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Abstract. Driven by the international HapMap project, the haplotype
inference problem has become an important topic in the computational
biology community. In this paper, we study how to efficiently infer hap-
lotypes from genotypes of related individuals as given by a pedigree.
Our assumption is that the input pedigree data may contain de novo
mutations and missing alleles but is free of genotyping errors and recom-
binants, which is usually true for tightly linked markers. We formulate
the problem as a combinatorial optimization problem, called the mini-
mum mutation haplotype configuration (MMHC) problem, where we seek
haplotypes consistent with the given genotypes that incur no recombi-
nants and require the minimum number of mutations. This extends the
well studied zero-recombinant haplotype configuration (ZRHC) problem.
Although ZRHC is polynomial-time solvable, MMHC is NP-hard. We
construct an integer linear program (ILP) for MMHC using the system
of linear equations over the field F (2) that has been developed recently
to solve ZRHC. Since the number of constraints in the ILP is large (expo-
nentially large in the general case), we present an incremental approach
for solving the ILP where we gradually add the constraints to a standard
ILP solver until a feasible haplotype configuration is found. Our prelim-
inary experiments on simulated data demonstrate that the method is
very efficient on large pedigrees and can infer haplotypes very accurately
as well as recover most of the mutations and missing alleles correctly.

1 Introduction

Human beings have been fighting against diseases such as cancer, stroke, heart
disease, asthma, depression, and schizophrenia for decades. It is believed that
many of these diseases are caused by genetic factors. Gene mapping, which at-
tempts to establish connections between diseases and some specific genetic vari-
ations, is a very important and active area of genetics. More specifically, it aims
at locating genes of interest (e.g. genes responsible for certain diseases) relative
to genetic markers (such as microsatellites and single nucleotide polymorphisms,
or SNPs) on chromosomes. A set of genetic markers and their positions (called
marker loci) define a genetic map of chromosomes. In diploid organisms like
human, chromosomes (other than sex chromosomes) form pairs. Each pair of
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chromosomes consists of a paternal chromosome inherited from the father and a
maternal chromosome inherited from the mother. Hence, each genetic marker on
a pair of chromosomes occurs at the same location of both paternal and mater-
nal chromosomes. However, the marker may have different states (called alleles)
on the two chromosomes. The set of its two alleles is called the genotype of the
marker and the assignment of the two alleles to the paternal and maternal chro-
mosomes is called the haplotype (or phase) of the marker. The haplotype informa-
tion of genetic markers is of tremendous value to gene mapping and other genetic
analyses (such as linkage analysis) because it gives a more accurate description
of the inheritance process than the genotype information. Its importance can
also be seen from the international HapMap project launched in 2002 [19]. Since
genotype data instead of haplotype data are routinely collected in practice, espe-
cially in large-scale sequencing projects, due to cost considerations, efficient and
accurate computational methods for the inference of haplotypes from genotypes
over a set of marker loci, which is also commonly referred to as phasing, have
been extensively studied in the literature. See [11] for a recent survey on these
methods as well as the basic concepts involved in haplotype inference.

The existing computational methods for haplotype inference can be divided
into three groups according to the genotype data that they deal with: methods
for population data involving unrelated individuals (see e.g. [6,13,17]), methods
for pedigree data consisting of individuals (typically from an extended family)
that are related by the parent-child relationship (see e.g. [1,8,9,10,15,16,21,23]),
and methods for pooled samples (see e.g. [20,22]). The methods for population
data usually consider tightly linked markers that may involve mutations but no
recombinants, while the methods for pedigree data usually assume that the data
may have zero or few recombinants but is free of mutations (i.e. the Mendelian
law of inheritance holds). Here, we are interested in only pedigree data.

