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Abstract

We consider a variation of Voronoi diagram, or time-based Voronoi diagram, for a set
S of points in the presence of transportation lines or highways in the plane. A shortest
time-distance path from a query point to any given point in S is a path that takes the least
travelling time. The travelling speeds and hence travelling times of the subpaths along the
highways and in the plane are different. M. Abellanas et al. [1] gave a simple algorithm that
runs in O(n log n) time, for computing the time-based Voronoi diagram for a set of n points
in the presence of one highway in the plane. We consider a generalization of this problem to
the case when there are two or more highways. We give a characterization of this problem
and present an O(n log n) time algorithm for the problem where there are two highways. The
algorithm can be easily extended to multiple highways if a certain intersection condition of
highways holds.

1 Introduction

The Voronoi diagram is a very versatile and well-studied geometric construct in computational

geometry[2, 3, 4, 5, 6, 7, 8]. A traditional underlying distance measurement of Voronoi diagram

is the Euclidean distance. Given a set S of disjoint line segments, each of which may degenerate

into a point, the Voronoi diagram for S in the plane is a partition of the plane into Voronoi

regions, each of which corresponds to an element of S and is the locus of points closest (in

terms of Euclidean distance) to the element than to any other element of S. It is known that

the Voronoi diagram for S can be computed in O(n log n) time[8], where n is the size of S. In

2003, M. Abellanas et al. [1] introduced the traveling time-distance model by considering a set of

points in the presence of a transportation line, or highway. It is assumed that the traveling speed
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v0 in the plane is different or slower than that on the highway. Instead of Euclidean distance,

travelling time, i.e.. distance over speed, is used in the Voronoi diagram for one highway model.

They presented an O(n log n) time algorithm for computing the Voronoi diagram of a set of

n points in the plane in the presence of one highway. We extend the result by considering a

multiple highway model as follows.

• All highways are straight lines, L1, L2, . . . , Lk, k > 0.

• Travellers can enter the highways at any point and travel in both directions. The travelling

speed allowed on highway Li is vi for all i.

• Off the highways travellers can move freely in the plane, and the travelling speed in any

directions is v0 ¿ vi, i = 1, 2, . . . , k.

We show that the Voronoi diagram for two-highway model of a set of n points can also be

computed in O(n log n) time. We further give some condition, under which generalization of our

result for two-highway model to multiple-highway model can be done easily. In the next section

we review the one-highway model result and transform the new time-distance model to the

ordinary Euclidean distance, so the previously known results for traditional Voronoi diagrams

can be used. In Section 3, we provide an O(n log n) algorithm for the two-highway model in

which the two highways satisfy a certain angle condition. We extend this method and present

in Section 4 an O(k3 log k + k2n log n) time algorithm for the multiple-highway model, provided

that the highways pairwise satisfy the good angle condition. In Section 5, the two-highway

model in general is also solved in O(n log n) time by case analysis. We point out the difficulty

of the problem for the multiple-highway model and leave this problem for future study.

2 Preliminaries

Consider a set S of n points, p1, p2, . . . , pn, called sites, in the plane H. The time-distance

dt(q, pi) between any point q and pi is defined as dt(q, pi) = d(q, pi)/v0, where d(q, pi) denotes

the Euclidean distance between q and pi and v0 is the travelling speed in H. The locus of points

closest to pi in time-distance among all sites in S is the Voronoi region of pi, denoted V ort(pi, S),

or V ort(pi) when S is assumed. That is, V ort(pi, S) = {q|dt(q, pi) ≤ dt(q, pj), j 6= i, pi, pj ∈ S}.
The collection of Voronoi regions for all sites in S is called the time-based Voronoi diagram, of

S, denoted V ort(S). If v0 is the same everywhere in the plane, the time-based Voronoi diagram
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V ort(S) is the same as the ordinary Voronoi diagram of S, denoted by V or(S).

