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Inferring the haplotypes of the members of a pedigree from their genotypes has been extensively studied. However,
most studies do not consider genotyping errors and de novo mutations. In this paper, we study how to infer haplotypes

from genotype data which may contain genotyping errors, de novo mutations and missing alleles. We assume that

there are no recombinants in the genotype data, which is usually true for tightly linked markers. We introduce a
combinatorial optimization problem, called haplotype configuration with mutations and errors (HCME), which calls

for haplotype configurations consistent with the given genotypes that incur no recombinants and require the minimum

number of mutations and errors. HCME is NP-hard. To solve the problem, we propose a heuristic algorithm, the core
of which is an integer linear program (ILP) using the system of linear equations over Galois field GF(2). Our algorithm

can detect and locate genotyping errors that cannot be detected by simply checking the Mendelian law of inheritance.

The algorithm also offers error correction in genotypes/haplotypes rather than just detecting inconsistencies and
deleting the involved loci. Our experimental results show that the algorithm can infer haplotypes with a very high

accuracy, and recover 65%–94% of genotyping errors depending on the pedigree topology.
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1. INTRODUCTION

In October 2002, the international HapMap project

was launched1. One of the main objectives of

HapMap project is to identify haplotype structures

of humans and common haplotypes among differ-

ent populations. A haplotype is a combination of

alleles at multiple genetic marker (e.g., SNP) loci

on the same chromosome. In diploid organisms like

human, chromosomes (other than the sex chromo-

somes) come in pairs. Each genetic marker on a pair

of chromosomes occurs at the same location of both

chromosomes. However, the marker may have dif-

ferent alleles on the two chromosomes. The set of

its two alleles is called the genotype of the marker

and the assignment of the two alleles to the pater-

nal and maternal chromosomes is called the phase

of the marker. Inferring haplotypes from genotypes

over a set of marker loci is called haplotype inference,

which is also referred to as phasing. The haplotype

information of SNP markers is of tremendous value

to gene mapping and other genetic analyses (such

as linkage analysis) because it gives a more accurate

description of the inheritance process than the geno-

type information. Because of cost considerations,

genotype data instead of haplotype data are rou-

tinely collected in practice, especially in large-scale

sequencing projects. Therefore, efficient and accu-

rate computational methods for haplotype inference

have been extensively studied in the literature. See

Ref. 2 for a review of these methods as well as the

basic concepts involved in haplotype inference.

Haplotype inference methods can be divided

into three groups according to the type of given

genotype data: methods for population data col-

lected from unrelated individuals3–5, methods for

pedigree data collected from individuals (typically

from an extended family) that are related by the

parent-child relationship6–14, and methods for pooled

samples15, 16. Here, we are interested in only pedi-

gree data.

Some real pedigree data may actually contain

mutations. In particular, a de novo mutation is a

mutation that is present for the first time in a family

member as a result of a mutation in a germ cell (egg

or sperm) of one of the parents or in the fertilized

egg itself. It has been observed that the detection

and analysis of mutations in a pedigree could pro-
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vide a good alternative for some genetic variation

research17–19.

Most genotype data contain genotyping errors.

Genotyping errors have a severe impact on subse-

quent analyses, such as linkage analysis20–22. Even

slight amounts of genotyping error may significantly

decrease haplotype frequency and haplotype recon-

struction accuracy23. Moskvina et al. showed that

even with low genotyping error rates (< 0.01), sys-

tematic differences in the error rate between samples

may result in type I error (i.e., false positive) rates

substantially above 0.05 in case-control association

studies24.

Genotyping errors and de novo mutations may

cause violation of the Mendelian law of inheritance,

and hence pedigree data with errors and mutations

cannot be properly handled by the above existing

haplotype inference methods. When these methods

are faced with data containing errors and mutations,

they typically delete the loci that appear to be in-

consistent. Very few haplotype inference methods in

the literature deal with pedigree data that contain

mutations and errors (one such method is a genetic

algorithm in Ref. 25). Moreover, detecting genotyp-

ing errors is challenging, since these errors do not

necessarily violate the Mendelian law of inheritance

within nuclear families.
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Fig. 1. An example to show that it is insufficient to con-
sider Mendelian consistency within only nuclear families. The

genotypes are consistent within each nuclear family although
a genotyping error has occurred. The genotypes in parenthe-

ses indicate two possible ways of correcting the error. In a

conventional pedigree, a square indicates a male, and a circle
indicates a female.

In Fig. 1, all genotype data follow the Mendelian

law of inheritance, but it requires two recombinants

to explain locus 2 of individual 5. A better expla-

nation is that there is a genotyping error on lo-

cus 2 of individual 4 or 5, and alternative geno-

types are shown in the parentheses. There have

been some work on detecting genotyping errors in the

literature21, 26–28. Douglas et al. can detect 13%–

77% of errors26, and Zou et al. can detect ≤ 81% of

errors without assuming equal allele frequencies28.

