
On Continuously Monitoring the Top-k Moving Objects
with Relational Group and Score Functions

[PhD Showcase]

Jian Wen
∗

University of California, Riverside
900 University Ave.

Riverside, CA 92521
jarodwen@gmail.com

ABSTRACT
With the wide usage of location tracking system, continu-
ously mining relationships among moving objects over their
location changes is possible and also important to many real
applications. This paper shows a novel continuous location-
based query, called continuous relational top-k query or CRTQ,
which continuously monitors the k moving objects with the
most significant relations with the other objects by user-
defined relational group and score functions. Although this
kind of query can be implemented as a special case of the
top-k join query using SQL, this straight-forward way is too
expensive to be applicable widely. This paper also discusses
the properties of this novel query, which leads to the flexi-
bility of the query and also the difficulty for a generalized
solution. An efficient algorithm is proposed for a special
type of CRTQ over spatial data set with closeness grouping
function and monotone increasing score function. Finally
the main contributions of this showcase and also our future
research plans are discussed.

Categories and Subject Descriptors
H.2.8 [Information Systems]: DATABASE MANAGE-
MENT—Database applications

General Terms
Relational Top-k Query

Keywords
Relational, Top-k, Query, Algorithm

1. INTRODUCTION
Top-k query [3] has drawn much attention in database com-
munity due to its wide usage in both database and data

∗Supervised by Professor Donghui Zhang and Professor Vas-
silis Tsotras

mining applications. Given a data set R and a preference
function F , a top-k query Q returns the k tuples in R with
the highest scores according to F . The score function F for
a specific object r gets all its input from the attributes of r,
that is, the score of an object is a comparable value accord-
ing to its characteristics which then be used in the sorting
process.

However, many recent applications require monitoring the
relations between the observed object and all the other ob-
jects in the data set, while getting the most interesting rela-
tions continuously, which intuitively follows the top-k pat-
tern. The following two examples show this new trend.

Example 1. SDSS Q18: The Q18 in SDSS data set, one
of the benchmark database queries over the images of objects
on the sky observed in the SDSS project, tries to find all
objects within 30 arcseconds of one another that have very
similar colors: that is where the color ratios u-g, g-r, r-i are
less than 0.05m. Two relations are involved into the query,
photoPrimary, which contains the information of physical
objects on the sky observed, and Neighbors, a logical view
which contains the information about neighbor objects for
each primary object in photoPrimary.

To illustrate our problem we derive a top-k query from it:
we want to know the k objects having the most similar col-
ors with their neighbors within 30 arcseconds. Here a score
function is defined as the sum of the absolute difference on
the color ratios u-g, g-r, r-i. So the derived SQL query is
like:

SELECT distinct P.ObjID
FROM photoPrimary P, Neighbors N, photoPrimary L
WHERE P.ObjID = N.ObjID

and L.ObjID = N.NeigoborObjID
and P.ObjID < L.ObjID
and abs((P.u - P.g) - (L.u - L.g)) < 0.05
and abs((P.g - P.r) - (L.g - L.r)) < 0.05
and abs((P.r - P.i) - (L.r - L.i)) < 0.05
and abs((P.i - P.z) - (L.i - L.z)) < 0.05

ORDER BY abs((P.u - P.g) - (L.u - L.g))
+ abs((P.g - P.r) - (L.g - L.r))
+ abs((P.r - P.i) - (L.r - L.i))
+ abs((P.i - P.z) - (L.i - L.z))

LIMIT k;



Q18 in SDSS is known as the longest-running query among
the total 20 queries, since it compares every object in pho-
toPrimary with all its neighbors in a user-defined area. Our
new top-k query above derived from Q18 intuitively requires
a further sorting step so its running time must be even longer
than the original. When frequent updates on the image data
set are considered, the naive way of updating neighbors of
all objects for their scores will cause significant performance
overhead.

Example 2. Continuously Monitor Top-k Unsafe Mov-
ing Objects: For maintaining public safety, police force needs
to monitor many moving objects at the same time, such as
crowds walking over the city in the Independence Day, or
cash transport vans towards different bank branches. We
want to make sure that each of such objects is safe, which
is, protected by the proper amount of police force. If any
object has less protecting force around than it requires, it is
unsafe. An very useful query for managing the police force is
to monitor the top-k unsafe objects while both the protected
objects and police force keep updating their locations.