In the plane we assume there exist k lines, L1, L2, . . . , Lk, k > 0, as highways, where each

of which Li is associated with a travelling speed vi À v0, for i = 1, 2, . . . , k. Let us first review

the O(n log n) time algorithm given by M. Abellanas et al. [1] for computing the time-based

Voronoi diagram for the case when the number of highways is one.

Without loss of generality, we assume the highway L coincides with the x-axis, and its speed

allowed is v À v0. The time-distance between p and q in the presence of L can be transformed

into Euclidean distance as follows. Assume p is above L. Suppose q is above L, and qL denotes

the reflection of q with respect to L. Draw two half-lines, denoted +q̂L and −q̂L, emanating

from qL of slopes + tanαL and − tanαL respectively, where sinαL = v0
v . +q̂L is called the

plus-hat of qL, and −q̂L is called the minus-hat of qL. Figure 1 shows the case when q lies on

L, in which case qL = q. The time-distance between p and q is defined to be the minimum of

d(p, q), d(p, q`) and d(p, qr), where q` ∈ +q̂L and d(p, q`) is minx∈+q̂L{d(q, x)}, and qr ∈ −q̂L,

and d(p, qr) is minx∈−q̂L{d(q, x)}.

αL

q Lq`i

q`
+q̂L sinαL = v0/v

p

Figure 1: Enter the highway at q`i .

Figure 2 shows the time taken by the path from p to qr equals the time taken by the

three-segment path from p to qri , along the highway from qri to qro and from qro to q. The

three-segment path is simply referred to as a highway path.

In other words, point q is split into three different objects, q, +q̂L and −q̂L. We can define

the locus of points p that are equidistant to q and to +q̂L, i.e., d(p, q) = d(p,+q̂L). This is

the bisector of q and +q̂L and it is a parabola, with q as the focus and +q̂L as the directrix.

Similarly we define another bisector, which is also a parabola, defined by q and −q̂L.

In case when q lies on the opposite side of L as p, then the time-distance between p and q is
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p

L

qL

q

qro qri

qr′o

qr

−q̂L

Figure 2: The time-distance of three-segment path equals the time-distance from p to −q̂L.

the smaller of d(p, q`) and d(p, qr), where q` ∈ +q̂ and d(p, q`) is minx∈+q̂{d(q, x)}, and qr ∈ −q̂

and d(p, qr) is minx∈−q̂{d(q, x)}. +q̂ and −q̂ are respectively the half-lines emanating from q

of slopes + tanαL and − tan αL. Note that the shortest time-distance path from p to q on the

opposite side of L necessarily crosses the highway, and it is also a highway path. Similarly, point

q is split into two objects, +q̂ and −q̂, and the region above L will be partitioned into three

parts, each of which is associated with q, +q̂ and −q̂, respectively. For ease of reference we

consider q, which is an endpoint of both +q̂ and −q̂, as an object, so that when q lies below L,

we also split q into three objects.

The above transformation entails the following. The region above L is affected by three

objects per site, i.e., the site q itself, plus the two half-lines associated with either q (when q is

below L) or qL (when q is above L).

The time-based Vonoroi diagram of a set S of sites in the presence of a highway L (positioned

horizontally) is reduced to the following. The time-based Voronoi diagram in the half-plane

above L will be the ordinary Voronoi diagram defined by the set of sites p that lie above L, their

associated hats, +p̂L, −p̂L, and by the sets of sites q that lie below L and their associated hats

+q̂ and −q̂. The time-based Voronoi diagram in the half-plane below L is defined similarly.

To sum up, let P a and P b denote the sets of objects used in defining the time-based Voronoi

diagram above L and below L respectively. For convenience, the region above L is denoted as

L+, and the region below L is denoted as L−.

Definition 2.1 P a = (
⋃

p∈L+

({p} ∪+p̂L ∪ −p̂L)) ∪ (
⋃

q∈L−
({q} ∪+q̂ ∪ −q̂)).

