
SNAP - Sensor Network Application Plugin

WeeSan Lee
University of California, Riverside

weesan@cs.ucr.edu

Abstract

This paper presents SNAP, Sensor Network Application Plugin. It con-
sists of a collection of C++ classes that wrap around TinyOS’s [5] sys-
tem components and a macroPLUGIN to instantiate the application.
With this architecture, it is shown that writing embedded code for Sen-
sor Networks is not much different than writing an ordinary C++ code
using multiple inheritance. The process of learning a new language is
avoided. Like TinyOS, applications using SNAP would include perti-
nent components only into the final executables. The size of final ex-
ecutables is only about 0.8K larger in average than the ones written in
C. However, the application code using SNAP is much shorter, concise
and easier to understand. Another advantage of using this architecture
(thePLUGIN macro to be specific) is the forward compatibility which
allows the same set of applications become plugins in the future on sup-
ported hardware and software by simply recompiling them without any
code modification.

Keywords
Plugin, Sensor Networks, C++

1 Introduction
Sensor networks consist of a number of small, energy-
constrained, embedded and distributed sensor nodes. Once de-
ployed, they will self-organize among themselves to form a net-
work and execute a specific pre-programmed task.

The soul and driving force behind those devices is an
component-based operating system called TinyOS [5]. Since
most of the sensor nodes are small and battery powered, the
footprint of the TinyOS has to be small, in the order of sev-
eral K bytes. For the same reason, an event-driven model is
used so that devices can spend most of the time idle (in order
to save power) and wait for the interesting events to happen. In
order to maintain small footprint and achieve code re-usability,
TinyOS provides the ability to wire all the pertinent components,
either user applications or existing system components, together
at compile time via a description/configuration file to generate
a final monolithic executable that can be later uploaded to the
sensor nodes.

In TinyOS-0.6.1, all components were written in C wrapped
around with extensive C macros, a component interface (.comp
file) and a graph of components (.desc file). It was not very intu-
itive and difficult to maintain the consistency among those files.
Also, all components including their variables are instantiated
within frames. A macro, called VAR, has to be used to access
those variables in the code to hide the name of the frames. While

debugging, the frame names have to be known in order to access
the variables as well. Later, TinyOS-1.X.X was released to ad-
dress some of the problems in previous version. Instead of using
C macros, a new language along with a new compiler, called
nesC [4], was introduced. In fact, nesC is just a C preprocessor
that converts the nesC code into ordinary C code and then calls
GCC to finish up the final compilation. The problem with this
approach is that users have to re-learn a new computer language.
There could be some steep learning curves before ones can actu-
ally master the new language. Although a lot similar to C, nesC
differs C in many subtle ways. For example, like its predecessor,
debugging nesC programs is not as intuitive as on C programs
because GDB has not yet supported nesC natively. All variables
used in nesC are mangled with a frame name and dollar signs in
the final executables. In order to access these variables in a GDB
session, the developers need to be able to unmangle the variables
on-the-fly in order to access them. This would cut productivity
in developing applications on the sensor nodes.

To address these problems, this paper proposes SNAP, Sensor
Network Application Plugin. The contributions of this architec-
ture is twofold: 1) it provides a thin layer, C++ classes, to wrap
around system components such that “wiring” those components
can be as simple as doing multiple inheritances for the applica-
tion in C++. No extra description/configuration files are needed,
thus, eliminate the inconsistency problem. In addition, event
handlers are actually virtual functions override. For example,
in order to handle system clock timeout event, one could sim-
ply override the virtual member functionvoid fire(void) .
This, in fact, simplifies the development process; 2) it provides a
macro calledPLUGIN to instantiate each application. Although
it does not do much in the current architecture other than instan-
tiate the applications, it does eliminate the mangled variables
problem. Moreover, as the technology evolves, like many others,
I envision that the future sensor nodes would equip with a more
powerful CPU and plenty of memory for both program and data.
Although limited, the application running on the nodes would
be able to allocate/free memory from/to the heap at will with-
out too much overhead. DLL (Dynamic Link Library) would
also be supported. With these new two key features, application
level DLL will become possible. With this vision in mind, the
PLUGINmacro, also provides the applications the forward com-
patibility to become an application level DLLs, also as known as,
plugins, without any code modification.

