An Efficient Graph-Based Symbol Recognizer

WeeSan Lee <weesan@cs.ucr.edu>
Levent Burak Kara <lkara@andrew.cmu.edu>
Thomas F. Stahovich <stahov@engr.ucr.edu>

Goals

• Hand-drawn symbol recognizer
• Insensitive to:
 - Uniform / non-uniform scaling
 - Orientation
 - Drawing order
• Efficient
• Easily trainable
Approach

- Representation:
 - Attributed Relational Graph
 - Geometry and topology of a symbol

- Recognition:
 - Approximate graph matching
Recognition

Unknown symbol

Definition symbols
Recognition

Unknown symbol

Definition symbols
Recognition

Unknown symbol

Definition symbols

Arc 0

Line 1

Line 2

Line 3

Arc 0

Line 0

Line 1

Line 2

Line 3
Roadmap

- Representation
- Measuring Similarity
- Graph matching
- User Study
- Conclusions
Representation

Ideal Square

Line 0
R=25%
I=1
A=90°
L=(100%, 0%)

Line 1
R=25%
I=0
A=0°
L=N/A

Line 2
R=25%
I=1
A=90°
L=(100%, 0%)

Line 3
R=25%
I=1
A=90°
L=(100%, 0%)
Representation

Ideal Square

Relative length → scale independence
Large σ → insensitive to non-uniform scaling
Representation

Ideal Square

Intersection Angle:
Defined for all pairs of lines
Representation

Ideal Square

I=1
A=90°
L=(100%, 0%)

Intersection Angle:
Defined for all pairs of lines
Intersection Angle: Defined for all pairs of lines

Representation

Ideal Square

Line 0
- I=1
- A=90°
- L=(100%, 0%)
- R=25%

Line 1
- I=0
- A=0°
- L=N/A
- R=25%

Line 2
- I=1
- A=90°
- L=(100%, 0%)
- R=25%

Line 3
- I=1
- A=90°
- L=(100%, 0%)
- R=25%
Representation

• Definition
 - “Average graph”
 - Statistical model $\rightarrow \mu, \sigma$

• Segmentation
 - Pen strokes \rightarrow primitives
 • Lines and arcs
 - Speed-based segmenter
Roadmap

✓ Representation
 • Measuring Similarity
 • Graph matching
 • User Study
 • Conclusions
Measuring Similarity

Unknown symbol

Definition symbol

Arc 0
Line 1
Line 2
Line 3
Line 4

Arc 0
Line 1
Line 2
Line 3
Line 4
Line 5
Measuring Similarity

\[\text{Similarity Score} = 1 - \sum_{i=1}^{6} w_i E_i \]

<table>
<thead>
<tr>
<th>Error Metrics ((E_i))</th>
<th>Weight ((w_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_1): Primitive count error</td>
<td>20%</td>
</tr>
<tr>
<td>(E_2): Primitive type error</td>
<td>20%</td>
</tr>
<tr>
<td>(E_3): Relative length error</td>
<td>20%</td>
</tr>
<tr>
<td>(E_4): Number of intersections error</td>
<td>15%</td>
</tr>
<tr>
<td>(E_5): Intersection angle error</td>
<td>15%</td>
</tr>
<tr>
<td>(E_6): Intersection location error</td>
<td>10%</td>
</tr>
</tbody>
</table>
Primitive Count Error

\[E_1 = \frac{\text{difference_in_primitive_count}}{\text{MIN_primitive_count}} \]

Example:
\[E_1 = \frac{1}{3} \]
Primitive Type Error

\[E_2 = \frac{\text{\# of type mismatches}}{\text{MIN primitive count}} \]

Example:

\[E_2 = \frac{1}{4} \]
Relative Length Error

\[E_3 = \frac{\sum \text{Relative_length_errors}}{\text{MIN_primitive_count}} \]

\[\text{Relative_length_error} = 1 - P(R, \mu, \sigma) \]
Relative Length Error

\[E_3 = \frac{\sum \text{Relative_length_errors}}{\text{MIN_primitive_count}} \]

