BGP-lens: Patterns and Anomalies in Internet Routing Updates

B. Aditya Prakash, Nicholas Valler, David Andersen, Michalis Faloutsos, Christos Faloutsos, SIGKDD'09

Presented by: Jian Wen

What's Happening in BGP?

- Routing information in a BGP network is updated frequently.
 - Why? Link/node failure, router maintenance, misconfigure.
- From these updates:
 - What is the normal pattern?
 - What does the anomalies look like (Route Flapping, Hijacking)?

Anomalies

Problem Definition

Table 1: BGP-updates snippet; Washington Router

time	peerAS	originAS	prefix
2005-02-17 12:39:42	11317	1252	204.29.119.0/24
2005-02-17 12:39:43	10490	3464	204.29.80.0/24
2005-02-17 12:39:46	10490	3464	204.29.79.0/24
2005-02-17 12:39:49	10490	3464	204.29.118.0/22
2005-02-17 12:39:55	11317	776	204.29.78.0/24
2005-02-17 12:39:55	22388	7588	207.157.115.0/24
2005-02-17 12:39:56	1252	6677	192.211.42.0/24
2005-02-17 12:39:58	10764	2200	204.29.120.0/24

Time Plot of Washington route

- Given: BGP updates.
- Problem: Find patterns and anomalies.
- Out Approach: BGP-lens!

Existing Work/Solutions

- Network: BGP measurement and analysis
 - Canonical measurement and models for BGP anomalies and instability behaviors. Not really handy.
 - Detect network-wide BGP anomalies. Not for fine granularity.
 - Visualization and statistic methods. Data Mining?

BGP-lens

- A novel tool for automatically detecting patterns and anomalies in BGP updates at many different scales of observation.
 - Effective: Can detect both temporal and frequency anomalies.
 - Scalable: The algorithms are linear on the number of time-ticks and thus it can handle large datasets.
 - Admin-friendly: It can work with zero user input; automotive detection.

Roadmap

- Tool Components and Observations in BGP-lens
 - The Clothesline Effect Temporal Analysis
 - The Tornado Plots Frequency Analysis
- Automating Discovery
- Scalability
- User-interface: BGP-lens as an administrative tool
- BGP-lens at work

Temporal Analysis: Clothesline

- Linear-linear plots fail to show short duration spurts.
 - Threshold method cannot deal with the huge variations.
 - FFT cannot work here due to the burstiness of the updates.

Temporal Analysis: Clothesline

- Instead of using linear-linear plots, we use log-linear plots.
 - No striking outliers any more;
 - The "bin size", or the window size for the measurement, now means a lot: clothesline!
 - Clothesline: a periodic update stream over a prolonged time period (so it may be Route Flapping).

Catch the Clothesline: Marginals

- Outliers in the "marginal" distribution usually correspond to clotheslines.
- Marginal distribution plot
 - Log-log scale;
 - PDF of Occurrence count on Number of updates

Frequency Analysis: Tornado

- Due to the self-similar nature of the data, Fourier Transformation doesn't work well for our purpose.
- Discrete Wavelet Transform and scalogram.
- Observations.
 - Pronounced spikes correspond to "tornadoes" that touch down.
 - Darker tornado => Larger spike.
 - Non-touch-down tornado => Prolonged spike.

Real "Tornados"

- E1: A huge touch-down spike (one hour' prefix hijacking).
- E2: A dark non-touchdown spike (eight hours' sustained update activities).

Automating the Discovery Clotheslines

	Median	
Origin AS	#Updates	Comments
4788	235	TM Net, Malaysia
3464	21	AL Supercomp. Net, US
10036	134	C&M Comm., Korea
9768	109	KT, Korea

Automating the Discovery Clotheslines

- For each time bin size $b=2^i$, derive the corresponding marginal plots.
 - Multiple plots corresponding to different *i* value.
- For each marginal plot use the median filtering approach to determine "outliers".
 - Median Filter Approach: reduce the noise and pick the median for output.
- For each outliers found, find the longest time-interval from the corresponding clothesline plot.
- For each time interval found, report the most consistent IPs or ASes etc.

Automating the Discovery Prolonged Spike (Tornadoes)

- Require two inputs: sensitivity and duration
 - Sensitivity: the percentage of the DWT coefficients to be considered, which refers to the strength of the spike (recall: larger coefficient -> darker scale cell -> larger spike).
 - Duration: the time threshold for the spike's duration.
- BGP-lens provides the default input of these two parameters.
 - Only consider wavelet coefficients within 60% of the maximum with duration at least 2^{len-8+1}

Scalability of BGP-lens

- Top-5 anomalies.
- Two AMD Opteron dual-core 2.4GHz, 48G Mem, Fedora 5
- Data size: > 18 million updates for two years.

200 y = 5.3*x + 74 y = 5.3*x + 74y = 5

Running Time vs. Number of Months

User Interface

- Install and run! No more configuration!
- Beginner/
 Expert Mode

Simple mode Expert mode

BGP-lens on Duty: Clotheslines

Table 2: 50-Clothesline Results, 22-Aug to 25-Sept-2005

	Median	
Origin AS	# Updates	Comments
4788	235	TM Net, Malaysia
3464	21	AL Supercomp. Net, US
10036	134	C&M Comm., Korea
9768	109	KT, Korea
	Median	
Prefixes	#Updates	Comments
207.157.115.0/24	14	AL Supercomp Net, US
192.211.42.0/24	14	AL Ind. Dev. Training, US
216.109.38.0/24	14	AL Supercomp. Net, US
192.94.104.0/22	14	U. of NE Medical Center

BGP-lens on Duty: Prolonged Spikes

Table 3: Prolonged Spike Results, 12-May-2005

Origin AS	#Updates	Comments
4538	229960	CERNET, China
9406	4976	CERNET, China
23911	1516	CERNET, China
Prefixes	#Updates	Comments
222.200.236.0/23	1314	CERNET, China
222.203.64.0/24	1311	CERNET, China
222.202.96.0/24	1311	CERNET, China

Summary

- BGP-lens: handy tools for administrators to monitor BGP updates.
 - Efficient, scalable, and admin-friendly.
 - Support anomalies detection on both updates bursts and prolonged spikes.
- The paper also covers some interesting observations:
 - Marginals that are mixture of log-normals with a power-law tail.
 - Self-similarity of BGP updates data corresponding to a 75-25 bmodel slope.

Future Work

- On-line Monitoring Tool?
 - Incremental algorithms.
 - Arbitrary time instance and duration.