The common characteristic of these two tasks is that it
queries on relations: Example 1 is on the similarity, while
Example 2 is on the coverage. In a straight-forward way
both of them require a full scan over the entire data set to
obtain the score for each single object. When an object is
updated, in order to make sure that the top-k results are
still correct, naively a total re-run is necessary since (1) all
the objects whose scores are effected by the update should
be re-calculated, and (2) once the scores of some objects are
updated, a top-k query should be re-issued to make sure
that the results include the tuples with the highest scores.

In this paper these queries are generalized into a novel top-
k query, called continuous relational top-k query or CRTQ,
which intuitively extracts the most significant relationship
among tuples from the given data set instead of the char-
acteristic of a single object in the traditional top-k query.
This paper shows that although this kind of query can be
processed in a traditional database system, it costs too much
in both the I/O and CPU aspects since naively each update
would trigger a total recalculation for updated top-k infor-
mation.

An efficient solution for this query in the continuous environ-
ment is difficult, however, due to its flexibility on grouping
and scoring. For this reason, in this paper we show an effi-
cient solution for a special case of the continuous relational
top-k query, continuous monitoring top-k unsafe moving ob-
jects, whose score and group functions satisfy certain con-
ditions for utilizing the algorithm. Although this solution
cannot be applied directly to the generalized relational top-
k query model, basic optimal strategies like pruning and in-
dexing are considered in order to provide helpful inspection
on the possible generalized solutions in the future research
plan.

Existing efforts related to this new query include top-k ag-
gregation query [4] and top-k join query [2]. Both these two
top-k queries extend the traditional top-k query and also
provide efficient algorithms for them. However, top-k ag-

gregation query only focuses on the attributes in a single
relation, while top-k join query algorithms cannot handle
dynamic updates efficiently. In [5] a continuous top-k query
algorithm is proposed, however in our problem no sliding
window is considered (so no data object is expired within a
fixed life time).

The rest of this paper is organized as follows. Section 2
describes the definition of continuous relational top-k query
and its properties. Then in Section 3 a special case of CRTQ,
continuous monitoring top-k unsafe moving objects from Ex-
ample 2 is proposed and analyzed, with an efficient query
answering algorithm called BasicCTUO. Finally, in Section 5
this showcase is summarized with our contributions and fu-
ture research plans.

2. CONTINUOUS RELATIONAL TOP-K
QUERY

In this section the continuous relational top-k query is intro-
duced. The data model assumption will be defined at first,
then the formal definition of our new query.

2.1 Data Model
Consider a relation R describing objects with a list of m
properties A1, A2, ..., Am. We assume that there exist at-
tributes which can be quantified for numeric comparison and
scoring.

Data objects are updated continuously. An update may (1)
update the values of attributes of an existing object, or (2)
insert a new data object into the relation, or (3) delete an
existing data object.

Here we use Example 2 to illustrate this model. For moni-
toring top-k unsafe moving objects over a 2-D space, a rela-
tion R containing all the moving objects (both police force
and objects to be protected) is maintained on a centralized
server. These objects can update their location through the
GPS system. The server also responds to queries from users,
specially here the continuous relational top-k queries, e.g., a
query monitoring the k most unsafe cash transport vans.

GPS System

Logical Data 
Table

Disk

Server
Users

Query

Results
Update

Location Location

id, locations, weight, type

Data

Figure 1: The model for monitoring top-k unsafe
moving objects.

2.2 Problem Definition



From the two examples showed previously, in order to get
the scores for the final top-k query, for each object in the
relation, it is necessary to (1) find objects which will be
considered into the score function (so for each object there
will be a group of such objects), and also (2) define the score
function over the object itself and also the group containing
other objects we have found. These two conditions can be
formalized using two functions defined as follows.

Definition 1. Group Function: A group function, FG,
accepts the input of two data tuples r0 and rg, and returns
a boolean value illustrating whether rg will be involved into
the score calculation of r0. That is, FG : r0 × r →BOOL.