However, none of these work considers haplotype in-

ference simultaneously.

In this paper, we study haplotype inference on

pedigree data consisting of tightly linked markers

that have no recombinants but may contain some

genotyping errors, missing alleles and a very small

number of de novo mutations (or simply, mutations).

Since error and mutation events are rare, we for-

mulate the problem as a combinatorial optimization

problem, called the haplotype configuration with mu-

tations and errors (HCME) problem, where we look

for a haplotype solution consistent with the given

genotype data that incurs no recombinants and re-

quires the minimum number of mutations and errors.

(Actually, we minimize a weighted summation of the

numbers of mutations and errors.) Our hypothesis is

that the configuration with the minimum number of

mutations and errors is likely the true solution. This

extends the well studied zero-recombinant haplotype

configuration (ZRHC) problem where we try to find

a consistent haplotype solution incurring no recom-

binants, errors or mutations. Although ZRHC is

polynomial-time solvable8, we can prove that HCME

is NP-hard by a reduction from NAE-3SAT. We con-

struct an integer linear program (ILP) for HCME us-

ing the system of linear equations over Galois field

GF(2) that has been developed in Ref. 8, 12 and

29 for solving ZRHC in almost linear time. We use

the incremental approach introduced in a previous

work13 to reduce the number of constraints in the

ILP instance.

We have implemented the algorithm and tested

it on both simulated data and real data. The exper-

imental results demonstrate that our algorithm can

infer haplotypes with a very high accuracy. It can

also recover most of the errors and impute most of

the missing alleles correctly. However, most muta-
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tions would be explained by genotyping errors be-

cause we give errors a smaller weight (since they are

more frequent than mutations) in the objective func-

tion of the above ILP.

The rest of the paper is organized as follows. In

Section 2, we introduce the linear system, and for-

mally define HCME as an optimization problem. In

Section 3, we explain each part of our algorithm in a

subsection. We explain how to construct constraints

for the given genotype data in Section 3.1. We briefly

describe how to tackle the problem by using ILP as

a black box, which is similar to our previous work,

in Section 3.2. We explain how to recover the op-

timal haplotype configuration in Section 3.3. Some

detailed implementation issues are discussed in Sec-

tion 3.4. In Section 4, we show our experimental

results on both simulated data and real data, and

discuss how each parameter may affect the accuracy

and efficiency of our algorithms. Section 5 concludes

the paper with a few remarks.

A pedigree can be drawn in three different forms:

conventional form, formal form and graph form

(Fig. 2). A pedigree is a tree if its formal form is a

tree. In this paper, we will follow Ref. 13 to consider

only tree pedigrees, which are very common among

human pedigrees. From now on, when we talk about

paths and cycles in a pedigree, we will consider it as a

graph form. Note that a tree pedigree may have local

cycles within nuclear families (in its graph form).

(a) Conven-
tional form

(b) Formal
form

(c) Graph
form

Fig. 2. Three equivalent pedigrees in different forms. The

formal form contains mating nodes (smaller circles). In the

graph form, each pair of parent-child is connected with an
edge.

2. PRELIMINARIES

In this section, we first review the linear system de-

veloped in Ref. 12 and 29 for dealing with pedigree

data without mutations and errors. We then explain

how to modify the linear system for handling mu-

tations and errors, and give the formal definition of

HCME.

2.1. The Linear System

Let n denote the number of individuals in the input

pedigree and m the number of marker loci of each

individual. In this paper, we assume all alleles are

bi-allelic (0 or 1). The genotypes of individual j is

denoted as a ternary vector gj and its kth entry gj [k]

represents the genotype at locus k of individual j:

gj [k] =





0 if both alleles are 0’s

1 if both alleles are 1’s

2 if the locus is heterozygous

For individual j, we define pj ∈ GF (2)m as the pa-

ternal haplotype of individual j. Each entry pj [k] of

pj is defined on GF(2). Clearly, if gj [k] = 0 or 1,

then we can derive pj [k] = gj [k] directly. To repre-

sent the maternal haplotype of individual j, we define

wj ∈ GF (2)m to indicate if each locus of individual j

is heterozygous. That is, wj [k] = 0 if gj [k] = 0 or 1,

and wj [k] = 1 if gj [k] = 2. Clearly, the summation

pj + wj over GF(2) represents the maternal haplo-

type of individual j.