P b = (
⋃

p∈L+

({p} ∪+p̂ ∪ −p̂)) ∪ (
⋃

q∈L−
({q} ∪+q̂L ∪ −q̂L)).
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Theorem 2.2 The Voronoi region for a site p ∈ S with respect to S is given by

For p ∈ L+, V ort(p, S) = L+∩(V or(p, P a)∪V or(+p̂L, P a)∪V or(−p̂L, P a))∪L−∩(V or(p, P b)∪
V or(+p̂, P b) ∪ V or(−p̂, P b)).

For p ∈ L−, V ort(p, S) = L−∩(V or(p, P b)∪V or(+p̂L, P b)∪V or(−p̂L, P b))∪L+∩(V or(p, P a)∪
V or(+p̂, P a) ∪ V or(−p̂, P a)).

Since the set P a of objects below L consists of the hats associated with the sites above L

and the hats associated with the sites below L (including the sites themselves), we can find the

envelope[2] (as shown in Figure 3) defined by the collection of these hats. The plus-hats, and

similarly the minus-hats, are all parallel lines. The sites or hats that are below or dominated by

the envelope will not play any role in defining the time-based Voronoi diagram in the half-plane

above L.

r

g

L

p

rL

+p̂

gL

−p̂

+r̂L

+ĝL

−ĝL

−r̂L

Figure 3: An illustration of the Voronoi diagram above L, and the envelope of the objects below
L is shown in bold face.

3 Good Angle Condition for Two-Highway Model

Now we consider the two-highway model. Assume L1 and L2 intersect at origin O, and θ, where

0 < θ ≤ π/2, is the angle between L1 and L2. pL1 is the reflection of p with respect to L1, and

pL2 is defined similarly. We recall sinαL1 = v0/v1, sinαL2 = v0/v2.

Lemma 3.1 If αL1 + αL2 = θ, the number of shortest time-distance paths between two points,

p ∈ L1 and q ∈ L2 is infinite.
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Proof. (Sketch) Refer to Figure 4 (a) in which line h forms an angle αL1 and αL2 with L1

and L2, respectively. It is easily seen that dt(q, q′) = dt(q,O)+dt(O, q′) because sinαL1 = v0/v1,

sinαL2 = v0/v2. 2

Lemma 3.2 If αL1 + αL2 < θ, then the shortest time-distance path between two points, p ∈ L1

and q ∈ L2 must go through the origin O.

Proof. (Sketch) Refer to Figure 4 (b) in which lines h1 and h2 form an angle αL1 with L1

and αL2 with L2, respectively. 2

(a) (b)

αL2
αL1

p

q

O

L2

L1

h1

h2
αL2
αL1

p

q

O

L1q′

h
m1

L2

Figure 4: (a) The number of the shortest time-distance path between p and q is infinite. (b)
The shortest time-distance path between p and q is unique and passes through O.

Lemma 3.3 If αL1 + αL2 > θ, the shortest time-distance path between two points, p ∈ L1 and

q ∈ L2 will not go through the origin O.

Proof. (Sketch) It is easily seen (Figure 5) that the path p−s−t−q is better than p−O−q.

In particular the shortest time-distance path is shown in bold-face line. 2

p

q

O
h1

t

s

L1

h2

L2

Figure 5: The unique shortest time-distance path between p and q does not go through O.

We shall assume in the following that the angle defined by L1 and L2 satisfies αL1 +αL2 ≤ θ.

We shall refer to this intersection condition as good angle condition. When αL1 +αL2 = θ we
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assume that the shortest time-distance path between two points p ∈ L1 and q ∈ L2 always goes

through O. In other words, if the shortest time-distance path between any two points passes

through both highways, then it must pass through the intersection.

Without loss of generality we shall assume that highway L1 coincides with the x-axis and

the plane H is partitioned by L1 and L2 into four quadrants, and the i-th quadrant is denoted

by Qi, i = 0, 1, 2, 3.