Like TinyOS’s traditional component-based approach,
SNAP-based applications preserves the ability to include
pertinent components only into the final executables to achieve



minimal code size. Like any C++ programs, applications using
SNAP would introduce some overheads in term of size, for
example, vtable for virtual functions. However, I will show
that the code size is not much larger than those generated from
the C code. I will also show that the SNAP-based code will
be smaller, more concise and self-explanatory. Last but not
least, there are other advantages of using SNAP, mainly from
the C++ language itself including Object-Oriented Design, code
re-usability, encapsulation/information hiding, polymorphism
and etc [6, 7].

The rest of this paper is organized as follows: Section 2 dis-
cusses the design trade-offs and implementation issues. Sec-
tion 3 compares SNAP with TinyOS. Section 4 presents some
related works. Finally, I conclude my work and discuss future
directions in Section 5.

2 Design
This section discusses the SNAP design decisions and trade-offs
as well as its implementation issues.

2.1 To C++ or not to C++
C++ is chosen simply because of its object-oriented design and
methodology [6, 7]. It has become a very popular choice for
implementing plugins for various applications [3]. Also, it is a
trend to shift from C to C++ even for embedded programming
[8, 2]. However, while there are some C++ features that are very
useful for large scale applications, they are not compelling in an
embedded environment. Thus, it should be used with care espe-
cially on CPU and memory constrained devices such of sensor
nodes. The following C++ features are avoided in SNAP due to
runtime overhead in terms of speed and size:

• Run-time type identification. RTTI facility provides type
information about every class with virtual functions on run-
time for type identification features such astypeid and
dynamic cast . It would increase the application size
even if those features are not being used. So, it should be
better turned off to save some space. In GNU C++, the
compiler flag to turn off this feature is-fno-rtti .

• Exception handling. Although it is useful for dealing with
errors, it imposes unnecessary overhead such as code size
increased and speed degraded. It is better turned as well.
In GNU C++, the compiler flag to turn off this feature is
-fno-exceptions .

• Templates and STL. Templates are useful for making
generic function or classes. However, templates can eas-
ily lead to code explosion. It is better to avoid using that.
Since STL utilize templates, it is better off to avoid it all
together.

2.2 To TinyOS-0.6.1 or not to TinyOS-0.6.1
TinyOS comes in two favors: 1) TinyOS-0.6.1, written in C with
extensive C macros; 2) TinyOS-1.X.X, written in a new pro-
gramming language especially designed for sensor network sys-
tems called nesC [4]. Since nesC is an extension to C and can not
be compiled by a C compiler without prior being compiled/pre-
processed into C code via the nesC compiler, there is no way

SNAP can be added on top of that even though TinyOS-1.X.X
back ported a lot of components from its predecessor. Moreover,
it is easier to wrap around C code with C++, so, it does not make
sense to implement SNAP on TinyOS-1.X.X on which nesC is
used and incompatible with C/C++. As a result, SNAP is based
on TinyOS-0.6.1 instead. In the rest of this paper, TinyOS im-
plies TinyOS-0.6.1 unless stated otherwise.

2.3 Implementation
TinyOS supports multiple platforms: PC1, MICA, MICA2 and
etc. AMakefile that takes the name of the platforms as a pa-
rameter is in place to support this. For example, if users would
like to generate executables for MICA platform, they could type:
make mica . Likewise, for PC emulation executables, they
could type:make pc and etc. In order to minimize the changes
as much as possible in current source tree and preserve the same
syntax as well as the ability to build original TinyOS executa-
bles, new platforms are introduced to support executables using
SNAP. For each original platform, a “++” is appended after the
name of the platform for executables using SNAP. For example,
make mica++ and make pc++ would generate executable
for MICA and PC using SNAP respectively2.

Unlike TinyOS-0.6.1 that compiles all pertinent components
into object files and later link them with the application, and,
TinyOS-1.X.X that combines application and pertinent system
components into a single C file and later compile it using GCC,
SNAP provides C++ classes that wrap around all system com-
ponents and are needed to be compiled and made libraries in
advance before they can be linked with the application. One of
the advantage of using libraries is that only components that are
needed by the applications will be linked together with the appli-
cations into the final executable. The outcome of this is compact
executable size, and, shorter compilation and linkage time sub-
sequently during development process. For each platform, there
is a library, namelylibplatform.a , associated with it un-
der eachplatform directory in the source tree. In addition to
those platform libraries, undersystem directory, there are var-
ious system libraries corresponding to each platform built from
the same source code. For example:libsystem mica++
andlibsystem pc++ are for MICA and PC platform respec-
tively. Both platform and system libraries are needed in order
to generate the final SNAP-based executables. The task of gen-
erating those libraries is taken care by the modifiedMakefile
automatically. No extra work needs to be done from the devel-
opers.