Definition 2. Score Function: A score function, FS, ac-
cepts the input of a data tuple r0 and a group of tuples L, and
returns an integer value as the score for r0. Here L satisfies
L ⊆ R and ∀r ∈ L, FG(r0, r) = true, and also ∀r′ ∈ {R−L},
FG(r0, r

′) = false.

A group function defines the membership requirement for
a given relational top-k query. Intuitively, this function de-
scribes the relationship we want to monitor. For instance, in
Example 1 the group function can be defined as FG(r0, r) =
{r is within 30 arcseconds of r0.}, while in Example 2 the
group function can be defined as FG(r0, r) = {The distance
between r and r0 is no more than 1 mile.}.

A score function computes the score from the input tuples
approved by the group function. Since both the data object
r0 and tuples in L are involved into the score function, it
defines the measurement on the relationship between r0 and
its group L. This measurement can be simply some aggre-
gation like either of the two examples we have showed, or
some complex algorithm quantifying the relationship using
attributes related.

Now the CRTQ problem can be defined as:

Definition 3. Relational Top-k Query: Given a rela-
tion R, and the size of the output k, a Relational Top-k
Query Q{R, k, FG, FS} returns the k tuples with the high-
est scores according the given group function FG and score
function FS.

2.3 Properties
As a novel top-k query, relational top-k query has many
interesting properties, which leads to its wide applicability
and also difficulty in solution probing.

2.3.1 Group Function
The definition of a group in CRTQ is very flexible. Although
a group can be generated for a data object from the group
function, it is not the same as clustering in data mining area.
In clustering objects are grouped based on their similarity,
which is, the items in a group will have higher similarity,
while items between different groups will have lower similar-
ity. In CRTQ, this can be simply achieved by group func-
tions making constraints on the measurement of similarity,

for example, FG(r0, r) = {Similarity (r0, r) ≥ s}. Further-
more, group functions can be used to describe more other
relations, such as difference, variation, etc., which cannot be
considered as similarity. Some good examples are like “find
k objects farthest from r0”, and “the object whose value of
Ai is different from r0.Ai by at least l”. When considering
the continuous situation, group functions can illustrate some
continuous relations, such as “in the past t time period, the
difference of Ai between r0 and r has never been larger than
l”, etc. However, this flexibility also brings the difficulty to
find a generalized solution for this query. We will discuss
this more at the end of Section 3.

2.3.2 From top-k to CRTQ
CRTQ has a strong connection with the traditional top-k
query. A relational top-k query is in fact a special case of
top-k join query [2], where all joins are self-joins (which is
the reason for its name using “relational”). Formally, given
a relational top-k query Q{R, k, FG, FS}, a corresponding
top-k join query can be defined as follows:

SELECT R1.key as key, FS(R1, R
∗
2) as score

FROM R R1, R R2

WHERE FG(R1.r, R2.r) = true
ORDER BY score
GROUP BY R1.key
LIMIT k;

Notice that here we use R∗
2 to present the tuples grouped

for the score computation of a single object in R1. These
values are collected by the GROUP BY clause with the score
function FS as a customized aggregation function.

Although answering such a query in the static environment
is no worse than running a top-k join query, it is really ex-
pensive to issue it in a continuous environment. Existing
algorithms for the static environment mentioned in [2] cause
overhead due to the expensive cost on maintaining the nat-
ural joins when updating. The flexibility of the group func-
tion makes this exploration even harder. As far as we know,
there has been no efficient algorithm yet working for the
continuous top-k join queries.

CRTQ is not always so difficult to be solved efficiently, how-
ever. Although the flexibility of the grouping and scor-
ing strategy increases the difficulty, efficient solutions are
still possible when group and score functions are restricted.
Later in Section 3, an efficient algorithm is showed for the
CRTQ when (1) the group function is closeness-grouping,
and (2) the score function is monotone-increasing.

3. CONTINUOUSLY MONITOR TOP-K UN-
SAFE MOVING OBJECTS

This section shows that for a special case of the relational
top-k query from Example 2, called continuous monitoring
top-k unsafe moving objects in a spatial database, an ef-
ficient solution is possible. We extend the original optimal
algorithm in [6] for monitoring top-k unsafe places whose lo-
cations will not be changed, and show the efficient strategy
for relation top-k query in such a special category.