Suppose that individual i is a parent of individ-

ual j. To unify the representation of the haplotype

that j inherited from i, we define a binary vector di,j
as follows: di,j = 0 if i is j’s father and di,j = wj if

i is j’s mother. Therefore, pj + di,j represents the

haplotype that j got from i. We define hi,j ∈ GF (2)

such that hi,j = 0 if pj+di,j is i’s paternal haplotype

and hi,j = 1 otherwise. Then pi+hi,j ·wi represents

the haplotype that i passed to j. The binary vari-

ables hi,j thus fully describe the inheritance pattern

in an ZRHC instance. Using these notations, we can

derive an equation over GF(2):

pi[k] + hi,j · wi[k] = pj [k] + di,j [k]

∀ parent-child pair (i, j), ∀ locus k (1)

2.2. Impact of Mutations and Errors

We define a mutation variable µi,j [k] ∈ Z, µi,j [k] = 1

if there is a mutation at locus k when i passes his hap-

lotype to offspring j, and µi,j [k] = 0 otherwise. For

convenience, we make these three vectors symmetric

by defining dj,i = di,j , hj,i = hi,j , and µj,i = µi,j .
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Using these notations, we modify Eq. (1) and obtain

pi[k] + hi,j · wi[k] = pj [k] + di,j [k] + I(µi,j [k] = 1) (2)

where I(·) is the indicator function also defined on

GF(2).

An error variable ej [k] ∈ Z of individual j at lo-

cus k is defined as ej [k] = 1 if the observed genotype

goj [k] is different from the actual genotype gj [k], and

ej [k] = 0 if there is no error, i.e., when goj [k] = gj [k].

These errors hinder us from getting correct pi[k],

pj [k], wi[k], and di,j [k] in Eq. (2).

We define woj [k], poj [k], and doi,j [k] as wj [k], pj [k],

and di,j [k] derived from the observed genotype goj [k].

If goj [k] = 0 or 1, then woj [k] = 0 and poj [k] = goj [k].

If goj [k] = 2, then woj [k] = 1 and poj [k] = pj [k],

which cannot be determined immediately. We de-

fine doi,j [k] = 0 if i is j’s father and doi,j [k] = woj [k]

otherwise.

As we initialize variables that we can derive from

the genotype data, we need to consider possible er-

rors. We start with what we can observe, poj and wo
j ,

and derive a conditional equation over GF(2):

poi [k] + hi,j · woi [k] = poj [k] + doi,j [k] + I(µi,j [k] = 1)

if ei[k] = ej [k] = 0 (3)

The HCME problem can be formally defined as

follows. Given an input pedigree and genotype data

goj for each individual j, find a solution to each gj ,

pj , wj , hi,j , µi,j and ej that satisfies Eq. (2) and (3),

and minimizes the mutation-error score

c1
∑

i,j,k
µi,j [k] + c2

∑
j,k

ej [k]

where c1, c2 > 0 are weights for mutations and errors.

These adjustable weights allow us to change prefer-

ence between mutations and errors as the rates of

mutations and errors may change in different appli-

cations. Our default is that c1 = 1.5 and c2 = 1. We

assign a bigger weight to each mutation because mu-

tation events typically have a much lower frequency

(∼10−9) than errors (0.1%–5%) do30. On the other

hand, the larger weight for mutations makes it dif-

ficult to detect mutations, i.e., they could easily be

replaced by errors especially when the pedigree is

shallow.

3. METHOD

We first construct an equivalent conditional linear

system with fewer variables, which can be converted

to an ILP instance. The objective function of the

ILP instance is still to minimize the mutation-error

score. A standard ILP solver GLPK (the GNU Lin-

ear Programming Kit from http://www.gnu.org/

softward/glpk) is invoked to solve the ILP. The

ILP solution describes an unconditional linear sys-

tem, which may or may not be consistent. The con-

sistency of the unconditional linear system can be

checked by Gaussian elimination. If it is consistent,

we obtain a temporary assignment of the h-variables.

If it is not consistent, we add more constraints and

then invoke the ILP solver again. The ILP solver to-

gether with the Gaussian elimination subroutine will

be referred to as the black box, which was introduced

in our previous work13. The temporary h-variable as-

signment from the black box is often optimal and, in

this case, we can compute an optimal haplotype con-

figuration with the assignment. However, because

of the loss of information (see Section 3.1.1) due to

genotyping errors, the temporary h-variable assign-

ment may sometimes be suboptimal, although it is

usually very close to an optimal h-variable assign-

ment. We start from the temporary h-variable as-

signment and search if there is any better h-variable

assignment. We use the best h-variable assignment

that we have found to compute the final haplotype

configuration.

Occasionally, the black box may have difficulty

assigning variables and exceed a predetermined time

limit. If the black box exceeds the time limit, we

apply some heuristic rules to reduce the size of the

ILP instance and then call the black box again.

Fig. 3 shows the flowchart of our method. The

construction of path constraints and cycle con-

straints will be explained in Section 3.1. The black

box will be explained in Section 3.2. The search for

better h-variables and recovery of haplotype config-

urations will be explained in Section 3.3. The time

limit as well as some implementation issues that are

not covered in the flowchart will be explained in Sec-

tion 3.4.

3.1. Construction of Constraints

There are O(mn) variables and equations in the lin-

ear system described in Section 2. As in Ref. 13 and

29, we can convert the system to an equivalent lin-

ear system involving only the h-variables, mutation
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If the black box exceeds

Fig. 3. The outline of our algorithm. Numbers in parentheses indicate the sections with the corresponding details.

variables, and error variables.