While most of the changes are done by adding new C++ files
which later be compiled as libraries, there are a couple of excep-
tions that need to actually add code into existing C files guided
by a SNAP specific directive, tosplusplus . Scheduler, for
example, is such exception case. In order to support task post-
ing inside the derived classes, an extra context pointer is added
into scheduler’s internal data structure as a placeholder for the

1This is a PC-mode simulation.
2Currently SNAP is supported only partially on MICA and PC platform,

more code will be added when time permits. The main purpose of supporting PC
platform at the first place is to verify the correctness of SNAP’s implementation
while supporting MICA platform is to find out the size overhead introduced by
C++.



instance of the class that posts the task. And because of this,
one of the task API needs to be changed to accommodate this as
well.

A special class, calledPlugin , is introduced and it is re-
quired for each application to at least inherit from this class.
Depending on the applications, if clock service is needed, the
applications also need to inherit from a classClock as well and
etc. Essentially, each system service will be a class by itself.
It is very intuitive and easy to recognize those services simply
by their class names. For example, classLeds is for accessing
LEDS, Photo is for light sensing service,Task is for posting
tasks inside the class and so on. The advantage of using this
multiple inheritances for the applications is to avoid using ex-
tra description file which might eventually lead to inconsistency
between the configuration file and the C code.

After an application class declaration and implementation in-
side the class, a new macro calledPLUGIN, has to be used to
instantiate the application. What the macro does right now is to
instantiate an object for the class as well as fulfill some require-
ments that are needed by the C++ compiler to generate the final
executable. It also serves the purpose of abstracting the process
of application instantiation. By doing that, it provides the appli-
cation the forward compatibility in supporting plugins on newer
platforms in the future without any code modification.

In order to keep the main program,MAIN.c , for each
platform untouched so that porting efforts to a new plat-
form become easier, instead of changing the code inside the
main programs, macroPLUGIN is defined such that it pro-
vides bothvoid MAIN SUBINIT COMMAND()and void
MAIN SUBINIT CMMAND()that are needed and called by the
main program although only one of them is needed. The reason
being that, with SNAP, the application initialization is done by
the constructor and its parent’s constructors when the object is
being instantiated. The application can, in fact, be started right
away inside the constructor without violating the init and start
order for the application. This comes for free from the C++ syn-
tax. So, what macroPLUGIN does now is simply instantiating
the object in the init command and does nothing in the start com-
mand as shown in the code snippet below:

#define PLUGIN(P) \
static char appFrame[sizeof(P)]; \
void *operator new(unsigned int size) {\

return (appFrame); \
} \
void operator delete(void *p) { \

/* Do nothing here */ \
} \
void MAIN_SUB_INIT_COMMAND() { \

new P; \
} \
void MAIN_SUB_START_COMMAND() { \

/* Do nothing here */ \
} \
...

In order to keep the original instantiation order3 without
changing the main program, and to instantiate the object when
the init command is called, the object has to be instantiatedin-
side the init command. Statically instantiation is not an option
because statical objects are always instantiated first even before
the int main(void) is executed which is undesired. The
trick used in the macroPLUGIN is to “dynamically” allocate the
object without actually allocating memory for the object. From
the macroPLUGIN code above, an array with the size of the
object is statically allocated, then override thenew operator to
return that array. By doing that, the object can be safely allocated
“dynamically” insidethe init command. Also,delete opera-
tor has to be overrided as well by doing nothing. Like TinyOS,
SNAP is not doing any memory allocation anywhere within the
code except for the trick presented above, so, it is safe to perform
the trick here.

3 Evaluation
In this section, I compare TinyOS and SNAP in the following 4
aspects: 1) functionalities; 2) size comparison; 3) code compar-
ison; and 4) compilation time.