3.1 Definition



Consider R as a data set of moving objects such as cash
transport vans and police cars. Each data tuple has the
schema as {id INT, type BOOLEAN, posx DECIMAL, posy

DECIMAL, safety INT, PRIMARY KEY id}. Assume that
an object with type as true will be a protect unit and oth-
erwise be an object to be protected. Safety indicates the
weight of the safety required (for objects to be protected) or
of the safety provided (for protect units). We also assume
that all the protect units have the same protect region of
u (the furthest distance it can reach for protection is du).
The safety of a protected object r is defined as the differ-
ence between its safety weight and the sum of safety weights
of protect units whose protect regions contain this object,
which is X

r∈ri.u

ri.safety− r.safety

formally. So our problem is defined as

Definition 4. The Continuous Top-k Unsafe Moving Ob-
ject query continuously monitors the k moving objects in R
with the lowest safeties.

So from this definition we have

FG(r0, r) = {
p

(r0.x− r.x)2 + (r0.y − r.y)2 ≤ du}

and

FS(r0, L) =
X
r∈L

r.safety− r0.safety

And the corresponding SQL query in the top-k join query
pattern will be

SELECT R0.id as id,
(SUM(R1.safety) - R0.safety) as score

FROM R R0, R R1

WHERE R0.id 6= R1.id
AND Sqrt((R0.posx −R1.posx)2

+ (R0.posy −R1.posy)2) ≤ du

GROUP BY R0.id
ORDER BY score DESC
LIMIT k;

3.2 BasicCTUO
We extend our efficient algorithm for the continuous top-k
unsafe place query (BasicCTUP[6]) to fit into our new query,
which we call it as Basic Continuous top-k Unsafe mov-
ing Objects algorithm (BasicCTUO). The most important
change is that static places are replaced by dynamic moving
objects. Here a stream-based two-level storage structure is
used, where data are stored on disks, and all updates are
firstly written into the memory then synced onto the disk.
The computations of CRTQ queries will also be processed in-
side of the memory. So in order to improve the performance,
the loading process from the disks should be minimized.

The whole space is partitioned into a set of non-intersecting
cells, and a grid for this partition is maintained in memory.
Each cell in the memory has a pointer to the data of objects
in it on the disk. A lower bound flag as an integer is also
associated with each cell, indicating the lowest safety weight
gained by the moving objects inside from the protect units

reachable. An example is showed in Fig. 2, where the space
is partitioned into 9 cells, and the lower bound of cell 5 is
−2. When an update is coming, only the cells being influ-
enced are updated to maintain the updated lower bound.
In this way, the cost of maintaining the natural join result
in CRTQ is decreased by limiting the monitoring granular-
ity by cells instead of single objects in the whole Cartesian
product space.

Disk

1:2 2:2 3:-5

4:-2 5:-2 6:0

7:1 8:-1 9:0

t

UpdatesSpace grid

5:-2
o: (1, -7), 

(2, -3)
p: (5, 5)

illuminated cell

Memory

Figure 2: An example for BasicCTUO.

Here the same “illuminating” strategy from [6] is applied to
keep as few as possible active cells (which are illuminated)
into the memory while other darken ones onto the disk. The
status of a cell will be changed based on the updates of ob-
jects inside. Our algorithm tries to minimize the number
of illuminated cells during the updates, which further de-
creases the number of cells to be monitored and improves
the performance.

The whole algorithm is consisted of two main parts, the ini-
tialization part and the maintenance part. Since the initial-
ization part is working on a static data set, it is exactly the
same as the BasicCTUP. Changes are made in the mainte-
nance part, where different strategies are used for updating
protected moving objects and protect units. Details of the
algorithms can be found below.

Algorithm 1 BasicCTUO: Initialize

Require: A relational top-k query Q = {R, FG, FS , k}
Ensure: Get the initial top-k unsafe objects, and initial-

ize the lower bound of all cells. Cells containing top-k
objects are illuminated and maintained in memory.

1: Initialize the grid based on the space partition.
2: for each cell in the grid do
3: for each protected object in this cell do
4: Calculate the safety score by probing the protect

units in this cell and cells around.
5: end for
6: Update the lower bound safety weight of the cell lb.
7: end for
8: Set SKu = +∞ as the upper bound safety weight of the

top-k list
9: Invoke Alg. 2 to update the top-k list.

