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SUMMARY

Memory-related program failures in multithreaded programs can be caused by a variety of bugs. Concur-
rency bugs can occur due to unexpected or incorrect thread interleavings during execution. Other kinds of
memory bugs, such as buffer overflows and uninitialized reads, may also occur in multithreaded as well as
single-threaded programs. Most prior techniques for isolating these bugs are specialized, addressing only
one type of concurrency bug or certain types of other memory bugs. The memory corruption caused by
these bugs can also undergo significant propagation during program execution. When a program failure
finally occurs due to memory corruption, the true root cause of the failure may be effectively concealed
as significant portions of memory may have become corrupted. We propose a general framework that
can isolate the root cause of any failure in a multithreaded program that involves memory corruption and
reveals at least a subset of this memory corruption. This includes three important types of concurrency
bugs—data races, atomicity violations, and order violations—as well as other kinds of memory bugs. To
account for propagation of memory corruption, our approach uses a dynamic technique called ‘execution
suppression’ that iteratively reveals memory corruption in a failing execution to isolate the true root cause
of the failure. Copyright q 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software debugging is a difficult but necessary phase of software development. Debugging multi-
threaded programs in particular can be especially challenging. This is due to the complexity
involved in reasoning about the behavior of multiple threads that may execute in parallel. Auto-
mated techniques to assist in debugging multithreaded programs can relieve developer burden and
increase the efficiency of the debugging process.

Software failures in multithreaded programs can be caused by a variety of bugs. Failures due
to concurrency bugs, such as data races, atomicity violations, and order violations, are caused by
unexpected interleavings of parallel threads during execution. Other failures may or may not be
caused by the multithreading. Failures due to buffer overflows involve accessing memory locations
that are outside of proper buffer boundaries. Failures due to uninitialized reads involve reading
from memory locations that have not yet been properly written to. Still other failures can be caused
by other types of memory bugs.
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A fundamental challenge to debugging multithreaded (and single-threaded) programs is that
the point of an execution failure may be far away from the point at which the root cause for the
failure was traversed. The root cause may be a concurrency bug or some other type of memory
bug, which may corrupt a memory location. This corruption may propagate arbitrarily far during
execution, corrupting possibly many other memory locations, until a failure finally occurs. This
memory corruption propagation can effectively conceal the true root cause for a failure.

Prior approaches for isolating bugs in multithreaded and single-threaded programs are often
specialized, designed to search for particular kinds of bugs. For instance, race detection techniques
[1–5] can be leveraged to try to identify data races that may have caused a failure. Other techniques
specially handle other kinds of bugs, including CP-Miner [6] (copy-paste bugs); EXPLODE [7]
(data integrity bugs in storage systems); and Valgrind [8], Purify [9], and CCured [10] (particular
kinds of memory-related bugs). However, when a failure is observed, a developer often does
not immediately know what type of bug caused the failure. Any single specialized bug detector
may therefore not be sufficient to debug a multithreaded program. Without knowing what type
of bug is to blame, a developer may have to rely on many different kinds of specialized bug
detectors. The approach proposed in the current work is a general framework for isolating the
root causes of multithreading and single-threaded bugs, which handles three important kinds
of concurrency bugs as well as other kinds of memory bugs that cause memory corruption.
Specifically, the concurrency bugs handled by our approach are data races, atomicity violations,
and order violations. Our approach is designed to be sufficient for isolating many different kinds
of bugs in multithreaded programs. Our approach requires that a failure-triggering execution (with
associated thread interleaving) is known beforehand, and that the failure can manifest itself in such
a way that at least one corrupt memory location causing the failure is revealed. For example, an
execution that crashes due to directly accessing a corrupted memory location can be handled by our
approach.

Our approach overcomes the issue of memory corruption propagation by using a technique that
we call execution suppression. This technique iteratively reveals memory corruption within an
execution until the root cause for a failure is found. The idea of suppression involves ‘nullifying’
or ‘avoiding’ the effects of particular statement instances during the execution of a program. The
key idea of execution suppression is as follows. First, it is observed that if the root cause of a
failure corrupts one or more memory locations during execution, then the observed failure should
reveal a subset of this memory corruption that exists during execution. If the statement instances
directly involved in the program failure are suppressed (nullified) during re-execution, and if the
statement instances directly or indirectly dependent upon these suppressed statement instances are
themselves suppressed during execution, then the original failure will be avoided. Essentially, the
known subset of memory corruption existing in the execution is suppressed, allowing execution
to proceed further, past the point of the original failure. If another failure then occurs later in the
execution, this will reveal more of the memory corruption that may still exist in the execution,
which can be suppressed in turn. Execution suppression iterates in this way until (1) a data race,
atomicity violation, or order violation is found to be directly involved in a failure or (2) the
suppression execution results in no additional failures, in which case the last-identified point of
suppression is reported as the likely root cause of the original failure. The underlying assumption
of execution suppression is that if memory corruption exists in an execution, then the execution
will result in a failure that reveals at least a subset of this memory corruption.

When determining whether a concurrency bug is directly involved in a failure caused by memory
corruption, our approach analyzes particular sequences of memory accesses during execution to
check whether the conditions for certain kinds of concurrency bugs are present. As was observed
by Tallam et al. [11], detection of data races requires considering three particular kinds of memory
access dependencies to the same memory location from two different threads: read-after-write
(RAW), write-after-read (WAR), and write-after-write (WAW) dependencies. As was observed by
Lu et al. [12], detection of atomicity violations requires considering four particular sequences of
accesses to the same memory location, each sequence involving two accesses from one thread,
interleaved by an access from a different thread: W1R2W1, R1W2W1, R1W2R1, and W1W2R1.
Detecting order violations similarly requires considering these sequences of memory accesses. Our
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approach takes all of this into account to identify relevant data races, atomicity violations, and
order violations on-the-fly during program execution while suppression is being performed.