3.1 Functionalities

Since TinyOS is implemented in C (procedure-based) while
SNAP is in C++ (object-oriented based), in addition to the fact
that the design and syntax are different, the program’s initializa-
tion process as well as the flow of code is different. It is very
important to make sure the code behave and function the same
regardless of the implementations. One of the nice features on
TinyOS is its PC-mode simulation with debugging facilities. By
comparing the debug output from the PC-mode simulation from
both implementations, I concluded that both implementations
are identical.

3.2 Size comparison

One concern of C and C++-based programs are their executable
size. C++ code are known to generate bigger executables. In
this section, I compare the size of executables generated from
TinyOS’s component-based approach and those using SNAP. In
Table 1 and Table 2, they show the size and the size difference
of code and data section of AVR platform executables generated
from both TinyOS’s component-based and SNAP approach. Al-
though the code and data size of SNAP is about 771 bytes and
35 bytes larger respectively, the final executables using SNAP
are still small enough to fit into 8K bytes of program memory
and 512 bytes of data memory [5]. In other words, the extra few
bytes are only 9.4% and 6.8% out of the program and data mem-
ory respectively. I believe that the advantages of using SNAP
are outweighed the size increased in the final executables.

It is also worth mentioned that since current SNAP imple-
mentation consists of a number of C++ classes wrapped around
existing C functions, there are still rooms for improvement in
term of executable size by implementing the whole TinyOS in
C++ from scratch.

3Some system components need to be instantiated before the application.



Table 1:Code size comparison:
Application TinyOS’s Size SNAP’s Size Size diff
blink 1078 1268 190
sense 1590 2562 972
sense2 1740 2770 1030
sensto leds 1652 2546 894
Average 771

Table 2:Data size comparison:
Application TinyOS’s Size SNAP’s Size Size diff
blink 4 16 12
sense 14 52 38
sense2 14 66 52
sensto leds 14 52 38
Average 35

3.3 Code comparison

In Table 4, it shows theblink code4 from TinyOS and SNAP ap-
proach side-by-side. What the code does is to make the red LED
blink on the sensor node at 1Hz. Although there is no scien-
tific method or objective way to compare both, it is obvious that
the code using SNAP is shorter and the interfaces are clearer due
C++ features such as information hiding, polymorphism, default
value and etc [6, 7].

As shown on the right side of Table 4, it is application de-
pendent to decide which classes it should inherit from. In this
case, theblink application schedules the system clock to fire
at the rate of 1Hz. When the timer expired, it will turn on or
off the red LED. Obvious enough, the application needs to at
least inherit from the classLeds and Clock . As mentioned
in Section 2, every application must also inherit from the class
Plugin which is a mechanism to enable all SNAP-based ap-
plications to become plugins on supported platform in the future
without any code modification.

Unlike TinyOS, the clock initialization is part of the appli-
cation constructor initialization which is being enforced by the
C++ syntax. Thus, no extra function call or “command” is need
to initialize system resources or start system services. As mat-
ter of fact, both are combined into the application constructor
as mentioned in Section2. Also, thevoid fire(void) is a
pure virtual function in classClock . By definition, all inherited
classes need to override them. In this case, theblink application
overrides this function to deal with the clock events.

For completeness sake, the equivalentblink code from nesC
is also included in Table 3.BlinkM.nc is the module implemen-
tation andBlink.nc is the configuration.

One thing worth mentioning is that both TinyOS versions
mangle the variable names by either prepending the variables by
a frame name or inserting dollar signs inside the variables. Ei-
ther way, the outcome is to further complicate the already com-
plex and difficult debugging task. SNAP, on the other hand, does
not have this problem. Debugging a SNAP-based program be-
haves exactly like doing on any regular C++ programs.

4All comments are taken out and the filename is added as comment at the top
of each file.

Table 3:Code comparison.The equivalent blink code from nesC
// BlinkM.nc
module BlinkM {

provides {
interface StdControl;

}
uses {

interface Timer;
interface Leds;

}
}
implementation {

command result_t StdControl.init() {
call Leds.init();
return SUCCESS;

}
command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT,
1000);

}
command result_t StdControl.stop() {

return call Timer.stop();
}
event result_t Timer.fired()
{

call Leds.redToggle();
return SUCCESS;

}
}

// Blink.nc
configuration Blink {
}
implementation {

components Main,BlinkM,SingleTimer,LedsC;
Main.StdControl -> SingleTimer.StdControl;
Main.StdControl -> BlinkM.StdControl;
BlinkM.Timer -> SingleTimer.Timer;
BlinkM.Leds -> LedsC;

}

3.4 Compilation time

In TinyOS-0.6.1, for each application, all pertinent components
and application are compiled, object code are generated locally
and finally all object code are linked together to generate the
final executable. The problem with this approach is that the
system components used by each application need to be re-
compiled locally regardless if those components have been com-
piled before for other applications.