3.1.1. Equations with Fewer Variables

The idea is to consider paths in the pedigree (of the

graph form) connecting individuals with homozygous

markers and derive equality constraints on the h-

variables on such paths based on Eq. (3). Consider a

locus k and a path j0, j1, . . . , jr in the input pedigree,

where individuals ji and ji+1 form a parent-child or

child-parent pair. Suppose that goj0 [k] and gojr [k] are

homozygous, and goj1 [k] = · · · = gojr−1
[k] = 2. We

call the path j0, j1, . . . , jr an all-heterozygous path

at locus k. Since goj0 [k] and gojr [k] are homozygous,

we have poj0 [k] = goj0 [k] and pojr [k] = gojr [k]. We add

up all conditional equations as given in Eq. (3) for

all parent-child pairs on path j0, j1, . . . , jr to obtain

a path constraint connecting j0 and jr:

r−2∑

i=1

hji,ji+1
+ hj0,j1 · I(j1 is j0’s parent)

+ hjr−1,r · I(jr−1 is jr’s parent)

= goj0 [k] + gojr [k] +

r−1∑

i=0

doji,ji+1
[k] (4)

+ I

(
r−1∑

i=0

µji,ji+1
[k] is odd

)

if eji [k] = 0, i = 0, . . . , r.

We denote M =
⋃r−1
i=0 {µji,ji+1

[k]}, E =⋃r
i=0{eji [k]}, and c = goj0 [k] + gojr [k] +∑r−1
i=0 d

o
ji,ji+1

[k], and let H be the collection of h-

variables that have coefficient 1 in Eq. (4), i.e.,

hj0,j1 ∈ H if and only if j1 is j0’s parent, etc. The

path constraint can be represented by the quadruple

(H,M, E , c) which denotes that

∑
hi,j∈H

hi,j = c+ I

(∑
µ∈M µ is odd

)

if
∑

e∈E e = 0 (5)

Note that the observed genotypes along the path may

actually contain more than one error, but our path

constraint could be satisfied with at most one error.

Thus, we may underestimate the number of errors

by using such a path constraint. For convenience,

we will refer to this inherent limitation of path con-

straints as the loss of information, which is mainly

caused by the fact that we do not know the actual

genotypes.

Consider a local cycle consisting of father i1,

mother i2, and two adjacent children j1, j2. If both

parents are heterozygous at locus k, we can obtain

four conditional equations from Eq. (3) by replacing

i with i1, i2, and j with j1, j2 (see Fig. 4). The sum-

mation of these conditional equations forms a cycle

constraint :

hi1,j1 + hi1,j2 + hi2,j1 + hi2,j2

= woj1 [k] + woj2 [k] + I

(∑
µ∈M µ is odd

)

if
∑

e∈E e = 0

where M = {µi1,j1 [k], µi1,j2 [k], µi2,j1 [k], µi2,j2 [k]},
E = {ei1 [k], ei2 [k], ej1 [k], ej2 [k]}. This constraint

will also be denoted as (H,M, E , c) if we let H =

{hi1,j1 , hi1,j2 , hi2,j1 , hi2,j2} and c = wj1 [k] + wj2 [k].
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Fig. 4. If both parents are heterozygous, and at least one

child is heterozygous, then we will a cycle constraint. If both
parents are homozygous, then there is no constraint. Other-

wise, we will obtain either one or two path constraints, de-
pending on the situation.

Let us look at the path constraints generated in

the above nuclear family more closely. If both par-

ents in the local cycle are homozygous at locus k,

then the corresponding path constraint from one par-

ent to the other will consist of no h-variables, and

thus no path constraint will be derived. If one parent

is heterozygous, the other is homozygous and both

children are heterozygous at locus k, then we can de-

rive a path constraint from the homozygous parent

through one child, the other parent, the other child,

and back to the homozygous parent. If there is ex-

actly one homozygous parent and one homozygous

child, the path constraint should be derived through

the heterozygous child and the other parent. Other-

wise, no path constraint will be derived for this local

cycle.

For each locus and every pair of homozygous

markers, we construct a path constraint as above.

Since the pedigree is a tree, the number of such path

constraints is at most O(mn). Similarly, for each lo-

cus and local cycle, if both parents are heterozygous

at the locus, we construct a cycle constraint as above.

The number of such cycle constraints is also bounded

by O(mn). Let S denote the set of these constraints.

The results in Ref. 29 show that the linear system

formed by the above constraints (without the condi-

tions) in terms of the h-variables is equivalent to the

linear system defined by Eq. (3) (without the condi-

tions) in terms of the h- and p-variables. In HCME

with mutations and errors, a feasible assignment to

the h-, µ-, and e-variables, can be extended to a fea-

sible solution to all the h-, p-, µ- and e-variables.

Note that, loci with missing alleles could possi-

bly be included in the linear system in Eq. (3) (as

p-variables). However, they are excluded from the

above path/cycle constraints on h-variables. Some

of the missing alleles will be imputed after the h-

variables are determined.