Definition 3.4 If pO is the site closest to O, i.e., dt(O, pO) is minpj∈S dt(O, pj), then pO is

called the O-domination site.

q

p

q̂L1
1

L1

L2

radius = ∆

∆

∆

O

−Ô2

`

αL1

Q0

Q3

Q1

Q2

αL2

Figure 6: dt(p, q) = min{d(p, q), d(p, `)}

Lemma 3.5 Suppose L1 and L2 satisfy the good angle condition. For any point q ∈ Qi, if

dt(q, pi) = minp∈S dt(q, p) and pi ∈ Q(i+2)mod4, then pi must be the O-domination site.

We now give a short description about the O-domination site, and its associated objects. As

shown in Figure 6, suppose site q is the O-domination site and the shortest time-distance path

from O to q ∈ Q3 is via L1, That is, dt(O, q) = ∆ = d(O,−q̂L1
1 ). Consider a query point p ∈ Q3,

and We want to find the shortest time-distance path from p to q. The time-distance from p to O

is dt(p,O) = d(p,−Ô2). So the time-distance of a path from p to q via O is dt(p,O) + dt(O, q).

If we draw a line ` parallel to −Ô2 with a distance equal to ∆ as shown in Figure 6, then

dt(p,O) + dt(O, q) = d(p, `). dt(p, q) = min{d(p, q), d(p, `)}. That is, line ` could be considered

as an object derived from q in the same manner in which q splits into q̂L1
1 . In case the shortest
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time-distance path from O to q is via highway L2, a similar line `′ parallel to +Ô1 with distance

∆ may be derived. See Figure 7 for an illustration below.

In general, we have the following definition. Assume L1 is positioned horizontally, and O is

the intersection of L1 and L2. L1 and L2 partition the plane into 4 quadrants, Qi, i = 0, 1, 2, 3.

Let the line that borders quadrant Qi and Q(i+1)mod4 be denoted Li+ and the line that borders

quadrant Qi and Q(i−1)mod4 be denoted Li−. Note that Li+ is the same as L(i+1)−. For instance,

L0+ and L1− denote the same line, which is line L2, and L1+ and L2− denote the same line,

which is L1. Let pO be the O-domination site such that dt(O, pO) = ∆, and Γ∆(O) denote the

circle centered at O and of radius ∆.

Definition 3.6 Let `1 be the line tangent to Γ∆(O) parallel to +p̂
Li+

i+ for any p ∈ Qi, and `2 be

another line tangent to Γ∆(O) parallel to −q̂
Li−
i− for any q ∈ Qi. The ∆-distance-line-from-O

for pO in Qi is defined to be `∆
i (O) = `1 ∪ `2. It is simply called the O-domination line in Qi.

For any query point p ∈ Qi, the objects into which the O-domination site PO splits include

the O-domination line in Qi. Figure 7 illustrates the O-domination line in Q3 with O-domination

site pO. The dotted part of the O-domination line wouldn’t affect the Voronoi diagram, so will

be omitted.

O L1

`1

L2

`∆3 (O)

`2 −q̂L2
2

+p̂L1
1

radius= ∆

pO

p

q

Figure 7: ∆-distance-line-from-O in Q3

As we described earlier, any site p ∈ Qi , except possibly the O-domination site, would not

play any role in the time-based Voronoi diagram in Q(i+2)mod4.
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Following Theorem 2.2 we define the following hats. Let p̂1 denote the union of plus-hat +p̂1

and minus-hat −p̂1 with respect to L1, when L1 is assumed to be horizontally positioned. p̂2 is

similarly defined with respect to L2.

We summarize in Algorithm2Line (S,L1, L2) the algorithm for computing the Voronoi

diagram for a set S of n sites in the presence of two highways, L1 and L2, when L1 and L2

satisfy the good angle condition.

Algorithm2Line (S, L1, L2)

Input: A set S of n sites, and two lines L1 and L2, which satisfy the good angle condition

defined earlier.