Some real pedigree data may actually contain mutations. In particular, a de
novo mutation is a mutation that is present for the first time in a family mem-
ber as a result of a mutation in a germ cell (egg or sperm) of one of the parents
or in the fertilized egg itself. It has been found that the detection and analysis
of mutations in a pedigree could provide a good alternative for some genetic
variation research [3,5,14]. In fact, Ellegren [5] has stated that “To reveal the
mutational contribution to overall genetic variability, the most straightforward
and conclusive way is the direct detection of mutation events in pedigree geno-
typing.” However, de novo mutations violate the Mendelian law of inheritance,
and hence pedigree data with such mutations cannot be properly handled by
the above common haplotype inference methods. When these methods are faced
with data with mutations, they typically treat the loci involving mutations as
genotyping errors and delete such loci. Very few haplotype inference methods in
the literature deal with pedigree data that contain mutations (one such method
is a genetic algorithm in [18]).

In this paper, we study haplotype inference on pedigree data on tightly linked
markers that have no recombinants but may contain a small number of de novo
mutations (or simply, mutations). Since mutation is a rare event, we formulate
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the problem as a combinatorial optimization problem, called the minimum mu-
tation haplotype configuration (MMHC) problem, where we look for a haplotype
solution consistent with the given genotype data that incur no recombinants
and require the minimum number of mutations. Our hypothesis is a solution
with the minimum number of mutations is likely the true solution. Moreover,
we are only interested in solutions where each locus has at most one muta-
tion in the pedigree. This restriction is reasonable given Kimura’s infinite-site
model et al. [7] which suggests that the probability of multiple mutations at the
same locus is low enough to be negligible. This extends the well studied zero-
recombinant haplotype configuration (ZRHC) problem where we try to find a
consistent haplotype solution incurring no recombinants or mutations. Although
ZRHC is polynomial-time solvable [9], we can prove that MMHC is NP-hard by
a reduction from NAE-3SAT (the proof is omitted in this extended abstract).
We construct an integer linear program (ILP) for MMHC using the system of
linear equations over the field F (2) that has been developed in [9,12,21] for solv-
ing ZRHC in almost linear time. Since the number of constraints in the ILP is
quite large (exponentially large in general) when the input pedigree is large, we
present an incremental approach for solving the ILP.

An outline of our incremental approach is as follows. Given a pedigree data,
we set up a system of linear equations over F (2) introduced in [12,21] for ZRHC,
but conditional on mutations. We convert the linear system to an ILP instance
for MMHC where the constraints generally describe the relation between the
equations and mutations. A small set of the constraints in the ILP are identified
as the core constraints, and a standard ILP solver GLPK (the GNU Linear Pro-
gramming Kit from http://www.gnu.org/softward/glpk) is invoked on the
partial ILP instance with only the core constraints. The ILP solution describes
an assignment of mutations in the pedigree which can be used to remove the
conditions in the linear system. By using Gaussian elimination, we can check
if the linear system is consistent. If it is consistent, a haplotype configuration
(with the minimum number of mutations) is returned. Otherwise, we find the
inconsistent equations and add some new constraints to the core to force their
consistency. This process is repeated until an ILP solution that satisfies its cor-
responding linear system has been found. Note that, the incremental approach
to solving the ILP is crucial here because the ILP instance cannot be efficiently
and explicitly constructed as its number of constraints grows exponentially in
the pedigree size in general. Also note that, with the advance in sequencing tech-
nology, larger and larger pedigrees are being genotyped and analyzed in practice.
For example, in [2,4], haplotype inference was performed on pedigrees of sizes
368 and 1149, respectively.

We have implemented the algorithm and tested it on pedigree data that were
simulated with random mutations and missing alleles. (Real pedigree data often
have up to 20% missing alleles.) The experimental results demonstrate that our
method can infer haplotypes with a very high accuracy. It can also detect most
of the mutations and impute most of the missing alleles correctly. Moreover, it
is found that the algorithm usually terminates after a small number of iterations
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without ever having to invoking ILP solver on the complete ILP instance consist-
ing of all the constraints. As a comparison, we have also considered the straight-
forward approach for solving the ILP with all the constraints considered at once
on binary tree pedigrees (i.e. each pair of parents has only one child). The ILP
instance can be efficiently constructed for binary tree pedigrees. It is found that
our algorithm is much faster than the straightforward approach.