Prior work on classifying benign and harmful data races [13] has shown that not all data races
are harmful. To determine whether a data race is potentially harmful, their key idea is to replay
an execution twice for the data race, each time ensuring that the two conflicting memory accesses
occur in a different relative order. If both executions produce different results in memory, the data
race is classified as potentially harmful. Since our own approach should only report a data race if
it can potentially be the root cause for a failure (i.e. if the data race is potentially harmful), we
incorporate their key idea into our approach. Specifically, when a data race is detected during one
execution, our approach re-executes the program a second time, forcing the conflicting memory
accesses to occur in the reverse order. Our approach only reports the data race as the root cause for
a failure if the re-execution produces a different result in memory, suggesting that the data race is
potentially harmful. Our approach performs similar re-executions to determine whether potential
atomicity and order violations are true violations, before actually reporting them as the root cause
for a failure.

The remainder of this paper is organized as follows. In the next section, we describe our approach
in detail and give an example that illustrates its use and potential benefit. In Section 3, we describe
some of the details involved in implementing our approach. Section 4 presents experimental results
showing the benefits of our approach in locating bugs in multithreaded programs including the
apache web server and the mySQL database application. Related work is discussed in Section 5,
and our conclusions are summarized in Section 6.

2. THE EXECUTION SUPPRESSION APPROACH

2.1. General approach

Our approach for isolating the root cause of a multithreading bug applies to bugs that involve
memory corruption, and that can cause a memory-related program failure that reveals a subset of this
memory corruption. The approach handles data races, atomicity violations, and order violations, as
well as any other memory bugs that involve memory corruption, including single-threaded memory
bugs. This includes bugs such as buffer overflows (including corruption of function call return
addresses), uninitialized reads, and double frees. We consider memory corruption to occur during
execution when corrupt (incorrect) data is written to a memory location, or when an incorrect
memory location is accessed. Intuitively, memory corruption occurs during an execution when
memory is mishandled in some way.

Memory corruption resulting from a memory bug can propagate (spread) to other memory loca-
tions until ultimately a subset of the memory corruption may directly cause a program failure. The
goal of our approach is to automatically isolate the root cause of this memory corruption, which—
depending on the degree to which the memory corruption has propagated during execution—may
be difficult to locate manually from the point of the program failure. Our approach iteratively
isolates the root cause through multiple program executions. The approach modifies each execu-
tion in a particular way to reveal more of the memory corruption, until finally the first point of
the memory corruption (the root cause) is revealed. The key idea is that on each execution, the
approach ensures that the original failure is avoided and the program can continue executing. The
modified execution may or may not result in a new program failure. The approach iterates until
either a concurrency bug is found to be the root cause of a failure, or no new program failure is
observed.

Each iteration of our approach specifically involves the following. First, the approach determines
whether a data race, atomicity violation, or order violation concurrency bug is directly involved in
the failure. If so, the approach reports this concurrency bug and terminates. If not, then the memory
corruption that directly caused the failure is suppressed during the execution. Suppression means
that the direct and indirect effects of the program statement that caused the memory corruption
are nullified during execution. Intuitively, the result is as if all of the program statements that
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depend upon the memory corruption in question are simply not executed. Since the failure in this
case will depend upon the suppressed memory corruption, the failure itself will be avoided during
execution, and execution will continue for those statements that do not depend upon any of the
known corrupted memory (that is being suppressed). If another failure occurs during execution,
then this reveals additional, previously hidden memory corruption. The approach then iterates
again to analyze this newly revealed memory corruption. If no new failure occurs in the execution,
then the approach assumes that the last program point at which suppression was carried out
is the root cause. Thus, our approach iteratively reveals more of the memory corruption in an
execution until the first point of corruption (the root cause) is revealed. The approach assumes that
if memory corruption exists in an execution, then the execution will produce a memory-related
failure.

Our overall approach is composed of three main tasks: (1) ensuring that a multithreaded bug
can be faithfully reproduced on multiple program executions; (2) determining on-the-fly whether a
particular statement instance during execution is involved in a concurrency bug; and (3) performing
execution suppression in order to account for propagation of memory corruption during execution.
Our high-level approach is presented in Figure 1. The approach takes as input a single-threaded or
multithreaded program and an associated test case execution that causes a failure in the program.
The output of the approach is either an identified concurrency bug or program statement(s) that is
likely to be the root cause of the failure.

Task 1: Reproducing failures caused by multithreading bugs. When debugging any program, it is
necessary to be able to reproduce a program failure so that a failing execution can be analyzed
to deduce what is going wrong and to figure out how to fix the problem. For single-threaded
(deterministic) programs, it is enough to simply re-execute the program using the same set of input
values. However, for multithreaded programs, being able to trigger and repeat a failure is generally
not a trivial task. This is because certain multithreading bugs may only manifest themselves
under particular thread interleavings, and these interleavings may change between executions
even when those executions are based on the same input values. Since our approach involves
multiple program executions, it is required that each execution be a faithful reproduction of the
original failing execution (except some portions of execution that are necessarily modified by our
approach).