In details for updating the status of cells, all the cells con-



Algorithm 2 BasicCTUO: Update the top-k list.

Require: A grid with updated lower bound on each cell.
Ensure: The top-k list is updated.
1: Illuminate all cells whose lower bound is less than SKu

2: for each cell in the grid in the increasing order of the
lower bound do

3: if The lower bound of this cell lb is larger than SKu

then
4: Break this loop and return the top-k objects.
5: else
6: Find the partial top-k unsafe objects in this cell,

then update the top-k list using these objects.
7: Update SKu to be the current upper bound of the

top-k list (if this top-k list is not full, set SKu =
+∞).

8: end if
9: end for

taining (or possibly containing) a top-k object will be illumi-
nated for further checking. If none of the protected objects
in one cell is in the top-k list, this cell will be darken. The
content of an illuminated cell will be maintained in memory
for fast monitoring in the future, while for dark cells only
their lower-bounds will be maintained in memory. In [6]
more details have been showed to update the lower bound
of the dark cell without loading its content into the memory,
and also an optimized algorithm is described to overcome the
“flashing” problem on updating the cells. Since all of these
strategies can be applied directly to our algorithms, we omit
these details here.

Algorithm 3 BasicCTUO: Maintenance for updating pro-
tected objects

Require: An update of a moving object.
Ensure: The top-k list is updated.
1: if The object is a protected object. then
2: if The object is in an illuminated cell then
3: Calculate its safety by checking only the police force

in illuminated cells;.
4: else
5: Set the safety of the object as its safety require-

ment (the safety lower bound of this cell should be
updated too).

6: end if
7: Invoke Alg. 2 to update the top-k list when the safety

of this object is smaller than SK, or a dark cell is just
illuminated.

8: else
9: Update the lower bound of the cells intersecting with

the protect region before and after updating.
10: if All these updated cells have lower bounds higher

than SKu then
11: Nothing need to be updated for the top-k list.
12: else
13: Invoke Alg. 2 to update the top-k list.
14: end if
15: end if

4. PERFORMANCE ANALYSIS
In this section mainly two algorithms are compared: the
naive algorithm and BasicCTUO algorithm. Instead of us-
ing any pre-processing or pruning technologies, the naive

algorithm uses a brute-force strategy processing all the data
points influenced by the update. Here the data points“influ-
enced”refer to the ones whose safety weights may be changed
due to the update. To minimize possible systematic error on
the running time, the number of cells loaded when running
is considered as the main measurement on the performance
of algorithms, since the main goal of BasicCTUO is to re-
duce the unnecessary cost of loading data between memory
and disk every time when updating.

Figure 3: Naive and BasicCTUO performance on
different grid density.

The algorithms are implemented in Java on a Mac OS X
10.5.8 system with a 2.2 GHz Intel Core 2 Duo CPU and 4
GB 667 MHz DDR2 SDRAM. All the data are generated by
the Network-based Generator of Moving Objects [1] along
the Oldenburg road network. Different configurations on
parameters, including the monitoring time, the grid density
and the protection radius, are used in our experiments to il-
lustrate different properties of BasicCTUO. Fig. 3 shows the
performance when the grid density of the map is changed. It
is clear that BasicCTUO always beats the naive algorithm
with the same grid density (N means the naive algorithm),
however the increasing grid density causes the performance
downgrade of BasicCTUO due to the overhead of monitor-
ing more small cells within the same protect radius. Fig. 4
shows the performance of the BasicCTUO changes when the
radius of the protection region varies, where a larger protec-
tion region also indicates the overhead on more cells to be
monitored.

Figure 4: BasicCTUO on different protection radius.

4.1 BasicCTUO for a Category of CRTQ



Our BasicCTUO algorithm can be extended onto other spa-
tial continuous relational top-k queries, if these queries have
the similar characteristics on their group and score func-
tions. In details, they should satisfy the following condi-
tions.

• Objects are grouped based on the closeness to the ref-
erence point. This condition utilizes the grid index to
minimize the overhead of join operations. It can be
formally defined as the closeness-grouping property :

Property 1. Closeness Grouping: For data objects
r0, r1 and r2, if dist(r0, r1) ≤ dist(r0, r2) and FG(r0, r2)
= true, then FG(r0, r1) = true. Here dist is the Eu-
clidean distance of the two objects.