The rest of the paper is organized as follows. In Section 2, we incorporate
mutations into the system of linear equations introduced in [12,21] for ZRHC to
obtain a system of conditional linear equations for MMHC. Section 3 describes
the ILP formulation for MMHC, and the incremental approach for solving the
ILP. In Section 4, we discuss the implementation of the algorithm and test
its performance on some simulated pedigree data with random mutations and
missing alleles. Section 5 concludes the paper with a few remarks.

2 A System of Conditional Linear Equations for MMHC

We review the system of linear equations over F (2) introduced in [12,21] for
solving ZRHC and extend the system to take into account mutations.

2.1 The Linear System

Let n denote the number of the individuals in the input pedigree and m the
number of marker loci of each individual. For simplicity, we assume in this paper
that all alleles are bi-allelic (denoted as 0 or 1) and the input pedigree is free
of mating loops (and thus a tree pedigrees). Tree pedigrees are very common
among human pedigrees. Our techniques can be extended to general pedigrees.
The genotype of individual j is denoted as a ternary vector gj whose kth entry
gj[k] represents the genotype at locus k of individual j as follows:

⎧
⎪⎨

⎪⎩

gj [k] = 0 if both alleles are 0’s
gj [k] = 1 if both alleles are 1’s
gj [k] = 2 if the locus is heterozygous

(1)

The value of gj [k] is unknown if the alleles are missing. For each locus k of
individual j, we define a binary variable pj[k] over F (2) to indicate the paternal
allele at the locus:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pj [k] = 0 if gj [k] = 0
pj [k] = 1 if gj [k] = 1
pj [k] = 0 if gj [k] = 2 and allele 0 is paternal
pj [k] = 1 if gj [k] = 2 and allele 1 is paternal

(2)

In other words, the binary vector pj represents the paternal haplotype of indi-
vidual j. To represent the maternal haplotype, we need another binary vector
wj to indicate if each locus of individual j is heterozygous. That is, wj [k] = 0 if
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gj[k] = 0 or 1, and wj [k] = 1 if gj[k] = 2. Clearly, the sum pj + wj (over F (2))
represents the maternal haplotype of individual j.

Suppose that individual i is a parent of individual j. To unify the represen-
tation of the haplotype that j inherited from i, define a binary vector di,j as
follows: di,j = 0 if i is j’s father and di,j = wj if i is j’s mother. Therefore,
pj + di,j represents the haplotype that j got from i. Define hi,j = 0 if pj + di,j

is i’s paternal haplotype and hi,j = 1 otherwise. Then pi + hi,j · wi represents
the haplotype that i passed to j. The binary variables hi,j thus fully describe
the inheritance pattern in an ZRHC instance. Finally, define µi,j [k] = 1 if the
there is a mutation at locus k when i passes the haplotype pi +hi,j ·wi to j, and
µi,j [k] = 0 otherwise. For technical reasons, we view µi,j [k] as an integer from
Z instead of F (2). For convenience, we make these three vectors symmetric by
defining dj,i = di,j , hj,i = hi,j , and µj,i = µi,j . Using these notations, we can
derive a conditional equation over F (2):

{
pi[k] + hi,j · wi[k] = pj[k] + di,j [k] if µi,j [k] = 0
pi[k] + hi,j · wi[k] = pj[k] + di,j [k] + 1 if µi,j [k] = 1

(3)

Since we assume that each locus has at most one mutation in the pedigree,

0 ≤
∑

i,j

µi,j [k] ≤ 1 ∀k (4)

Note that the summation is over Z instead of F (2). Hence, the MMHC problem
can be formally defined as follows. Given an input pedigree and genotype data
gj for each individual j, find a solution to each pj , hi,j and µi,j that satisfies all
the (conditional) constraints in Equations (3) and (4) and minimizes the sum∑

i,j,k µi,j [k].

2.2 Pre-Determined Variables

The above linear system has O(mn) variables and equations. As in [12,21], we
can convert the system to an equivalent linear system involving only the h-
variables which is much smaller (there are only O(n) h-variables). This requires
us to pre-determine the values of some p-variables. The situation is complicated
a little bit by the presence of the µ-variables.

Let us consider a p-variable pj [k] where the marker of individual j at locus k
is not missing, and several scenarios.