Relative_length_error = 1 - \(P(R, \mu, \sigma) \)

Modified Probability Density Function:

\[P(R, \mu, \sigma) = \exp\left[-\frac{1}{50.0} \cdot \frac{(R - \mu)^4}{\sigma^4}\right] \]
Relative Length Error

\[E_3 = \frac{\sum \text{Relative_length_errors}}{\text{MIN_primitive_count}} \]

Relative_length_error = 1 − \(P(R, \mu, \sigma) \)

\[E_3 = (1 - 1) + (1 - 0.73) + (1 - 0.73) + (1 - 0.98) / 4 \]

= 0.14

<table>
<thead>
<tr>
<th>Node</th>
<th>(U_R)</th>
<th>(\mu)</th>
<th>(\sigma)</th>
<th>(P(U_R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.38</td>
<td>0.40</td>
<td>0.04</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.20</td>
<td>0.05</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>0.19</td>
<td>0.20</td>
<td>0.005</td>
<td>0.73</td>
</tr>
<tr>
<td>4</td>
<td>0.18</td>
<td>0.20</td>
<td>0.01</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Number of Intersections Error

\[E'_4 = \sum \frac{\text{Intersection differences}}{\text{# of pairs of primitives}} \]

\[E_4 = \text{Squash}(E'_4) \]

Example:

\[E'_4 = \frac{1}{6} \]

\[= 0.17 \]

\[E_4 = S(0.17) \]

\[= 0.0068 \]
Intersection Angle Error

\[E_5 = \frac{\sum \text{Errors _in_angles}}{\# _of _angles} \]
Intersection Location Error

\[E_6 = \frac{\sum \text{Errors in the intersection locations}}{2 \times \text{Number of intersections}} \]
Roadmap

✓ Representation
✓ Measuring Similarity
 • Graph matching
 • User Study
 • Conclusions
Graph Matching

Task: Find best node-pair assignment
Graph Matching

Task: Find best node-pair assignment
Graph Matching

• Approach: 4 approximate algorithms
 - Stochastic Matching
 - Error driven Matching
 - Greedy Matching
 - Sort Matching
Stochastic Matching

Definition Symbol

Unknown Symbol

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stochastic Matching

Definition Symbol

Unknown Symbol

1 2 3 4

a b c d
Error-driven Matching

Definition Symbol

Unknown Symbol

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

1 → 2 → 3 → 4
Error-driven Matching

Definition Symbol

Unknown Symbol

<table>
<thead>
<tr>
<th>Definition Symbol</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

1 \rightarrow 1
2 \rightarrow 4
3 \rightarrow 2
4 \rightarrow a
b \rightarrow b
c \rightarrow c
d \rightarrow d
Greedy Matching

Definition Symbol

Unknown Symbol

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

1 2 3 4

a b c d
Greedy Matching

<table>
<thead>
<tr>
<th>Definition Symbol</th>
<th>Unknown Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>
Greedy Matching

Definition Symbol

Unknown Symbol

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Greedy Matching

Definition Symbol

1
2 4
3

Unknown Symbol

a
b
d

Definition Symbol

1 2 3 4

Unknown Symbol

a b c d
Sort Matching

Definition Symbol

1
2 4
3

Unknown Symbol

a
b
d
c

Definition Symbol

1 2 3 4

Unknown Symbol

d b c a
Sort Matching

Definition Symbol

1

2 4

3

Unknown Symbol

a

b
d

c

Unknown Symbol

3 2 1 4

c b a d
Roadmap

✓ Representation
✓ Measuring Similarity
✓ Graph matching
 • User Study
 • Conclusions
User Study

• 23 classes of mechanical symbols
• 9 participants
• 15 examples per symbol
Results

- On a P4 3.2G & 1G RAM machine
Conclusion

• Developed graph-based symbol recognizer
 - Insensitive to scale, orientation

• Stochastic Matching
 - Most accurate, most expensive

• Greedy Matching
 - Good compromise

• Sort Matching
 - Very fast, good for low-power devices
Q&A

Thank You!