Much research work has been done to identify failure-triggering thread interleavings for in-
house testing [14, 15] or for reproducing concurrency bugs that occur at the end-user side [16–19].
These approaches either provide a bug-triggering control to a runtime system, such as Valgrind
or Pin, or they generate a whole program execution log, to ensure that a failure can be repeatedly
reproduced for debugging. Based on this previous work, our approach provides three ways for
programmers to specify a failing execution that can be faithfully repeated on multiple executions.
We rely on the Valgrind infrastructure [8] for this purpose. Valgrind is a user-space dynamic binary
translation system that provides a synthetic CPU in software for program execution, and includes
its own thread scheduling mechanism that we modified to record a thread interleaving and to force
a particular thread interleaving during execution. The first way a programmer can specify a failure-
triggering thread interleaving to our approach is to provide a whole program execution trace for
the failure. In this case, there is no need to record thread interleavings and subsequent executions
are based on the original trace file and use the same thread interleaving that originally triggered
the bug. Second, a bug-triggering control produced by other tools can be provided. In this case,
Valgrind constrains the choices of the thread scheduler at the relevant control points to ensure that
the failure occurs, while recording the whole execution trace for the failure. The recorded trace
is then used to guide subsequent executions. Finally, since tools to provide such bug-triggering
controls were not available to us, our experimental study made use of a third approach: we inserted
sleep function calls in each program to cause the bug to be triggered, then used Valgrind to
record the failure-triggering thread interleaving in the first run. This recorded interleaving was then
used to guide all subsequent program executions in which the failure needed to be repeated. It is
important to note that in general, merely recording a failure-triggering thread interleaving may not
be sufficient to reproduce a failure. Other environmental factors may need to be recorded as well,
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Figure 1. General approach for isolating a multithreading (or single-threaded) memory bug.

such as data read from an input file, or a value defined as the current system time. However, this
was not required by the programs in our experimental study.

In Figure 1, the task of ensuring multithreaded execution repeatability is performed at line 1,
before the main iterative loop begins. The inputted failure-triggering test case execution is analyzed
to record the information necessary to ensure faithful reproduction of the failure on subsequent
executions. This information is then used on each iteration of the approach to ensure that the
original execution is faithfully repeated.

The main loop of our approach is shown in lines 4–12 in Figure 1. As long as the program
execution ends in a memory failure (loop condition at line 4), our approach analyzes the executed
statement instance that is directly involved in the failure. Identifying this statement instance is
straightforward because the point of the failure is known, and therefore the accessed memory
location(s) causing the failure can also be easily found (lines 5–7). In most cases, there will likely
be a single used memory location directly causing the failure. However, in the case of an array
access directly causing the failure, this can be caused by either the location of the array base
address, or the location of the index into the array. Thus, lines 6 and 7 in Figure 1 operate on
sets to handle such cases. As shown in line 7, our approach targets the last definition(s) (write
access(es)) that directly led to the failure. This statement instance(s) may or may not be involved
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in the actual root cause of the failure, and so our approach attempts to verify this by re-executing
the program (line 8). During re-execution, the next main task of our approach is to determine
whether the last definition(s) in question is involved in a concurrency bug that directly caused the
observed program failure.

Task 2: On-the-fly checking for a concurrency bug directly associated with the program failure.
During program re-execution in our approach (lines 8–11 in Figure 1), memory location accesses
are monitored so that on-the-fly checks can be performed to identify concurrency bugs that may
have caused the program failure. These on-the-fly checks handle three particular kinds of common
concurrency bugs: data races, atomicity violations, and order violations. All of these concurrency
bug checks are made during each program re-execution, but we present them here as separate
algorithms for ease of understanding. We first discuss checks made for data race bugs, and then
later we discuss checks made for atomicity and order violation bugs.

Data race bugs. A data race can be defined as the concurrent access of a shared memory location
by two or more different threads, such that the following two conditions hold: (1) at least one
of those accesses involves a write to that memory location and (2) there is no synchronization
specified between those memory accesses. Intuitively, a data race can lead to such problems as a
value being unexpectedly overwritten or a stale value being read.

Given a target statement instance to analyze that performs a write, our approach determines
whether a data race exists at this statement instance as follows. At this statement instance, it
is known which thread executed the write. Thus, when re-executing the program, the approach
monitors on-the-fly any access to this memory location that comes from a different thread. In
particular, the approach finds the last access (read or write) to this memory location that comes from
a different thread, and checks for any synchronization that may exist between these two accesses
(Section 3 gives more details about how we checked for synchronization in our experiments). If
no synchronization exists, then this implies that there is either a WAR or a WAW dependence
between these two memory accesses that represents a data race. If there is no WAR or WAW data
race here, then the execution continues from this point while the approach monitors for any read
access to the same location coming from a different thread. Again, if there is no synchronization
between two such accesses, this indicates a RAW data race.

Figure 2 shows the pseudocode for this on-the-fly approach for detecting data races. This
accounts for the observation by Tallam et al. [11] that data races can be represented by either
RAW, WAR, or WAW dependencies. Note that in Figure 1, the checking for RAW data races is
done on-the-fly while also performing the suppression.

Our approach detects whether a data race exists and occurred during program re-execution
at the crucial point at which a failure-triggering memory location is last defined. However,
such a data race may not actually be potentially harmful [13]. For example, data races that
do not affect the state of the executing program are not harmful. Therefore, once a data
race is detected by our approach, it is reported only if it is determined to be potentially
harmful, because only then can it possibly be the root cause for the failure (lines 7 and 17 in
Figure 2).

Our approach determines whether a data race is potentially harmful by altering the sequence
of executing threads. Suppose that the two memory accesses involved in a data race are at points
access1 and access2 during execution (in that order), and these accesses are performed by threads
t1 and t2, respectively. Also assume that at points access1 and access2, the values read from or
written to the associated memory locations are, respectively, v1 and v2. The key idea is to re-execute
the program and force the two memory accesses to occur in reverse order, so that access2 in t2
occurs before access1 in t1 during execution. This requires control over the thread scheduler, which
is described in the next section. At the point of the second memory access during re-execution,
the approach checks whether either of the read/written values v1 or v2 are different (have been
changed). If so, the data race is determined to be potentially harmful. If not, then the race is
determined to not be potentially harmful.
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Figure 2. On-the-fly checking for data race bugs.

As an example of a harmful data race, suppose there is a read in thread t1 and a subsequent write
in thread t2 to a particular memory location, and there is no synchronization specified between
these two memory accesses. When the program is re-executed, thread t2’s memory access can be
forcefully scheduled before thread t1’s memory access, causing the write to occur prior to the read.
At the point of the second memory access (which is now the read), it would likely be determined
that a different value will have been read from the memory location, as compared to what was read
from that memory location in the original execution. As a result, the data race would be identified
as potentially harmful.