1. gj [k] �= 2. By Equation (2), pj [k] = gj[k]. In this case, pj [k] is pre-determined.
We will refer to pj [k] as the intended p-value of the locus, denoted as v(j, k) =
pj [k].

2. gj [k] = 2 and exactly one parent, denoted as i, is homozygous at locus k.
See Figure 1(a). We have wi[k] = 0 by definition. According to Equation (3),
pj [k] is known if and only if µi,j [k] is known. We say that pj[k] is semi-
determined in this case. We also define µi,j [k] as the anchor of pj [k] and
denote a(j, k) = {µi,j [k]}. Since the value of pj [k] on the condition µi,j [k] = 0
is preferred, we denote v(j, k) = gi[k] + di,j [k].
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Fig. 1. Determining a p-variable. Consider the p-value of the child in the trio. (a) It
equals 0 as long as there is no mutation from the father and it is semi-determined. (b) It
equals 0 and there cannot be any mutation. It is pre-determined. (c) It is undetermined
but there must be a mutation. It is doubly-determined.

3. gj [k] = 2, both parents i1 and i2 of j are homozygous at locus k, and
gi1 [k] �= gi2 [k]. See Figure 1(b). Since each locus has at most one mutation,
µi1,j [k] and µi2,j [k] cannot both be 1. Hence, µi1,j [k] = µi2,j [k] = 0. In this
case, pj [k] is pre-determined, and we denote v(j, k) = pi1 [k] + di1,j[k].

4. gj [k] = 2, both parents i1 and i2 are homozygous at locus k, and gi1 [k] =
gi2 [k]. See Figure 1(c). In this case, one of µi1,j [k] and µi2,j [k] equals 1 and
the other 0. Thus, pj [k] has two anchors: a1(j, k) = {µi1,j [k]} and a2(j, k) =
{µi2,j [k]}. Each anchor gives rise to a preferred value for pj[k], v1(j, k) =
pi1 [k] + di1,j [k] and v2(j, k) = pi2 [k] + di2,j[k], respectively. In this case we
call pj [k] doubly-determined.

5. All other cases. The variable pj[k] is undetermined and the variable v(j, k)
is undefined.

If a pj [k] is pre-determined or undetermined, we define a(j, k) = ∅. Similarly, we
might be able to pre-determine µ-variable µi,j [k] in some cases.

1. gi[k] = gj [k] �= 2. Since the top equation in Equation (3) holds, we let
µi,j [k] = 0 and it is pre-determined.

2. gi[k] �= gj [k] and both loci are homozygous. Since the bottom equation in
Equation (3) holds, we set µi,j [k] = 1. This µ-variable is pre-determined.
Moreover, all the other µ-variables at locus k must equal 0 and are pre-
determined too.

3. Some p-variable at locus k is doubly determined. All the µ-variables at lo-
cus k other than this p-variable’s anchors must equal 0 and are thus pre-
determined.

4. All other cases. The variable µi,j [k] stays undetermined.

2.3 A More Compact Linear System

Following [12,21], we can set up a linear system in terms of the h-variables. The
idea is to consider paths in the pedigree connecting individuals with pre/semi/
doubly-determined p-variables and derive (conditional) equality constraints on
the h-variables on such paths based on Equation (3).

Consider a locus k and a path j0, j1, . . . , jr in the input (tree) pedigree,
where individuals ji and ji+1 have the parent-child relationship. Suppose that
pj0 [k] and pjr [k] are pre-determined, semi-determined or doubly-determined, and
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Fig. 2. Two possible cycle constraints from a local cycle. (a) The sum of the four
h-variables is 0. (b) The sum of the four h-variables is 1.

gj1 [k] = · · · = gjr−1 [k] = 2. We call the path j0, j1, . . . , jr an all-heterozygous
path at locus k. If pj0 [k] and pjr [k] are pre-determined or semi-determined, we
define a path constraint connecting j0 and jr:

v(j0, k) + v(jr , k) +
r−1∑

i=0

(
hji,ji+1 + dji,ji+1 [k]

)
= 0

if all elements in a(j0, k) ∪ a(jr, k) ∪
r−1⋃

i=0

{µji,ji+1 [k]} equal 0 (5)

If we denote M = a(j0, k) ∪ a(jr, k) ∪ ⋃r−1
i=0 {µji,ji+1 [k]}, H =

⋃r−1
i=0 {hji,ji+1},

and c = v(j0, k) + v(jr, k) +
∑r−1

i=0 dji,ji+1 [k], then the path constraint can also
be represented by the triple (H,M, c) which denotes:

∑

hi,j∈H
hi,j = c iff µi,j [k] = 0 ∀µi,j [k] ∈ M (6)

If j0 or jr is doubly-determined, we can construct two path constraints in the
same way: one using v1(·) and a1(·) and the other using v2(·) and a2(·).