For example, this property holds on a k-NN group
function like FG(r0, r) = {r is one of the k-NN of r0.}

• The score function is monotone increasing on each ob-
ject in the group. This condition makes sure that up-
dates can be pre-processed over the grid in memory
without inspecting the content of the cell. Formally it
can be defined as the monotone scoring :

Property 2. Monotone Scoring: Given a data ob-
ject r0 and its group L, consider that r ∈ L and r.A
participates the score function FS, then we say FS is
a monotone increasing score function if after updat-
ing r into r′ (L is then into L′), r.A ≤ r′.A, we have
FS(r0, L) ≤ FS(r0, L

′).

So a more complex score function for the safety mea-
surement is still feasible for BasicCTUO, if this score
function is monotone on the safety weight of each pro-
tect unit in the group.

Here we can show that the BasicCTUO algorithm cannot
be applied to Example 1. The group function of Example 1
can be defined as

FG(r0, r) = {r is within 30 arcseconds of r0.}

And its score function is

FS(r0, L) =
X
l∈L

X
c

abs((rl)c − (r0)c)

where c ∈ {u−g, g−r, r−i, i−z}. Although FG is a closeness
grouping function, FS is not monotone due to the existence
of abs function. So BasicCTUO algorithm is not working
for Example 1. For the same reason, BasicCTUO cannot be
generalized to any CRTQ on which the two conditions do
not hold.

5. CONCLUSIONS AND RESEARCH PLANS
This showcase proposed a new continuous top-k query, called
continuous relational top-k query. As a special case of the
top-k join query where only natural joins are used, this kind
of query retrieves the k objects with the most significant
“relationship” with others in the data set. A formal defini-
tion of this query is proposed, with the relationship mod-
eled as a group function FG and a score function FS . It also
showed that due to the flexibility of grouping and scoring,

it is difficult to find a generalized efficient solution for this
query. However, one of its special applications in the spa-
tial database, continuously monitoring top-k unsafe moving
objects, was showed with an efficient solution avoiding the
overhead to re-calculate every time after updating.

Our main contributions in this work are:

• The formal definition of a CRTQ has been proposed,
including the relationship using group and score func-
tions, which is helpful to formalize the real applica-
tions of this query and translate such a query into a
SQL query.

• The flexibility of a relational top-k query is theoreti-
cally discussed, and also the connection between a re-
lational top-k query with a top-k join query.

• An efficient algorithm, BasicCTUO for the special cat-
egory of CRTQ, is provided. This category requires
that for a query its group function should be closeness-
grouping and score function be monotone increasing,
in order to use BasicCTUO.

Our on-going research plan includes (1) classifying possible
categories of the group functions to divide the solution space
into proper sub problems, and (2) extending CTUO for con-
tinuous relationships.

6. REFERENCES
[1] Thomas Brinkhoff. A framework for generating

network-based moving objects. Geoinformatica,
6(2):153–180, 2002.

[2] Ihab F. Ilyas, Walid G. Aref, and Ahmed K.
Elmagarmid. Supporting top-k join queries in relational
databases. In VLDB ’2003: Proceedings of the 29th
international conference on Very large data bases, pages
754–765. VLDB Endowment, 2003.

[3] Ihab F. Ilyas, George Beskales, and Mohamed A.
Soliman. A survey of top-k query processing techniques
in relational database systems. ACM Comput. Surv.,
40(4):1–58, 2008.

[4] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F.
Ilyas. Supporting ad-hoc ranking aggregates. In
SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
61–72, New York, NY, USA, 2006. ACM.

[5] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris
Papadias. Continuous monitoring of top-k queries over
sliding windows. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on
Management of data, pages 635–646, New York, NY,
USA, 2006. ACM.

[6] Donghui Zhang, Yang Du, and Ling Hu. On monitoring
the top-k unsafe places. In ICDE ’08: Proceedings of
the 2008 IEEE 24th International Conference on Data
Engineering, pages 337–345, Washington, DC, USA,
2008. IEEE Computer Society.