In TinyOS-1.X.X, all pertinent components and application
written in NesC are pre-processed and converted into a big C
file which is then compiled using GNU C. The problem with this
approach is worst its previous version. Whenever there are some
changes, even just one single byte change in the application, the
whole compilation process will be triggered. All the previous
compilation efforts do not help any subsequent compilations.



Table 4:Code comparison.The code and description file from TinyOS (left) vs the code using SNAP (right).
/* BLINK.c */
#include "tos.h"
#include "BLINK.h"

TOS_FRAME_BEGIN(BLINK_frame) {
char state;

}
TOS_FRAME_END(BLINK_frame);

char TOS_COMMAND(BLINK_INIT)(){
TOS_CALL_COMMAND(BLINK_LEDr_off)();
TOS_CALL_COMMAND(BLINK_LEDy_off)();
TOS_CALL_COMMAND(BLINK_LEDg_off)();
VAR(state)=0;
TOS_CALL_COMMAND(BLINK_SUB_INIT)(tick1ps);
return 1;

}

char TOS_COMMAND(BLINK_START)(){
return 1;

}

void TOS_EVENT(BLINK_CLOCK_EVENT)(){
char state = VAR(state);
if (state == 0) {

VAR(state) = 1;
TOS_CALL_COMMAND(BLINK_LEDr_on)();

} else {
VAR(state) = 0;
TOS_CALL_COMMAND(BLINK_LEDr_off)();

}
}

/* blink.desc */
include modules{
MAIN;
BLINK;
CLOCK;
LEDS;
};

BLINK:BLINK_INIT MAIN:MAIN_SUB_INIT
BLINK:BLINK_START MAIN:MAIN_SUB_START

BLINK:BLINK_LEDy_on LEDS:YELLOW_LED_ON
BLINK:BLINK_LEDy_off LEDS:YELLOW_LED_OFF
BLINK:BLINK_LEDr_on LEDS:RED_LED_ON
BLINK:BLINK_LEDr_off LEDS:RED_LED_OFF
BLINK:BLINK_LEDg_on LEDS:GREEN_LED_ON
BLINK:BLINK_LEDg_off LEDS:GREEN_LED_OFF
BLINK:BLINK_SUB_INIT CLOCK:CLOCK_INIT
BLINK:BLINK_CLOCK_EVENT CLOCK:CLOCK_FIRE_EVENT

// blink.cc
#include "plugin.h"
#include "leds.h"
#include "clock.h"

class Blink : public Plugin,
public Leds, public Clock {

protected:
void fire(void) {

redToggle();
}

public:
Blink(void) : Clock(tick1ps) {
}

};

PLUGIN(Blink);



Figure 1:Time taken to compile the components

 0

 0.5

 1

 1.5

 2

 2.5

 3

sens_to_ledssense2senseblink

T
im

e 
sp

en
t

Components

make mica
make mica++

Unlike both versions of TinyOS, SNAP takes advantage of
library. All system components are compiled and archived to be
libraries. Only the very first application compilation will trigger
the initial libraries construction. Subsequent application compi-
lations involve only compilation on the application and linkage
with the libraries, which is very fast. Another advantage of us-
ing library is that only pertinent components will be linked into
the final executables. The goal of minimum size of executables
almost comes for free.

Figure 1 shows that the compilation time for both TinyOS-
0.6.1 and SNAP-based applications. As shown by the red line,
TinyOS-0.6.1 spends almost constant time to compile different
components. SNAP, however, since it is using libraries, in ad-
dition to compile the application, it also needs to build all the
libraries for the first time. As shown by the green line, the com-
pilation time starts to drop significantly, even much shorter than
TinyOS-0.6.1, for subsequent compilations.

4 Related Work
In the project MiLAN [9], it has plugin in their architecture, but,
that is for supporting transport layer from various platforms. Un-
like MiLAN, SNAP provides a collection of C++ classes to serve
as a middle layer between the applications and services provided
by the hardware, for example, sensing the light or temperature,
inside TinyOS. Also, SNAP is based on TinyOS and built on top
of it.