3.1.2. The ILP Instance

We construct an ILP instance for HCME based on

the above linear system in h-variables. Recall that

the objective function of the ILP is the mutation-

error score

c1
∑

i,j,k
µi,j [k] + c2

∑
j,k

ej [k]

In our ILP instance, the path/cycle constraint

(H,M, E , c) as given in Eq. (5) is actually modified

as
∑

hi,j∈H
hi,j = c, if

∑
µ∈M µ =

∑
e∈E e = 0 (6)

with three technical reasons. First, there are rarely

two or more mutations on a locus31. Second, Eq. (5)

is not accurate because of the loss of information,

and thus the ILP solver produces suboptimal inter-

mediate results anyway. Third, Eq. (6) generates a

smaller ILP instance and is more efficient.

For each path/cycle constraint (H,M, E , c) in S,

we introduce a binary equation variable as in Ref. 13

EH =
∑

hi,j∈H
hi,j (7)

and require that the corresponding quadruple

(EH,
∑
µ∈M µ,

∑
e∈E e, c) must not be (0, 0, 0, 1) or

(1, 0, 0, 0).
{

EH +
∑
µ∈M µ +

∑
e∈E e + (1− c) ≥ 1

(1− EH) +
∑
µ∈M µ +

∑
e∈E e + c ≥ 1

(8)

In other words, if there are no mutations and errors,

the equation in Eq. (6) must hold. The final ILP

instance includes all the constraints in Eq. (8). The

number of constraints is clearly bounded by O(mn).

3.2. The Black Box

The black box consists of two elements: the ILP

solver and the Gaussian elimination subroutine. Af-

ter we set up the ILP instance as above, we invoke

the ILP solver. The ILP solver will return an assign-

ment of the mutation variables, error variables and

equation variables. The assignment of the mutation

and error variables is not accurate because of the loss
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of information and will be ignored. The assignment

of the equation variables implies an unconditional

linear system of the h-variables. The linear system

can be solved by Gaussian elimination and we then

obtain a solution of the h-variables. The linear sys-

tem is usually consistent. If the linear system is not

consistent, our Gaussian elimination subroutine will

detect inconsistent equation variables. We then add

some consistency constraints to the ILP instance and

invoke the ILP solver again. Consistency constraints

make sure that the assignments of the involved equa-

tion variables in the constraints will be consistent

with each other. Inconsistency may happen repeat-

edly, and we keep adding consistency constraints un-

til the assignment of the equation variables is con-

sistent. The detail of consistency constraints can be

found in our previous work13. Note that by not in-

cluding consistency constraints at the beginning, we

enhance the efficiency of our program without losing

any accuracy.

3.3. Recovery of Haplotype
Configurations

3.3.1. Search for a Better h-variable

Assignment

The temporary h-variable assignment retrieved from

Gaussian elimination is usually an optimal assign-

ment. If it is not, it usually differs from an opti-

mal assignment at very few h-variables. We evalu-

ate an h-variable assignment by computing the min-

imum possible mutation-error score which is consis-

tent with the h-variable assignment. The compu-

tation of mutation-error score is explained in Sec-

tion 3.3.2.

Let t be the number of h-variables and H(0) =

[hi1,j1 , hi2,j2 , . . . , hit,jt ] be the temporary assignment

of h-variables obtained from Gaussian elimination.

Let ur be a unit vector on GF (2)t with a 1 on the

rth entry. Assume the H(k) is the h-variable assign-

ment after k rounds of searching. In the (k + 1)st

round, we consider t possible h-variable assignment

H
(k+1)
r = H(k) + ur, r = 1, . . . , t. We compute the

minimum mutation-error score for each assignment,

and H(k+1) will be the assignment with the mini-

mum score among H(k) and H
(k+1)
r , r = 1, . . . , t.

This search continues until H(k) = H(k+1) for some

k, and H(k) will be the final h-variable assignment.

3.3.2. Computing Mutation-Error Scores

and Haplotype Configurations

In this section, we assume that the h-variable assign-

ment is fixed. Once the h-variables are assigned, we

need to assign errors and mutations that minimize

the mutation-error score as given in Eq. (7). We use

the dynamic programming method to find the min-

imum mutation-error score as follows. Here, each

locus is considered separately.

We pick an arbitrary node (individual) as the

root of the input (tree) pedigree. For each node, we

consider all four possible genotypes and compute the

best mutation-error score of the subtree under the

node for each genotype. The score could be com-

puted with the score of children with respect to the

rooted tree of all possible genotypes. We compute

the score iteratively from the leaves to the root. This

dynamic programming procedure determines an op-

timal assignment of all mutations and errors by a

simple backtracking subroutine, where ties are bro-

ken arbitrarily.