Consider a local cycle consisting of father i1, mother i2, and two adjacent
children j1, j2. If both parents are heterozygous at locus k, we can obtain four
conditional equations from Equation (3) by replacing i with i1, i2, and j with
j1, j2. (See Figure 2.) The summation of these conditional equations forms a
cycle constraint :

hi1,j1 + hi1,j2 + hi2,j1 + hi2,j2 = di1,j1 [k] + di1,j2 [k] + di2,j1 [k] + di2,j2 [k]
= wj1 [k] + wj2 [k]

iff µi1,j1 [k] = µi1,j2 [k] = µi2,j1 [k] = µi2,j2 [k] = 0 (7)

This constraint will also be denoted as (H,M, c) where H = {hi1,j1 , hi1,j2 , hi2,j1 ,
hi2,j2}, M = {µi1,j1 [k], µi1,j2 [k], µi2,j1 [k], µi2,j2 [k]}, and c = wj1 [k] + wj2 [k].

If both parents are homozygous at locus k, then the p-variables of both chil-
dren must be pre-determined or doubly-determined. However, the two children
are not connected by any all-heterozygous path and thus no path constraint is
derived. On the other hand, if exactly one parent is heterozygous at locus k,
then both children are semi-determined and there is a path constraint between
the two children through the heterozygous parent.
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For each locus and every pair of pre/semi/doubly-determined p-variables con-
nected by an all-heterozygous path, we construct a path constraint (or two if one
of the p-variables is doubly-determined, or four if both p-variables are doubly-
determined) as above. Since the pedigree is a tree, the number of such path
constraints is at most O(mn). Similarly, for each locus and local cycle, if both
parents are heterozygous at the locus, we construct a cycle constraint as above.
The number of such cycle constraints is also bounded by O(mn). Let E denote
the set of these constraints.

The results in [12] show that the linear system formed by the above constraints
(without the conditions) in terms of the h-variables is equivalent to the linear
system defined by Equation (3) (without the conditions) in terms of the h- and
p-variables. In other words, a feasible solution to the h-variable can be extended
to a feasible solution to both the h- and p-variables. It is easy to see that the
same equivalence holds with the conditions.

Note that, loci with missing alleles could be included in the linear system
in Equation (3) (as p-variables). However, they are excluded from the above
path/cycle constraints on h-variables. Some of the missing alleles will be imputed
using Equation (3) after the h-variables are determined.

3 The ILP for MMHC and Incremental Approach

We construct an ILP for MMHC based on the above linear system in h-variables.
Recall that the objective of the ILP is

Minimize
∑

i,j,k

µi,j [k]. (8)

We give all the constraints of the ILP in Sections 3.1 and 3.2. Section 3.3 presents
more details of the incremental approach to solving the ILP. In Section 3.4, we
describe how to obtain a solution for MMHC after solving the ILP (and the
linear system) and deal with missing alleles.

3.1 The Core Constraints

All the constraints in Equation (4) are core constraints of the ILP. For each
path/cycle constraint (H,M, c) in E , we introduce an equation variable:

EH =
∑

hi,j∈H
hi,j (9)

We then add an equation constraint for each (H,M, c):
{

EH − ∑
µi,j [k]∈M µi,j [k] = 0 if c = 0

EH +
∑

µi,j [k]∈M µi,j [k] = 1 if c = 1
(10)

In other words, either the linear equation in (H,M, c) holds, or there is exactly
one mutation in M. Therefore, the core constraints of the ILP include all the
constraints in Equations (4), and (10). The number of these core constraints is
clearly bounded by O(mn).
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3.2 Consistency Constraints