Output: The time-based Voronoi diagram V ort(S).

Method:

1. Find the O-domination site pO and let ∆ = dt(O, pO).

2. Compute the O-domination line in Qi, `∆
i (O), for i = 0, 1, 2, 3

3. Compute the set P i of objects used for constructing the Voronoi diagram in each quad-

rant Qi for i = 0, 1, 2, 3. That is, P i = S ∪ (
⋃

p∈Qi
(p̂Li+

i+ ∪ p̂
Li−
i− )∪ (

⋃
p∈Q(i+1)mod4

p̂i+)∪
(
⋃

p∈Q(i−1)mod4
p̂i−) ∪ `∆

i (O), for i = 0, 1, 2, 3.

4. Compute the (ordinary) Voronoi diagram in Qi, i.e., V or(P i) ∩Qi, for i = 0, 1, 2, 3.

5. Compute the time-based Voronoi region V ort(p, S) for each site p ∈ S. That is,

V ort(pO, S) =
3⋃

i=0
(V or(`∆

i (O), P i) ∪ V or(obji
pO

, P i)), and for p 6= pO, V ort(p, S) =

3⋃
i=0

V or(obji
p, P

i), where obji
p includes p itself and its associated hats in Qi.

Theorem 3.7 The Voronoi diagram for a set S of n sites in the presence of two highways L1

and L2 in the plane that satisfy the good angle condition, can be computed in O(n log n) time.

Proof: The correctness of the algorithm follows from the above discussions and Lemma 3.5. In

Algorithm2Line (S,L1, L2) the O-domination site can be computed in linear time. The time-

based Voronoi diagram in quadrant Qi is reduced to the problem of computing the (ordinary)

Voronoi diagram for a set of sites p ∈ Qi, and a set of line segments, obtained by the sets of

hats associated with sites in Qi, Q(i+1)mod4, and Q(i−1)mod4, and the O-domination line in Qi
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for the O-domination site. Since these sets of hats can be simplified by the notion of envelope,

which can be obtained in O(n log n) time, as there are O(n) hats in each quadrant, we can easily

conclude that the Voronoi diagram in each quadrant can be computed in O(n log n) time, and

that the total time complexity for computing the Voronoi diagram of n sites in the presence of

two highways is O(n log n)[8]. This completes the proof. 2.

4 Good Angle Condition for Multiple-Highway Model

Now we can generalize this result to multiple highways. Assume that there exist k highways

Li, 1 ≤ i ≤ k, k > 0, and that they form an arrangement[3] of lines, partitioning the plane H

into O(k2) cells.

The arrangement can be represented by a graph, G = (V, E), where V denotes the set of

intersections, and E denotes the set of edges connecting adjacent vertices along a line. Each

edge, some of which is unbounded, borders two neighboring cells.

We shall as before, determine for each intersection (or vertex of G) the corresponding

intersection-domination site similar to the O-domination site defined in the previous section.

An intersection-domination site pw of intersection w ∈ V satisfies dt(w, pw) = min dt(w, q)∀q ∈
S. pw is called the w-domination site. We will also compute for each intersection w, the w-

domination line associated with each cell.

Finally, for each cell we shall compute the set of objects associated with the sites that will

define the time-based Voronoi diagram in the cell.

In Section 3 we know how to compute the O-domination site, its associated O-domination

line in each cell (or quadrant) and the set of objects needed to define the Voronoi diagram in

the cell. We shall use an iterative method by inserting the highways one at a time in order of

non-descending speeds, and update the information needed to maintain the Voronoi diagrams.

We shall index the set of highways Li, 1 ≤ i ≤ k, k > 0 such that their associated speeds satisfy

v1 ≤ v2 ≤ . . . ,≤ vk, k > 0.