After assigning errors, we mark genotypes where

errors are assigned as missing alleles. For each pair

of alleles of a non-missing marker, if there is no er-

ror and the genotype is homozygous, we mark the

alleles as confirmed. We start from confirmed alle-

les, update parent’s/children’s alleles with the given

h-variables and the mutation assignment, and con-

firm these newly updated alleles. We keep updating

and confirming alleles until there are no more alleles

that we can update. Alleles that are not confirmed

remain unknown. After updating all the alleles, we

obtain the whole haplotype configuration with the

locations of mutations and correction of errors. We

output the configuration if the h-variable assignment

is the final assignment.

3.4. A Few Implementation Issues

3.4.1. Free Variables

Occasionally, the solution of the unconditional lin-

ear system obtained from ILP solver is not unique.

If there are two or more solutions, then we have mul-

tiple h-variable assignments as starting points of the
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search. We simply do the search described in Sec-

tion 3.3 for all starting points and select the best

one. We record h-variable assignments that have

been searched, and avoid redundant search.

3.4.2. Time Limit

Sometimes, the ILP solver may have difficulty in de-

termining errors, mutations, and equation variables.

It is usually because there are some “troublesome”

loci with errors. If the ILP solver fails to assign er-

rors to these loci and attempts to assign errors to

other loci that do not actually have errors, it may

take a very long time for the ILP solver to find a fea-

sible assignment, or the ILP solver may keep return-

ing inconsistent assignments of equation variables.

To avoid these situations, we set a time limit. The

default time limit is chosen as 3 minutes based on

empirical observations. When the black box fails to

return an assignment of h-variables within the time

limit, we terminate the black box. We modify the

ILP instance as follows and then run the black box

again. We repeat this process if the black box keeps

exceeding the time limit.

The first time the black box exceeds the time

limit, we check if we can fix the values of some

equation variables to reduce the ILP solver’s work.

For example, suppose that there are 9 or more con-

straints extracted from different loci with the same

H and c, i.e., EH = c is suggested 9 times with dif-

ferent conditions, and there are none or only 1 con-

straint supporting EH = 1 − c. The odds strongly

favor EH = c and thus we can simply assign c to

EH. Let us call such a constraint that suggests

EH = 1 − c conflicting. If there are two or more

conflicting constraints (over different paths or cycles)

extracted from the same locus, then the locus is con-

sidered troublesome. We mask all troublesome loci

by dropping all constraints extracted from them.

If the black box exceeds the time limit the sec-

ond time, we randomly select a locus and mask it.

If the black box keeps exceeding the time limit, we

will increase the number of masked loci by 1 each

time. Occasionally, the black box may keep running

and failing for a long time. We thus have a global

time limit. If our program exceeds the global time

limit, we terminate the computation and concede.

The default global time limit is currently set as 30

minutes.

4. EXPERIMENTAL RESULTS

We have implemented our algorithms in C, denoted

as MePhase. In this section, we test MePhase on

both simulated data and real data to perform an em-

pirical evaluation of its accuracy and efficiency. For

simulated data, we generate both tree pedigrees and

genotype data randomly. We design experiments to

test how the pedigree topology and data quality (i.e.,

the missing and genotyping error rates) may affect

the performance of MePhase. We do not consider a

very large number of loci since the zero-recombinant

assumption holds only for tightly linked markers. For

real data, we use the SNP microarray data published

by Wirtenberger et al.32 They genotyped 16 mem-

bers of a three-generation family using the GeneChip

Human Mapping 10K Array (Affymetrix). Since

Wirtenberger et al. did not delete Mendelian inheri-

tance errors in their published data, the data along

with their report of recombinant regions are ideal for

us to test MePhase. According to Ref. 32, there are

6.24% missing alleles and 0.29% Mendelian inheri-

tance errors detected in all family trios in the data.

However, Hao et al. have reported that the genotyp-

ing error rate of GeneChip Mapping 10K Array is

about 0.1%30, which is much smaller than the error

rate given in Ref. 32. We think that the number

of Hao et al. is more accurate because they focused

on the estimation the of error rate while Wirten-

berger et al. did not. Our results also support the

error rate given by Hao et al.

4.1. Simulated Data

Thomas et al. have proposed algorithms to gener-

ate tree pedigrees uniformly randomly with specific

numbers of individuals and mating notes33. Their al-

gorithms have been implemented in Java, which will

be used to generate pedigrees in this paper. Zou et al.

showed that the size of a nuclear family may affect

the accuracy of error detection28. Thus, we consider

the average nuclear family size as a parameter along

with pedigree size and analyze how nuclear family

and pedigree sizes may affect the accuracy and effi-

ciency of our algorithms. Let f be the average nu-

clear family size and n again denote the number of
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individuals. Because tree pedigrees are considered, f

is determined by n and the number of mating nodes:

f =
n+ # of mating nodes− 1

# of mating nodes

Therefore, we can alter the number of mating nodes

to obtain pedigrees of different average nuclear fam-

ily sizes. We will generate pedigrees with n =

29, 52, 67, 82 and f = 3, 4, 5, 6. For each of the 16

combinations of n and f , we generate 5 random pedi-

grees. This results in 80 different pedigrees in total.