Atomicity and order violation bugs. Data races occur when two memory accesses to the same
location (with at least one write) are not synchronized, such that there is no strict happens-before
relationship between the two memory accesses. However, in cases where there may indeed be
synchronization between two memory accesses, these two accesses may still not be atomic when
they are expected to be. In these cases, it is possible that an interleaving thread may access the same
memory location in-between the other two memory accesses that were erroneously assumed to be
atomic. This can put the program execution into an unexpected state and is known as an atomicity
violation [12, 20]. Atomicity, also referred to as serializability, means that the data manipulation
effect of multiple concurrently executed actions is equal to a serial version of those actions [12].

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:1259–1288
DOI: 10.1002/spe



1266 D. JEFFREY ET AL.

Such thread interleavings are called serializable interleavings. When the programmer’s atomic
assumption is broken by an unserializable interleaving, we say that atomicity is violated, and an
atomicity violation bug manifests itself. For example, suppose thread t1 reads from a particular
memory location at two different statements during execution, but this thread does not perform
any writes to this location in-between both reads. In this case, one might think that it is safe to
assume the same value would be read at both statements. However, if these two memory accesses
are not specified as being atomic, then an interleaving thread t2 may be unexpectedly scheduled
in-between the two reads, which may then write a value to that memory location. In this case,
the assumed atomicity of the two reads by thread t1 has been violated, and we can refer to this
situation as an R1W2R1 atomicity violation.

For an atomicity violation bug, it is assumed that the bug will be prevented if the atomicity is
enforced. In the previous example with the R1W2R1 atomicity violation, it is assumed that both of
the following memory access sequences will prevent the bug, because they preserve the atomicity
of the two memory accesses that were assumed to be atomic: W2R1R1 and R1R1W2. However, in
certain situations it may turn out that only one of these alternate interleavings will prevent the bug.
This would imply that even though these memory accesses may be synchronized, the problem is
not due to atomicity being violated, but instead, the problem is due simply to the wrong order of
memory accesses. In these cases, we refer to such a bug as an order violation. This occurs when a
programmer assumes an order between two (groups of) operations from two different threads, but
the programmer fails to enforce such an order in the implementation. Eventually, an order violation
bug happens when one of the two (groups of) operations happens before (or after) the other (group
of) operation, inverting the programmer’s assumption [21]. Our approach handles the possibility
of atomicity violations (involving three memory accesses) and order violations (involving two
or three memory accesses) as being the root cause of multithreaded program failures. Note that,
like in other previous work, our approach fails to report atomicity violation bugs involving more
than three memory accesses to the same variable, or memory accesses to two or more different
variables. The same limitations apply to the order violation bugs. However, with these limitations
we were still able to detect all the atomicity and order violation bugs in our experiments.

According to work done by Lu et al. [12], given three accesses to a memory location in which the
middle access is due to an interleaved thread, such that each access is either a read or a write, there
are eight possible distinct memory access sequences. However, the authors show that only four
of these sequences can lead to atomicity violations, because the other four sequences are actually
equivalent to serial accesses in which there is no interleaved thread. The four memory access
sequences that can lead to atomicity violations are the following: W1R2W1, R1W2W1, R1W2R1,
and W1W2R1. Thus, our approach checks for only these particular memory access sequences
when looking for possible atomicity violations. Given a target statement instance to analyze that
performs a write, this write can only occur as the final write in each of the above four sequences.
This is because the target write instruction is always guaranteed to be the last definition of the
memory location prior to the point of the program failure; there can be no later writes to the same
memory location that could have been responsible for the failure. As a result, when looking for a
potential atomicity violation, our approach executes a program up to the target write instruction
instance while simultaneously keeping track of the last memory access to that location by the same
thread, as well as the last memory access to that location by a different thread. Once execution
reaches the target instruction instance, then a check is performed to see whether the W1R2W1
case or the R1W2W1 case occurred. If either case occurs, this is a potential atomicity violation.
If neither case occurs, then execution proceeds while monitoring for subsequent reads from the
memory location in question coming from a different thread. If any such read occurs, then a check
is performed for either the R1W2R1 case or the W1W2R1 case. Either of these cases could suggest
a potential atomicity violation.

In general, these sequences of three memory accesses in which the middle access is interleaved
could represent an atomicity violation, order violation, or no violation at all. However, order
violations may also involve only two memory accesses, similar to the case of data races. The
difference between an order violation and a data race is that two memory accesses in a data race
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Figure 3. On-the-fly checking for atomicity violations and order violations.

are not synchronized, whereas the two accesses in an order violation are synchronized (just in the
wrong order). If our algorithm to handle order violations only considers situations involving three
memory accesses, we may miss some order violation bugs. As a result, in our algorithm to detect
atomicity and order violations on-the-fly, we include a special check at the end of execution for
the case of only two memory accesses being involved in a potential order violation (assuming no
other atomicity/order violations involving sequences of three memory accesses were found during
execution).

Figure 3 shows the pseudocode for this approach to on-the-fly checking for potential atomicity
and order violations. Our approach checks whether a potential violation is a true violation before
reporting it (lines 6, 15, 18, and 21 in Figure 3).

To determine whether a potential violation is a true violation, for the case of three involved
memory accesses, our approach alters the sequence of executing threads by moving the interleaving
thread that occurs between the first and third memory accesses. This is done in two ways. First, the
interleaving thread is performed before the other two memory accesses. Second, the interleaving
thread is performed after the other two memory accesses. This requires two separate program
executions to force each of the two alternate thread interleavings. The effect of these alternate
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thread interleavings is then examined in terms of whether or not the program failure is now avoided.
If both alternate thread interleavings cause the failure to be avoided, then an atomicity violation
is reported because this suggests that the interleaving thread interrupted the assumed atomicity of
the other two memory accesses. If only one alternate thread interleaving causes the failure to be
avoided, then an order violation is reported because this suggests that the order of the memory
accesses may simply be incorrect. Finally, if neither alternate thread interleaving causes the failure
to be avoided, then no violation is reported. In the case of only two involved memory accesses
representing a potential order violation, then one additional program execution is performed to
force the alternate memory access order; if the program failure is then avoided, an order violation
is reported.

