set.  

5.1.1  TWO PATTERNS DATASET 
The Two Patterns Dataset was introduced in Geurts (2002). 
It contains 5,000 instances, each of length 128. There are 
four classes, denoting the presence of two patterns in a 
definite order, namely, down-down, up-down, down-up, and 
up-up. We randomly choose 1,000 instances as training set, 
and use the remaining 4,000 instances as test set. Figure 4 
shows the classification accuracies obtained on the test set by 
four approaches for different values of n. The numbers above 
the x-axis show the warping window size used by the 
AWARD approach in that area. However, RankFix and 
RandomFix always use warping window size of 4%. 
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There are two obvious observations from Figure 4. First, the 
AWARD approach always achieves the highest accuracy, 
even when a large fraction of the training data has been 
discarded. This empirically demonstrates the utility of 
adjusting the warping window when the size of the training 
set changes. Second, the three approaches (AWARD, 
RankFix, and RandomFix) using DTW distance measure 
obtain significantly higher accuracy than the one using the 
Euclidean distance (RandomEu). This verifies the claim in 
Section 2.2 that generally DTW is better than Euclidean in 
time series classification. 

 

Figure 4. Classification accuracies of four different approaches 
on Two Patterns test set. The x-axis represents n, the number of 
instances in the training set. Note that since we discard instances 
from the training set gradually, the x-axis should be read from 
right to left. 

We have already shown that AWARD gives better accuracy 
than RankFix. And then we will compare our AWARD 
approach to the most referenced approaches in the 
numerosity reduction literature, namely RT1, RT2, and RT3 
(Wilson & Martinez, 1997). As in the previous experiments, 
we split the data into training and test sets and use the 
information learned from the training set to classify data in 
the test set. The results are shown in Figure 5. It is easy to 
see that AWARD always beats fixed window algorithms, no 
matter which numerosity reduction technique is used. This 
strongly suggests that it is the strategy of changing warping 
window size dynamically that dominates the performance. 

 

Figure 5. Classification accuracies of four different approaches 
on Two Patterns test set. Note that for this experiment, the 
performances of RT2 and RT3 are similar; so, their curves 
overlap. 

5.1.2  LEAF DATASET 
This dataset comprises of 1,125 Swedish leaf images with 15 
classes. It has been shown that images can be converted into 
“pseudo time series” (Ratanamahatana & Keogh, 2005). 
Here, we have converted each leaf image into a time series 
by measuring the distances between the contour points to its 
centroid. We randomly choose 500 leaf images as training 
set and the remaining 625 as test set. From Figure 6, we can 
see that AWARD outperforms the RT algorithms that use 
fixed warping window. This again demonstrates that 
changing the warping window size is more effective than 
simply pruning the instances from the training set. Note that 
with our algorithm, we can discard all but one example of 
each class and still achieve high accuracy.   

 

Figure 6. Classification accuracies of four different approaches 
on Swedish Leaf test set.  

5.2  Efficiency of Our Approach 

We compare AWARD and FastAWARD to brute force 
approach, to see how much speedup could be achieved by 
our various optimizations in Section 4.2. Brute force is the 
most straightforward approach that implements DTW with 
Sakoe-Chiba band. For these three algorithms, because the 
time spent in preprocessing step is essentially identical, i.e., 
finding the best warping window size r, which only counts 
for a small fraction of total execution time, we only compare 
the time spent on DTW computation during numerosity 
reduction, which is computationally expensive. 

We conduct the experiments on Two Patterns dataset, and 
the results are shown in Table 5. It is easy to see that 
AWARD is already more than ten times faster than brute 
force, in terms of both the processing time and the DTW 
computation involved. The speedup achieved by Fast-
AWARD is even more dramatic. 

Table 5. Time comparison on Two Patterns dataset. 

 FastAWARD AWARD Brute Force

Number of DTW computation 53 7×107 6×108 
Processing Time (sec) 2 2×105 3×106 
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In Section 4, we show how to make fast classification using 
numerosity reduction. Note that we could trivially convert 
AWARD into an anytime algorithm through selecting the 
instances with highest ranks first, instead of pruning 
instances. For Two Patterns dataset, with trained warping 
window sizes from the 1000-instance training set, we apply 
an interruptible classification algorithm to test set and 
compare four strategies: RandomEu, RandomFix, RankFix, 
and AWARD. We choose instances in the descending order of 
their ranks. At the beginning, AWARD uses wider window 
size of 14%, and decreases it gradually as more instances are 
selected. Result shows that AWARD is much better than other 
three algorithms in Figure 7. If only first 120 instances are 
examined before the algorithm is interrupted, AWARD can 
achieve accuracy as high as 99.85%, while RankFix and 
RandomFix (which use 4% as fixed warping window size) 
get about 87%. 

 

Figure 7. Anytime classification of Two Patterns test set. 
AWARD gives almost 100% accuracy at very early stage. The x-
axis should be read from left to right, and the number above the 
x-axis shows the warping window size used by AWARD. 

6.  CONCLUSIONS  

In this work, we have summarized the vast literature on time 
series classification and shown that the simple combination 
of one-nearest-neighbor with DTW distance is exceptionally 
difficult to beat. We further show that we can leverage a 
little-known relationship between dataset size and warping 
constraints to produce very compact classifiers that lose little 
or nothing in terms of accuracy.   
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