Note that for n = 29, we could only achieve f = 5.67

instead of 6 because the number of mating nodes

should be an integer.

To generate genotype data, we use haplotype

data downloaded from HapMap (http://hapmap.

ncbi.nlm.nih.gov/downloads/phasing/2009-02_

phaseIII/HapMap3_r2/). For each run of the exper-

iment, we randomly select an interval of SNPs. Then

for each founder in the pedigree, we randomly pick

two haplotypes to form the genotype of the founder.

Each individual randomly passes one of its two hap-

lotypes to each of its offsprings, where mutations are

incorporated randomly according to the mutation

rate. This results in a genotype for each individual.

Finally, missing alleles and genotyping errors are

randomly added to the genotypes according to their

rates.

We run MePhase on each simulated data and

compare the haplotype configurations given by

MePhase with the true haplotype configurations of

the simulated data. We will consider the ability of

MePhase in imputing missing alleles and detecting

mutations and genotyping errors. When the loca-

tion of a detected error is slightly different from that

of the true error in the pedigree, we say that the er-

ror is shifted. Table 1 shows the impact of n and f on

both efficiency and accuracy of MePhase in phasing

as well as error detection and correction. MePhase

infers haplotypes with a very high accuracy in all

settings. In general, a bigger f leads to denser con-

straints, less freedom of haplotype assignments, and

a higher accuracy. On the other hand, a smaller f

leads to more founders. When an error event hap-

pens to the genotype of a founder, there is a good

chance that the erroneous genotype does not violate

the Mendelian law of inheritance. This is likely to

keep the error undetectable. Therefore, a smaller f

will lead to more founders and more undetected er-

rors. Table 1 also clearly illustrates that a bigger n

leads to a longer running time. Moreover, a bigger f

also leads to a longer running time, since a bigger f

leads to more path and cycle constraints.

Most mutations (85%–95%) are explained by er-

rors because we give errors a smaller weight. A mu-

tation on a founder will often be explained by an er-

ror, or remain undetectable if the Mendelian law of

inheritance is not violated. A mutated allele will for

sure be explained by an error if it does not get passed

to any offspring. Most mutations can be explained

by errors with some small shifts within the pedigree,

especially when the mutations are near founders or

children with no offsprings. Our combinatorial opti-

mization model is incapable of catching such muta-

tions precisely.

As shown in Table 1, MePhase may produce a

suboptimal solution, especially when most genotypes

are homozygous, since it may return an h-variable

assignment that is locally optimal during the search

for a better h-variable assignment. The suboptimal

h-variable assignment usually differs from the true

assignment at many h-variables, but requires only

one more error than the true haplotype solution.

In our experiment, we observed that if the black

box in MePhase fails to return an assignment within

the time limit once, it will tend to fail many times.

The standard ILP solver GLPK uses a branch-and-

bound algorithm to find integral solutions. When

GLPK falls into a bad branch, it may take very long

time for GLPK to get out of the branch. This creates

a big variance in running time. For bigger n and f ,

we had to give MePhase a longer global time limit.

The quality (i.e., the missing and genotyping

error rates) of data may also have an impact on

both accuracy and efficiency of MePhase. We run

MePhase on 5 pedigrees of n = 29 and f = 4 with

various missing and error rates as shown in Table 2.

A large variance in running time is observed which

might explain why there is no clear impact of data

quality on running time. The missing rate has some

impact on the running time, while the error rate does

not affect the running time much. However, the im-

pact of data quality on accuracy is small but no-

ticeable. When the missing rate goes higher, the

accuracies in phasing, error correction and missing
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Table 1. The impact of pedigree size n and average nuclear family size f on the efficiency and accuracy of

MePhase in phasing and error detection and correction. Here, the number of loci m = 50, the missing rate = 0,

and the mutation rate = 1 per pedigree on average. For testing the accuracy of MePhase and the optimality of
its solution, we ran 200 replicates for each pedigree and set the global time as 10 minutes. For testing the time

efficiency and failure rate, we ran 30 replicates for each pedigree and set the global time limit as 30 minutes (but

180 minutes for (n, f) = (52, 6), (62, 5), (62, 6), (82, 5), (82, 6)). Clearly, MePhase rarely fails to find a solution under
this setting.