Task 3: Performing execution suppression. The final task performed by our approach is to carry
out execution suppression. This occurs in the event that the write statement instance(s) directly
causing a failure is not found to be associated with any data race, atomicity violation, or order
violation concurrency bug. Suppression is performed simultaneously with monitoring memory
accesses during execution for on-the-fly checking of some concurrency bugs (line 11 in Figure 1).

Suppression is performed because the approach does not initially know whether the memory
corruption directly causing a failure is associated with the root cause, or whether this memory
corruption is due simply to propagation. Suppression allows the approach to determine which case
is more likely. To perform the suppression, the approach continues execution from the corrupted
definition (from the point at which the algorithm had left off in line 8 in Figure 1). During this
execution, the approach suppresses the effect of the corrupted definition statement instance by
simply not executing that statement. Additionally, any other statement instances that directly or
indirectly depend upon the first suppressed statement instance are themselves suppressed. Finally,
any other statement instances that were suppressed during prior iterations of the approach are
suppressed as well. By performing suppression in this way, the failure observed in the execution
is guaranteed to be avoided, because the failure depends upon the suppressed statement instances.
If no additional failures occur during the execution, then the most recently suppressed statement
instance(s) is likely to be associated with the root cause, and is reported (line 13 in Figure 1).
This is because the absence of a failure indicates that there is likely no more memory corruption
present in the execution. On the other hand, if another failure occurs, this implies that memory
corruption remains in the execution and so the root cause has still not yet been revealed. In this
case, the approach iterates again (back to line 4). Note that while suppression is being carried out,
any necessary checks for concurrency bugs at the point of a memory access are performed before
the associated statement instance is potentially suppressed.

Comments about our approach. Our approach is designed to effectively locate the root causes
of memory-related program failures for single-threaded as well as multithreaded programs. The
approach accounts for three important types of concurrency bugs: data races, atomicity violations,
and order violations.

An important requirement of our approach is that it assumes a failure-triggering thread inter-
leaving is specified as the input. The current work does not focus on how to initially identify
such an interleaving, but existing techniques can be used for this purpose. For example, Sen et al.
have done work [22–24] on random testing for data race and atomicity violation detection, which
involves choosing thread schedules at random. This technique can be used to automatically search
for failure-triggering thread interleavings. Related work was done by Edelstein et al. [25], in which
a Java program is randomly seeded with sleep, yield, and priority primitives at particular
program points, and during runtime, decisions are made as to whether or not these primitives are
executed. Similarly, the work by Lu et al. [26] proposes a hierarchy of concurrent program thread
interleaving coverage criteria that can be used to systematically explore the interleaving space and
effectively expose concurrency bugs.

Another important requirement of our approach is that a memory-related failure must manifest
itself in such a way that it directly reveals a corrupt memory location. This can occur when a
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program crashes at the point at which a corrupt memory location is accessed. Our work focuses
on these kinds of failures because they allow us to easily and automatically identify a corrupt
memory location at the point of a failure. For other kinds of failures, such as incorrect program
output, assertion violations, or raised exceptions, our approach can apply if there is a way to
automatically link the failure to a corrupt memory location. In general, however, this may be
difficult or even impossible for certain instances of these kinds of failures, because they may
not involve memory corruption or they may not be readily linked to a corrupt memory location.
Therefore, we cannot claim that our approach applies to these other kinds of failures in general.
Also, since our approach only works for memory-related program failures that are caused by
memory corruption, our approach cannot be used to identify memory leak errors. A memory leak
is a type of memory error in which unnecessary allocated memory is never freed; this type of error
does not involve corruption of memory during execution.

Our approach for checking whether a data race is potentially harmful, or whether a potential
atomicity or order violation is a true violation, involves re-executing the program and altering the
sequence of executing threads to change the relative order of the involved memory accesses. This
approach—while relatively simple and working effectively in our experiments—can lead to both
false positives and false negatives. For example, an identified data race involved at the point of
a known corrupt memory location might indeed be potentially harmful, but may not necessarily
be the root cause of a failure (though it may be something worthwhile for a developer to check
in case it can lead to other failures). Also, forcefully altering the sequence of executing threads
may sometimes put the execution in an unexpected state, such as when a thread needs to be
forcefully scheduled when it may not normally have been executable. This can make it appear that
a concurrency bug is harmful when it may not actually be. Moreover, in the case of concurrency
bugs that involve more complicated thread interleavings than those considered, our approach may
miss these concurrency bugs. Using more accurate concurrency bug detection techniques would
likely require more runtime cost, but we chose the current approach for its simplicity, and because
it worked effectively for our experimental subjects.

Since our approach may sometimes identify more than one used memory location that could
be directly responsible for a program failure, our approach may output more than one statement
as the likely root cause of the failure. Although we do not expect that this situation will be very
common in practice, it should be noted that when it does occur, then a user may have to examine
more than one outputted statement to identify the true root cause.

Finally, it is possible that our approach may terminate prematurely in cases where memory
corruption exists in an execution but does not cause the program to exhibit a failure. In cases such
as this, our approach will identify a statement that is likely to be closer to the root cause than the
point of the original failure, but it may not be the root cause itself.