Now we need some constraints to make sure that the assignment of the equation
variables are consistent with each other. Consider, for example, three sets of h-
variablesH1,H2,H3 that appear in the linear system such thatH1�H2�H3 = ∅.
(Here, � is the symmetric difference operator.) If EH1 = 0 and EH2 = 0, which
are equivalent to

∑
hi,j∈H1

hi,j = 0 and
∑

hi,j∈H2
hi,j = 0, then we must have

∑
hi,j∈H3

hi,j =
∑

hi,j∈H1
hi,j +

∑
hi,j∈H2

hi,j = 0, or equivalently EH3 = 0. The
sum of EH1 , EH2 , EH3 must be even. To guarantee such a relation among the three
equation variables, we need include the following consistency constraints:

C(H1,H2,H3) :

⎧
⎪⎪⎨

⎪⎪⎩

EH1 + EH2 + (1 − EH3) ≥ 1
EH1 + (1 − EH2) + EH3 ≥ 1

(1 − EH1) + EH2 + EH3 ≥ 1
(1 − EH1) + (1 − EH2) + (1 − EH3) ≥ 1

(11)

These constraints ensure that (EH1 , EH2 , EH3) �= (0, 0, 1), (0, 1, 0), (1, 0, 0),
(1, 1, 1), respectively. Therefore, illogical combinations of EH1 , EH2 , EH3 are pro-
hibited, and only legitimate combinations are allowed in a feasible solution.

In general, suppose that H1,H2, . . . ,Hr is any collection of sets of h-variables
that appear in the linear system such that H1�H2�· · ·�Hr = ∅. To construct
the consistency constraints for their corresponding equation variables, we intro-
duce new variables Si = �j

i=1Hi and their corresponding variables ESi . We then
construct a series of consistency constraints:

C(H1, . . . ,Hr) = C(H1,H2, S2) ∪ C(Sr−2,Hr−1,Hr) ∪
r−2⋃

i=3

C(Si−1,Hi, Si)

(12)

The core constraints and consistency constraints form the complete ILP in-
stance. Note that the number of consistency constraints is generally exponential
in n. The following lemma states that these constraints are sufficient for MMHI.
Its proof is omitted in this extended abstract.

Lemma 1. Consider a feasible solution to the (complete) ILP defined above.
We can convert the conditional linear system in Section 2.3 to an unconditional
linear system using the values of the equation variables in the solution. The linear
system must be consistent.

3.3 The Incremental Approach

Since the complete ILP instance cannot be efficiently constructed in general, we
start from an incomplete ILP instance with only the core constraints (no consis-
tency constraints). A standard ILP solver GLPK is invoked to find a solution to
the equation variables EH. The equation variable values specifies a set of (un-
conditional) linear equations from the conditional linear equations in E . We can
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solve the this system of linear equations by applying Gaussian elimination. How-
ever, the linear system may be inconsistent, i.e., there may be a set of equation
variables EH1 , EH2 , . . . , EHr such that �r

i=1Hi = ∅ but
∑r

i=1 EHi is odd deter-
mined by GLPK. When such an inconsistency occurs, there must be a subset
of equations

{∑
h∈Hi

h = ci

}r

i=1
such that

∑r
i=1 ci = 1 but

∑r
i=1

∑
h∈Hr

h = 0.
Hence �r

i=1Hi = ∅, and we add the consistency constraints shown in Equa-
tion (12) to the ILP instance. We then invoke GLPK again. This process is
iterated until a solution is found to yield a consistent system of linear equations.

Although in theory this process may take many iterations, more than 95%
of the time in our experiment a consistent solution was found in the very first
iteration using only the core constraints. Moreover, the process never took more
than three iterations in our experiment. This observation can be explained as
follows. For each equation constraint in Equation (10), the ILP solver GLPK
tends to assign c to the variable EH given (M,H, c) to minimize the number of
mutations, if this assignment does not result in conflicting equations. Since the
number of mutations is small, most equations should indeed hold. In addition,
we usually have a lot of pre-determined µ-variables, which could force GLPK to
assign the other variables correctly.