The Embedded C++ [2], a project backed by major Japanese
semiconductor manufactures such as Fujitsu, Hitachi, Pana-
sonic, NEC, Toshiba and etc back in 1995, focused on devel-
oping a C++ specification that were used for their embedded de-
vices. While the goal of the Embedded C++ is to provide embed-
ded systems programmers a subset of ISO/ANSI C++ language
and the Standard C++ runtime library, SNAP does not imply
those constraints. Rather, SNAP utilizes C++ features as much
as possible wherever it sees fit to ease the development process,
yet, not to introduce too much overhead in term of speed and
code size. Developers using SNAP have to use their own judg-
ment to leverage certain C++ features and the overhead imposed

by those features on the embedded devices.
Unlike the Embedded C++, SNAP does not treat multiple in-

heritance as evil. Rather, it is a very neat feature to “wire” dif-
ferent components nicely without introducing extra description
file. Also, virtual base classes are used to impose the applica-
tions to override the proper functions required by the system
components.

5 Conclusion
In this paper, I present SNAP, Sensor Network Application Plu-
gin. It provides C++ classes for TinyOS system components that
can easily be “wired” together by multiple inheritances from an
application. This avoids extra description or configuration files
that could become inconsistency with the .c files over time. The
application development for the sensor networks becomes eas-
ier: just like an ordinary C++ programming which does not in-
volve much of learning curves and there is no macro needed to
wrap around variables being used. Also, debugging becomes
easier without constructing mangled variable names on-the-fly.
All the nice features above increase the code size for only about
0.8K in average which is about 9.3% increased on a platform
with 8KB of program memory and 512 bytes of data memory.

One important feature of SNAP is the forward compatibility.
By using macroPLUGIN to instantiate an application, it pro-
vides the application the forward compatibility to become a plu-
gin automatically once recompiled on a DLL-capable platforms
without any code modification.

As the technology evolves, the vision that sensor nodes are
equipped with more powerful CPU and more memory would
become true in the near future. Together with the help of Plugin
Dissemination Protocol5 [1], can the plugins not only possible
run on the DLL-capable platforms, but also can they be loaded
on any sensor nodes that have already been deployed at will.
There are a number advantages of doing so: 1) new task can
be assigned on the sensor nodes after being deployed based on
their physical location. For example, it is more suitable for sen-
sor nodes that closes to the source of light to sense light than
sound. This information would not be available until the nodes
are deployed; 2) the ability to re-assign a new task to existing
sensor networks. There are life cycles for any sensor networks.
When their mission has been accomplished, except the fact that
they run out of power source, each nodes in the existing net-
works can be re-programming on-the-fly and appointed a new
task. In other words, the life cycle of the sensor networks is ex-
tended and prolonged with new missions; 3) the ability to learn
the mission and states from an old or dying node. This is ex-
tremely useful for mission critical sensor networks to continue
their missions by replacing some old or dying nodes without af-
fecting the functionalities of the rest of the nodes.

So, the future work is to continue developing a reliable and
efficient Plugin Dissemination Protocol that make the nice things
described above happen in the near future.

Last but not least, SNAP will be extended to cover more sys-
tem components as well as to support more platforms.

5This is a protocol that is currently being developed to selectively disseminate
plugins from based/sink node to any other sensor nodes



References
[1] Plugin Dissemination Protocol.http://www.cs.ucr.edu/

˜weesan/snap/pdp.txt .

[2] The Embedded C++. http://www.caravan.net/
ec2plus/ .

[3] Zinf Audio Player.http://www.zinf.org/ .

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to networked
embedded systems. InProgramming Language Design and Imple-
mentation (PLDI), June 2003.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors.ASPLOS, 2000.

[6] B. Stroustrup.The Design and Evolution of C++. Addison-Wesley,
Reading, Massachusetts, Mar. 1994.

[7] B. Stroustrup.The C++ Programming Language. Addison-Wesley,
Reading, Massachusetts, 3rd edition, 1997.

[8] The Embedded C++ Technical Committee. A New Work
Item Proposal: C++ for Embedded Systems (Embedded
C++). http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/1998/n1151.asc .

[9] H. S. C. Wendi B. Heinzelman, Amy L. Murphy and M. A. Perillo.
Middleware to support sensor network applications.IEEE Network
Magazine Special Issue, 2004.