2.2. Illustrative example

Example part 1: failure is caused by a data race bug. Consider the example multithreaded code
snippet shown in Figure 4. In this piece of code, x and y are pointers to shared memory locations,
each containing an integer. Lines 1–2 are erroneously not protected in a critical section, despite
the fact that they involve a read and subsequent write to shared location x . A potentially harmful
data race, therefore, exists at this point. Lines 3–4, which involve a write and subsequent read to
shared location y, are protected by a critical section. However, the write into location y at line 3
may write the wrong value, due to the data race in lines 1 and 2 involving location x . Since *y is
then used as an index into an array in line 4, there is potential for a crash at this point. Similarly,
there is potential for a crash at line 5, which uses *x as an array index. In this example, we will
assume that these potential crashes will in fact occur during execution.

If the example code is executed using two parallel threads, the execution may end in a failure
(crash) as depicted in Figure 5(A). In this execution, thread 1 executes line 1 first, then this is
immediately followed by thread 2 executing line 1 (this is possible since lines 1–2 are not protected
by synchronization). In this case, thread 2 reads a stale (incorrect) value from location x , since it
was expected that this read would not occur until after thread 1 updates x in line 2. Next, thread
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Figure 4. Example multithreaded code snippet with a data race bug.

2 writes to x in line 2; this writes an unexpected value to x since this value is computed using
the stale value for x read from the same thread in line 1. Now, thread 1 resumes and writes to
x in line 2; again, this writes an incorrect value to x since it is computed using an unexpected
value for x obtained from the write in thread 2. If thread 1 continues executing, line 3 reads the
wrong value for x and then defines an incorrect value for y, which is then used in line 4. At line
4, execution crashes due to a buffer overflow.

Since the array index *y is directly related to the crash at line 4, our approach determines that
the last definition of this location occurred at line 3. The next iteration of our approach is shown
in Figure 5(B). During this execution, it turns out that there is no data race involved at line 3. This
is because there are no prior accesses to location y before line 3 (so it is not involved in any WAR
or WAW dependence), and there is no subsequent read from location y after line 3 from another
thread that is not protected by synchronization. Similarly, there are no potential atomicity or order
violations involved here. Thus, the definition of y at line 3 is suppressed, and the definition of b at
line 4 is also suppressed since it uses the suppressed definition at line 3. Thus, the original crash is
avoided. Now, execution continues as thread 2 resumes and executes lines 3 and 4 (these lines are
not suppressed in this execution since they do not depend on the previously suppressed instances
of lines 3 and 4 from the other thread). A crash occurs at this new instance of line 4 in thread
2. Again, the last definition of y is at line 3. During the next execution, shown in Figure 5(C),
there is again no concurrency bug detected at this point. Lines 3 and 4 are then suppressed in the
execution of thread 2. Now, execution is able to reach line 5 in thread 2. A crash occurs here due
to the use of incorrect *x as an array index.

Our approach determines that the last definition to location x occurred at line 2 of thread 1. The
next execution is shown in Figure 5(D). When control reaches line 2 of thread 1, a data race check
is first performed. In this case, it is discovered that the last access to location x by another thread
is the write in line 2 of thread 2. Since there is no synchronization specified between these two
memory accesses, our approach identifies a data race at this point (WAW dependence). Next, the
approach checks whether this data race is potentially harmful. In the original execution, thread 2,
line 2 is executed before thread 1, line 2. Thus, our approach re-executes the program and forces
thread 1, line 2 to be executed before thread 2, line 2 (the reverse order). This effectively alters the
interleaving of these two threads so that the behavior matches what is expected. As a result, the
value written into location x at the second access is now changed, and the data race is determined
to be potentially harmful. This data race, which is associated with the true root cause of the failure,
is then reported.

Example part 2: failure is caused by a non-concurrency bug. Suppose we slightly modify the
example code from Figure 4 to obtain the example code in Figure 6. This example is identical to
the previous example, except that in this case, we have added lines −1 and 0 to the beginning of
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Figure 5. Example executions for running approach with a data race bug, to accompany Figure 4.

the code snippet, and line 6 to the end of the code snippet. Line −1 defines a shared variable z to
be an incorrect constant value (this is the root cause of the failure), which in turn is used in line
0 to initialize x to an incorrect (also constant) value. Line 6 involves an assertion that ensures z
contains the correct value; if not, then the program terminates with an error at this point. Note that
the same data race exists here as in the previous example. However, we assume in this case that
for the constant value used to define location x in line 0, the value returned by the call to f oo in
line 1 is actually 0. Then in this situation, the data race left over from the previous example is not
potentially harmful. This is because the value written into location x at line 2 does not change the
constant value *x , and this is true for all threads, regardless of the thread interleaving.

Now consider running our approach on this modified example. Suppose that the original execu-
tion and the first two re-executions are the same as how they appear in Figures 5(A)–(C) (with the
only minor difference being that lines −1 and 0 now precede execution of line 1 in each of the
two threads). The crashes at lines 4 and 5 from the previous example can still occur in the current
example because location x still contains an incorrect value in the current example.

The approach eventually gets to the end of the second re-execution as shown in Figure 5(C).
Then the crash at thread 2, line 5 directly depends upon the store to location x in thread 1, line 2.
The next execution, shown in Figure 7(A), is where the behavior of the approach in this example
differs from the previous example. In this execution, control reaches thread 1, line 2. The same
data race as was found in the previous example is also found here. However, in this case the data
race is found to not be potentially harmful, as was explained earlier. Similarly, another data race is
found here, which is a RAW race involving the write in thread 1, line 2, and the subsequent read in
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Figure 6. Example multithreaded code snippet with a non-concurrency bug.
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Figure 7. Example executions for running approach with non-concurrency bug, to accompany Figure 6.
Assume that the original execution and the first two re-executions are similar to those in Figures 5(A)–(C).

thread 2, line 3. However, again this race is found to not be potentially harmful, since the write to
location x in line 2 does not actually change its value. Thus, no potentially harmful data races are
identified here. There are also no atomicity or order violations identified by the approach, so the
approach continues by suppressing the definition of x at thread 1, line 2, and anything dependent
upon it. This allows execution of thread 2 to arrive at line 6, which crashes because the sanity
check for the value in location z fails (since z contains an incorrect value). The last definition of
location z occurs at thread 2, line −1.