3.4 Phasing, Missing Allele Imputation, and Mutation Detection

Once a consistent (unconditional) linear system is found, solving the system by
Gaussian elimination assigns the values of all h-variables. GLPK also assigns
the values of all µ-variables in the last iteration. Therefore, we can resolve the
p-variables by using the propagation algorithm in [12,21]. The basic idea is to
propagate known (i.e. pre/semi/doubly-determined) p-variable values to unde-
termined p-variables along the edges in the pedigree by repeatedly applying
Equation (3). The p-variables that are left unresolved by the propagation algo-
rithm will be deemed as free in the solution. Note that, the resolved p-variables
could allow us to impute missing alleles at some loci (by possibly using some
ancestral p-variable and relevant h-variables if necessary), although perhaps not
at all loci.

If there are no missing alleles, then the above would produce a consistent
solution to the MMHC instance. However, the presence of missing alleles may
cause conflict between the assigned values of the µ-variables and those of the

0100 0111

?? ??

01 01

11

Fig. 3. Missing alleles may prevent us from obtaining path/cycle constraints. In the
figure, if there were no missing data, there should have been two path constraints
through the dotted line. The µ-variable on the dotted line is free because the two path
constraints are not included in the ILP instance.
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p-variables and h-variables. This is because some µ-variables do not appear in
any conditional equation. These µ-variables only appear in the objective function
and the constraints in Equation (4). Let us call this type of µ-variables free. (See
Figure 3 for an example free µ-variable.) Clearly, the free µ-variables were set
to 0 by GLPK to minimize the objective function. This assignment could be
in conflict with the p-variable and h-variable values, because their associated
path/cycle constraints were not included in the ILP instance. We will try to
fix the problem by re-evaluating the free µ-variables using the determined p-
variables and h-variables and Equation (3). For any free µ-variable in conflict,
we change its value to 1 (which incurs a new mutation).

However, some of these changes might be incorrect (or redundant), and such
incorrect changes may potentially lead to other conflicts with the p-variable and
h-variable values. When a change leads to more conflicts, we know for sure that
the change is wrong (because there can be at most one mutation at the same
locus), as stated in the following lemma whose proof is omitted in this extended
abstract.

Lemma 2. If assigning µi1,j1 [k]=1 leads to another conflict that forces µi2,j2 [k]=1,
then both µi1,j1 [k] and µi2,j2 [k] should equal 0.

Whenever we find two mutations at the same locus, we force their corresponding
µ-variables to 0 in the ILP instance (by adding two new constraints), and run
GLPK and the propagation algorithm again. Note that, these two µ-variables
are no longer viewed as free since they now appear in some constraints in the
ILP instance. This process is repeated until all µ-variable values are consistent
with the p-variable and h-variable values.

4 Experimental Results

We have implemented our algorithm in C, denoted as MMPhase. A detailed
pseudocode of MMPhase is omitted in this extended abstract and will given in
the full paper. In this section, we test MMPhase on pedigree data with randomly
simulated genotypes, mutations and missing alleles to perform an empirical eval-
uation of its performance and efficiency. We also compare the speed of MMPhase
with that of the straightforward method for solving the MMHC ILP (i.e., run-
ning GLPK on all the constraints in a single iteration).

We first compare the speeds of MMPhase and the straightforward method.
Since the number of consistency constraints is exponential in the pedigree size n
and locus number m in general (even for trees), we implement the straightforward
method only for binary trees. When the pedigree is a binary tree, we do not have
cycle constraints. For each path constraint along the path between j1 and j2,
let H1 be the set of the h-variables on the path from the root of the binary
tree to j1, H2 the set of the h-variables on the path from the root to j2, and
H3 the set of h-variables on the path from j1 to j2. We put the consistency
constraint C(H1,H2,H3) into the ILP instance. This will provide a sufficient set
of consistency constraints which will guarantee a feasible solution to MMHC.
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Table 1. The average running times on 100 randomly generated replicates for each
pedigree size. The pedigrees are full binary trees.