First of all, the graph Gj = (Vj , Ej) that represents the line arrangements after the first

j < k lines are inserted can be maintained easily [7]. Now we briefly sketch how to determine

the intersection-domination sites. For an intersection w, its domination site pw could either

lie in neighboring cells, or be propagated from neighboring intersection (u), i.e., pu, when the
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shortest time path from pw to w passes through u. In the latter case, pw = pu. Assume that

in Gj , the intersection-domination sites have been obtained for each intersection in Vj , j < i.

Suppose highway Li is inserted and assume that the intersection w of Li and Lw is on the

edge (u, z) ∈ Ej , u, z ∈ Vj (see Figure 8). w is incident with in general, four neighboring cells,

Cw
0 , Cw

1 , Cw
2 and Cw

3 . Among all the sites in these four neighboring cells find a site pw which is

tentatively the w-domination site. Update pw if dt(w, pw) > dt(w, pu), or if dt(w, pw) > dt(w, pz),

where pu and pz are the u- and z-domination sites respectively. In this case, u (or z) is said to

dominate w. This can be handled by a simple comparison of dt(w, pw) and dt(u, pu)+dt(w, u) (or

dt(z, pz)+dt(w, z)). On the other hand, that is, if dt(w, pw) < dt(w, pu) or dt(w, pw) < dt(w, pz),

the domination by w may propagate farther through u or z. Considering propagation from

intersections on Li to their neighbors, we build and maintain a min heap for propagation order.

Li

z

u

w

(1)

(1)

(2) (2)

(2)

(2)

(3)
(3)

(3)

Lw

Figure 8: The propagation we consider is in this order.

Procedure Intersection-Domination Sites Determination /* The operation (1) in Figure 8. */

1. Sort all highways by their speed, and assume v1 ≤ v2 ≤ . . . ≤ vk;

2. for i = 1 to k

{ Insert Li into the plane H;

for all intersections w on Li

{ Find the nearest domination site pw in neighboring cells;

For the two neighboring intersections, u and z, not on Li, if u (or z) dominates

w, then pw ← pu (or pw ← pz); }
Call Domination-Propagate(Gi); }
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In the next procedure, we define a set HOT, the elements of which are ordered pairs of

vertices. Additionally, we define the cost function c() as follows.

Definition 4.1 For all u, let c(u) denote the time-distance between intersection u and its cur-

rent domination site pu, and c(u, v) the time-distance between u and v.

Procedure Domination-Propagate(Gi) /* The operations (2), (3) in Figure 8. */

1. HOT ← {(u, v) : (u, v) ∈ Ei, u is on Li};

2. while HOT 6= φ

{ choose (u, v) such that c(u) + c(u, v) = min
(j,k)∈HOT

{c(j) + c(j, k)};
if c(v) > c(u) + c(u, v)

{ c(v) ← c(u) + c(u, v) and pv ← pu;

for all w 6= u neighboring v

{ if (w, v) ∈ HOT

HOT ← HOT \ {(w, v)};
else if c(v) + c(v, w) < c(w)

c(w) ← c(v) + c(v, w) and HOT ← HOT ∪ {(v, w)}; }
}

HOT ← HOT \ {(u, v)};
}

We build a min heap for elements in HOT , so to push or pop the heap in O(log |HOT |)
each time. It costs O(i2 log i) time for procedure Domination-Propagate. The total time of

intersection domination sites determination is
k∑

i=1
O(i2 log i) = O(k3 log k). Finally, adding the

time of computing the time-based Voronoi diagram of each cell, we have the total time complexity

is O(k3 log k + k2n log n).

Theorem 4.2 The time-based Voronoi diagram for a set of n sites in the presence of k > 0

highways, which pairwise satisfy the good angle condition, can be computed in O(k3 log k +

k2n log n) time.

12



5 General Condition for Two-Highway and Multiple-Highway
Model

Now we briefly address the problem of two-highway model in which the two highways need not

satisfy the good angle condition.

Lemma 5.1 Let p, q be any two point on the plane. If the number of shortest time-distance

path from p to q is finite, and the shortest time-distance path walks along both highways, then

the path must walk through the intersection of two highways.