In the next execution, shown in Figure 7(B), control arrives at thread 2, line −1. In this case, there
exists a previous access to location z from the other thread (thread 1, line −1), so there is a data
race involved here represented by a WAW dependence. However, since z is initialized to a constant
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Figure 8. High-level design for the implementation of our approach. Arrows
represent interactions between components.

value, again this data race is not potentially harmful. There are no additional subsequent reads of
z prior to the point of the crash, so there are no RAW data races at this point. Similarly, there
are no atomicity or order violations associated with location z. Thus, the approach continues by
suppressing the definition of z in thread 2, line−1, and all of the subsequent statement instances that
are dependent upon it (including all of the statement instances suppressed in previous iterations).
In this example, all remaining executed statements in both threads are suppressed, resulting in no
more program failures. The approach then terminates and identifies statement −1, the statement
associated with the most recent point of suppression, as the root cause of the failure.

3. IMPLEMENTATION

The high-level design of our approach is shown in Figure 8. Our implementation is primarily written
in C within the Valgrind infrastructure [8]. Valgrind is a user-space dynamic binary translation
framework that provides a synthetic CPU in software for program execution. Valgrind allows
a program to be dynamically instrumented and modified at runtime. Since Valgrind allows for
modifying an execution at the binary instruction level, our implementation also works at this
level. We map the results of our approach back to the associated program statements (in the
source code) prior to reporting them to the user. Also, we assume that the multithreaded programs
under consideration are run on a single-processor system, so that only one thread is running
at any given time.

The Valgrind infrastructure we used is composed of three components: (1) the Valgrind Core,
which is the core functionality already provided by Valgrind; (2) the Failure Repeatability Compo-
nent, which is a component we implemented within Valgrind that ensures a failure in a multithreaded
execution can be repeated on subsequent executions; and (3) the Suppression and Concurrency
Bug Detection Tool, a tool we implemented to carry out a program execution while performing
the tasks necessary to conduct execution suppression as well as on-the-fly concurrency bug detec-
tion. Finally, a fourth component implemented outside of Valgrind called the Approach Driver
Program works in conjunction with Valgrind to actually run our approach. We now describe some
implementation details for each of these components.

The Valgrind Core. Because Valgrind provides a synthetic CPU in software for program execution,
it includes its own thread scheduler. We customized the thread scheduler in the Valgrind core
to work in conjunction with the Failure Repeatability Component to ensure that the order in
which threads are scheduled in a failing execution is repeated on subsequent executions. In our
experiments, this ensured that the same failure could be repeated on multiple program executions.
This is because we preserved the sequence of scheduled threads on each execution, and for our
experimental subjects, no other environmental information needed to be recorded in order to
ensure that a failure could be repeated. The Valgrind Core also works with the Suppression and
Concurrency Bug Detection Tool to ensure that particular thread interleavings can be forced as
necessary to check for harmful concurrency bugs.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:1259–1288
DOI: 10.1002/spe



1274 D. JEFFREY ET AL.

The Failure Repeatability Component. This component works in conjunction with the Suppression
and Concurrency Bug Detection Tool and the Valgrind Core to ensure that a failure can be repeated
on multiple program executions. This component works as follows. First, it is assumed that a failing
execution (with corresponding thread interleaving) is inputted to our approach. In our experiments,
this was actually done by adding sleep function calls to the program execution as necessary to
ease repeats of the failures. When the Suppression and Concurrency Bug Detection Tool carries
out a failing execution for the first time, the Failure Repeatability Component records the order in
which threads are scheduled during the execution. Then, for all subsequent executions conducted
by our approach to isolate the same bug, this component communicates with the Valgrind Core
to guarantee that the threads are scheduled in the same order as in the original execution. This
is accomplished by forcing the thread scheduler in Valgrind to schedule threads according to our
own specified schedule.

To ensure a failure could be repeated in our experiments, it was sufficient to record only the
thread interleaving of the original failing execution. In general, however, other environmental
information associated with the original failing execution may also need to be recorded.

The Suppression and Concurrency Bug Detection Tool. We implemented this tool within the
Valgrind infrastructure to handle the two main tasks required for each program execution in our
approach: (1) execution suppression and (2) on-the-fly concurrency bug detection. The tool takes
as input a program with thread interleaving for a failure-triggering execution, a set of instruction
instances whose effects should be suppressed during execution (called ‘suppression points’), and
a target write instruction instance (with associated memory location and value, and the ID of the
thread performing the write) that must be checked to determine whether it involves a potentially
harmful data race, atomicity violation, or order violation.

Execution suppression. To perform execution suppression, the Suppression and Concurrency Bug
Detection Tool performs tracing in addition to performing the suppression itself. The tracing is
required to see which memory locations are accessed and when, to determine the latest definition
that directly causes a failure. The suppression is required to nullify the effects of the appropriate
instructions during execution.

For tracing during a given execution, the tool records a trace of the memory locations accessed
(loaded from and stored to) during the execution. To do this, the tool instruments each non-
suppressed load and store instruction to record the current program counter, its associated instance
number, the type of instruction (i.e. load or store), and the address of the accessed memory
location. This information makes it possible, at the point of a failure, to identify the accessed
memory location that directly caused the failure, and the corresponding instruction instance that
last defined this memory location. The identified instruction instance can then be added to the list
of suppression points for the next iteration of the approach, if necessary.