Correctly
Average nuclear Pedigree Recovered Shifted Undetected phased Suboptimal Average Failure

family size size (n) errors errors errors markers solution time (sec) rate

f = 3

29 67.1% 9.9% 23.0% 99.2% 0.0% 0.03 0.0%
52 67.6% 9.2% 23.2% 99.5% 0.3% 1.37 0.0%
67 66.2% 8.9% 25.0% 99.7% 0.9% 1.88 0.0%
82 65.9% 8.6% 25.4% 99.7% 0.6% 4.99 0.0%

f = 4

29 83.9% 5.8% 10.3% 99.3% 0.2% 4.71 0.0%
52 82.7% 5.6% 11.7% 99.6% 0.2% 18.3 2.0%
67 83.4% 5.0% 11.6% 99.7% 0.8% 30.3 0.7%
82 83.4% 5.4% 11.3% 99.8% 0.8% 49.1 0.0%

f = 5

29 91.7% 3.7% 4.5% 99.3% 0.0% 4.92 0.7%
52 90.7% 2.9% 6.4% 99.5% 0.5% 46.5 1.3%
67 91.1% 3.0% 5.9% 99.7% 0.7% 402 0.7%
82 90.8% 3.4% 5.8% 99.9% 0.9% 498 2.7%

f = 6

29 93.1% 2.8% 4.1% 99.3% 0.1% 22.1 1.3%
52 94.5% 2.1% 3.4% 99.6% 0.4% 661 0.0%
67 94.4% 1.8% 3.8% 99.7% 0.6% 619 0.0%
82 94.4% 2.0% 3.6% 99.8% 1.0% 740 2.7%

Table 2. The impact of data quality on accuracy and efficiency. Here, n = 29, f = 4, m = 50,

the mutation rate = 1 per pedigree on average, the global time limit is set as 30 minutes, and

we ran 30 replicates for each setting.

Correctly Correctly Correctly
Error Missing recovered imputed phased Suboptimal Average Failure
rate rate errors missing alleles markers solution time rate

0.0%

0% − − 99.7% 0.0% 2.30 0.0%
5% − 79.3% 98.6% 0.0% 58.2 3.3%

10% − 77.4% 97.2% 0.0% 82.3 6.0%
20% − 72.2% 93.5% 0.0% 97.3 11.3%

0.5%

0% 85.0% − 99.6% 0.0% 13.0 0.0%
5% 83.3% 78.5% 98.4% 0.7% 24.2 5.3%

10% 83.3% 76.6% 97.1% 0.7% 65.0 6.7%
20% 79.4% 72.1% 93.4% 0.7% 70.9 8.0%

1.0%

0% 85.3% − 99.3% 0.0% 2.37 0.7%
5% 83.2% 78.8% 98.2% 0.0% 44.5 1.3%

10% 79.5% 76.6% 96.7% 0.0% 64.1 6.7%
20% 75.1% 72.0% 93.2% 0.7% 39.9 7.3%

allele imputation slightly decrease. The genotyping

error rate has a smaller impact on the accuracy of

MePhase, but the trend is clear.

4.2. Real Data

Fig. 5(a) shows the pedigree used in Ref. 32. Indi-

viduals 17 and 18 (i.e., the founders) are missing,

and they have only two children (i.e., individuals 1

and 13). Therefore, these two children are under

no constraints. We partition the pedigree into pedi-

grees A and B, and run MePhase on both pedigrees

separately.

1 2

6 7

3 4 5

1 2

6 7

3 4 5

13 12

9 10 11

14 16 15 8

13 12

9 10 11

14 16 15 8

17 18

(a) Original pedigree (b) Pedigree A (c) Pedigree B

Fig. 5. The diagram in (a) shows the pedigree of the SNP

microarray data reported by Wirtenberger et al.32 Since the
two founders are completely missing, we divide the pedigree

into two disjoint pedigrees A and B.
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Wirtenberger et al. reported a set of recombinant

regions (i.e., intervals where a recombinant might be

located) in the SNP microarray data. We preprocess

the SNP data by eliminating all SNP loci in the re-

combinant regions. A set of loci between two neigh-

boring recombinant regions is considered as a block.

We then run MePhase on each block separately.

Table 3 shows the number of errors that

MePhase found in both pedigrees A and B. The ta-

ble also shows the number of hidden errors, which

are errors that cannot be found by checking the

Mendelian law of inheritance within nuclear families,

found by MePhase. MePhase also identified a muta-

tion on chromosome 6. The overall genotyping error

rate in non-recombinant regions found by MePhase

is 0.175%. If we exclude the hidden errors, the error

rate would be reduced to 0.146%, which is close to

the error rate reported in Ref. 30.

To estimate the accuracy of our reported num-

bers, we also run experiments with simulated data

on pedigrees A and B. The result (data not included

here) shows that MePhase is able to detect 85% of

the errors on pedigree A and 87% of the errors on

pedigree B. By extrapolation, we estimate that the

genotyping errors in the non-recombinant regions of

this SNP microarray data is close to 0.2% taking into

account the errors that MePhase might have failed

to detect.

5. CONCLUSION

We have introduced a combinatorial optimization

model for haplotype inference on pedigrees in the

presence of mutations and genotyping errors that

generalizes the previous models in the literature. We

have designed and implemented an heuristic algo-

rithm for the model based on the previously devel-

oped system of linear equations and ILP. Our exper-

imental results on simulated data demonstrate that

our program can infer haplotypes with a very high

accuracy, impute most missing alleles, detect and

correct most genotyping errors, and identify some

mutations (although many mutations could be con-

fused with errors).
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