Proof. (Omitted)

Lemma 3.5 does not hold if the good angle condition is not satisfied. For a site q ∈ Qi,

its time-based Voronoi region could intersect Q(i+2)mod4. We thus need to consider all possible

cases.

The following definition gives the set of objects that would be involved in the computation

of time-based Voronoi diagram for quadrant Qi, i = 0, 1, 2, 3. For quadrant Qi, the sets of hats

associated with sites in every quadrant may play a role in the computation. The notion of

envelope and Algorithm2Line in Section 3 are still applicable, except that the size of the sets

of objects has increased necessarily by a constant factor.

Definition 5.2 When L1 (positioned horizontally) and L2 are in general position,

the set P i of objects involved in the computation of the time-based Voronoi diagram in cell Qi is

defined as follows. P i = S∪ (
⋃

p∈Qi
p̂

Li+

i+ ∪ p̂
Li−
i− )∪ (

⋃
p∈Q(i+1)mod4

p̂i+∪ p̂
Li−
i− )∪ (

⋃
p∈Q(i+2)mod4

p̂i+∪
p̂i−) ∪ (

⋃
p∈Q(i+3)mod4

p̂
Li+

i+ ∪ p̂i−) ∪ `∆
i (O).

There are two extreme cases in which the size of the sets of objects involved can be reduced

further. They are: when two highways are parallel, and when the intersection angle θ is small

and satisfies αL2 > αL1 + θ.

L1

L2

p

q

Figure 9: An example that shows L1 nullifies L2 when αL2 > αL1 + θ
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Figure 9 shows an example that if a shortest time-distance path walks along L1, it will never

walk along L2. That is, L1 nullifies L2, when αL2 > αL1 + θ. In this case the set of objects P i

for Qi is the same as that in the general condition except `∆
i (O).

L1

L2

L3

BA

Figure 10: L3 provides a new time-distance path from cell A to B.

Consider Figure 10. If there are only two highways L1 and L2, the shortest time-distance

path from cell A to cell B must pass through the intersection of L1 and L2 (Lemma 5.1).

However, adding L3 will create a new kind of shortest time-distance paths without passing

through any highway intersection. This makes it hard to determine or characterize what will be

relevant in the construction of the time-based Voronoi region in a cell when multiple highways

are present. Determining the intersection domination site for each intersection is yet another

problem. We will leave this problem for future study.

Acknowledgement

We thank the anonymous reviewers for their comments on an earlier version of the paper.

References

[1] M. Abellanas, F. Hurtado, V. Sacristán, C. Icking, L. Ma, R. Klein, E. Langetepe, B. Palop

: Voronoi Diagram for Services Neighboring a Highway, Information Processing Letters 86

(2003) 283-288.

[2] O. Aichholzer, F. Aurenhammer, D. Z. Chen, D. T. Lee and E. Papadopoulou, Skew Voronoi

Diagram, Int’l J. Comput. Geometry and Applications, 9(3), June 1999, pp. 235-248.

[3] H. Edelsbrunner, Algorithms in combinatorial Geometry, Springer-Verlag New York, Inc.,

New York, NY, 1987.

[4] D. T. Lee, Two Dimensional Voronoi Diagram in the Lp-metric, J. ACM, Oct. 1980, pp.

604-618.

14



[5] D. T. Lee and R. L. Drysdale, Generalization of Voronoi Diagram in the Plane, SIAM J.

Comput. Feb. 1981, pp. 73-87.

[6] E. Papadopoulou and D. T. Lee, A New Approach for the Geodesic Voronoi Diagram of

Points in a Simple Polygon and Other Restricted Polygonal Domains, Algorithmica, 20(4),

April 1998, pp. 319-352.

[7] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag New York, Inc., New York, NY, 1985.

[8] C. K. Yap, An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve segments.

Discrete and Computational Geometry, Vol. 2, pp 365-393, 1987.

15