Pedigree size Straightforward Incremental

63 .443s .144s
127 2.98s .750s
255 20.3s 4.39s
511 180s 29.0s
1023 29.2m 2.13m

Table 2. The performance of MMPhase under various configurations of the parame-
ters. The default setting includes the pedigree of size 52, 50 marker loci, 10% missing
alleles, and 3% mutations. 100 replicated are generated for each configuration of the
parameters. Starting from the default setting, we vary the missing rate in (a), the
mutation rate in (b), the pedigree in (c), and the number of loci in (d).

Missing rate Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

0% — 78.31% 99.98% 2.02s
5% 74.70% 70.20% 98.49% 1.49s
10% 68.97% 62.58% 92.72% 1.24s
20% 69.03% 59.69% 92.75% .900s

(a)

Mutation rate Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

1% 73.15% 73.33% 96.75% 1.23s
3% 68.97% 62.58% 92.72% 1.24s
10% 73.11% 69.57% 96.73% 1.47s

(b)

Pedigree size Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

29 75.34% 52.26% 94.51% .298s
52 68.97% 62.58% 92.72% 1.24s
128 73.49% 52.11% 93.99% 27.0s

(c)

Locus number Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

20 73.13% 67.00% 96.78% .250s
50 68.97% 62.58% 92.72% 1.24s
200 73.09% 65.42% 96.82% 10.8s

(d)

Note that, the number of such consistency constraints is O(mn). Interesting,
the incremental approach implemented in MMPhase may theoretically use more
consistency constraints in the worst case because of creating redundant variables,
although it usually uses a smaller number of consistency constraints in practice.
We consider full binary trees of sizes from 63 to 1023, and run both algorithms
on 100 randomly generated genotype data with 50 loci, 10% missing alleles,
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Fig. 4. Three pedigrees are used to test the performance of MMPhase. The first has
29 individuals and is shown in (a). The second has 52 individuals and is shown in (b).
The third has 128 individuals and is too large to fit in the page.

and 3% mutations (i.e. 3% of the loci are mutated in inheritance). (Actually,
haplotypes are generated in the simulations and then converted to genotypes as
an input of the algorithms.) Table 1 shows the average running times of both
algorithms on each full binary tree. We observe that MMPhase is much faster
than the straightforward method, and the speedup ratio increases as the pedigree
size gets bigger. For example, the ratio is about 14 on full binary trees of size
1023. We also observe that the solutions from both algorithms are sometimes
slightly different but they always require the same number of mutations which
is smaller than the actual number of mutations simulated (the detailed results
are not shown).

Next we test the performance of MMPhase in terms of the percentage of
correctly phased markers, the percentage of correctly imputed missing alleles,
and the percentage of correctly detected mutations. (A simulated mutation is
correctly detected if there is an inferred mutation that coincides with its location
exactly.) We use three real human pedigrees from the literature as shown in
Figure 4. 100 replicates of genotype data is simulated on each of these pedigrees
with each of several configurations of the number of marker loci, the missing allele
rate and the mutation rate. Our default setting of simulation uses the pedigree
of size 52, 50 marker loci, 10% missing alleles, and 3% mutations. To observe
how each of these parameters affects the performance MMPhase, we vary one
parameter at a time in the test. Table 2 illustrates the test results. We observe
that, as shown in Table 2(a), higher missing rates lead to faster performance since
fewer path/cycle constraints are added to the ILP instance. Not surprisingly,
higher missing rates also result in fewer correctly detected mutations and fewer
correctly phased markers. Table 2(b) shows that the performance is not very
sensitive to the mutation rate. Table 2(c) and Table 2(d) show that the pedigree
and number of marker loci mainly affect the running time.

In conclusion, MMPhase is very efficient and can infer haplotypes very accu-
rately. It can also recover most of the mutations and missing alleles correctly.
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Note that, our criterion for correctly detecting a mutation is very stringent since
in some cases the mutation could be shifted in the pedigree without affecting
the feasibility of the solution (especially when missing alleles are present).

5 Concluding Remarks and Acknowledgements

Genotyping errors are very common in practice and can easily be confused with
mutations. It would be interesting to extend the method to deal with both
mutations and genotyping errors. The research is supported in part by NIH
grant LM008991 and NSF grant IIS-0711129.
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