For suppression during a given execution, the Suppression and Concurrency Bug Detection Tool
performs ‘suppression information flow tracking’ at all instructions, as well as ‘actual suppression’
at the appropriate load and store instructions. To do the suppression information flow tracking,
the tool associates every memory location and register with a shadow location that contains
information about whether or not the associated location needs to have its effects suppressed
during the execution. Initially, all memory locations are marked as ‘not suppressed’. Memory
locations first become ‘suppressed’ when they are used in an instruction instance that is specified
as a suppression point. At an instruction instance, if at least one of the used memory locations or
registers is marked as ‘suppressed’, then any defined memory locations or registers are also marked
as ‘suppressed’. On the other hand, if none of the used locations are marked as suppressed, then
any defined locations are marked as ‘not suppressed’. Tracking this information during execution
ensures that any instruction instance that directly or indirectly uses a suppressed location can have
its effects suppressed as well.

Besides tracking suppression information, ‘actual suppression’ is performed at memory load
and store instructions. At a store instruction instance that uses a suppressed location, the effect
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of the store is suppressed by not writing to the destination location. The effect is as if the store
never occurred and the destination location retains whatever value was originally contained there.
Similarly, for a load instruction instance that uses a suppressed location, the load is suppressed by
not reading from the source location. The effect is as if the load never occurred and the destination
register being loaded into retains whatever arbitrary data was originally contained there. Note that
this arbitrary data will never be used since anything affected by it would be suppressed as well.

When suppressing, it is possible that a memory location marked as ‘suppressed’ can be used in
a conditional check. In this case, our implementation suppresses the entire conditional structure
associated with the conditional check. This is because all statements contained within the condi-
tional structure are dependent upon the suppressed location. Special consideration is also made
in the event that the return address of a function call is marked as ‘suppressed’. In this case, our
implementation relies on profiling information to force the function to return to a known, valid
address. Finally, our approach refrains from making system calls when at least one of the input
values for a system call is suppressed.

On-the-fly concurrency bug detection. Our implementation accounts for detection of data races,
atomicity violations, and order violations, as being the possible root causes of memory-related
program failures.

Our algorithm for on-the-fly checking for data races was previously shown in Figure 2. To
implement this, the approach requires as input a target write instruction instance i , with information
about the thread t that performs the write, whose memory location l is written, and the value v

contained in the memory location after the write. During execution, all load and store (i.e. read and
write) instruction instances executed prior to the target write instruction instance are instrumented
as follows: if the accessed location is l and the thread performing the access is different than t ,
then the current instance is saved as the most recent access to l from a thread other than t , and
a global flag sync is set to false, indicating that no synchronization on accesses to l has yet been
found. Later, if another instruction instance is executed that accesses l by a thread other than t ,
then all prior access information will be discarded and only information about this most recent
access will be recorded. If any synchronization point related to l is encountered during execution,
then the flag sync is set to true. When execution eventually reaches the target instruction instance i ,
then the approach knows which instruction instance last accessed the associated memory location
from another thread, and whether any relevant synchronization was encountered between the two
memory accesses. As a result, the approach can easily determine at this point whether a WAR or
WAW data race is involved. Next, the approach sets the sync flag to false, and resumes execution
at the instruction instance immediately following i . Again, if any synchronization related to l is
encountered during execution, then sync is set to true. In the event that a load (read) occurs from
location l by a thread other than t , and the sync flag is false, then a RAW data race has been found.

When we instrument the executing program in our implementation, we assume that synchro-
nization points are clearly marked in the program so that they can be easily identified. For our
experiments, it was sufficient to automatically monitor for standard library function calls related
to synchronization via locks (such as those provided by the pthread API). However, in general
other kinds of synchronization may exist, including user-defined synchronization such as flag or
barrier synchronization. Being able to accurately detect synchronization during execution can have
a significant impact on the accuracy of the data race detection results. Thus, for other programs
that may involve user-defined synchronization that is not explicitly marked in the code, existing
techniques may need to be incorporated into our approach in order to automatically and accurately
detect this synchronization. Tian et al. [27, 28] have recently described a dynamic technique to
accomplish this.

Our algorithm for on-the-fly checking for atomicity and order violations is shown in Figure 3.
The implementation here is similar to that of data race checking in terms of how the program
is instrumented at runtime, with a few important differences. First, there is no need to check
for synchronization points because atomicity/order violations may involve synchronized memory
accesses (unlike data races in which memory accesses must not be synchronized). Next, since
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atomicity violations involve sequences of three memory accesses, then for a given target
write instruction instance, the approach needs to monitor for two other accesses to that same
memory location (not one other access like for the case of data races). Also, since order
violations may involve sequences of two memory accesses, they may not be captured when
sequences of three memory accesses are considered. As a result, once the end of execution is
reached and no violations have yet been found involving sequences of three memory accesses,
then a special check is performed for possible order violations involving only two memory
accesses.

In our implementation, if any data race is detected, then it is checked to determine if it is
potentially harmful before being reported as the root cause for a failure. Similarly, if any potential
atomicity or order violation is detected because it involves a certain sequence of memory accesses,
then it is checked to determine if it is a true violation before being reported. In both cases, this
is implemented by re-executing the program and altering the sequence of executing threads such
that the relative order in which the involved memory accesses occur during execution is changed.
This is possible since the Suppression and Concurrency Bug Detection Tool is implemented
within the Valgrind infrastructure, which gives us control of the thread scheduler during program
execution. Importantly, when altering the relative order of involved memory accesses, any associated
acquirements/releases of locks around these memory accesses have to be moved correspondingly
to avoid deadlock. For data races, we execute the program one additional time and force the two
involved memory accesses to occur in reverse order. For atomicity and order violations involving
three memory accesses in which the middle access is from an interleaved thread, we execute the
program two additional times, once each for moving the interleaved thread either before or after
the other two memory accesses. For the special case of an order violation involving only two
memory accesses, this is checked in the same way as for data races, by executing the program
one additional time and reversing the relative order of the two accesses. The approach then checks
whether the behavior of the program under the alternate thread interleavings indicates a harmful
data race or violation, and reports the concurrency bug if so.

The Approach Driver Program. This is the main driver program for carrying out our approach.
Given a faulty program and an associated thread interleaving that causes a failure, this program
invokes the Suppression and Concurrency Bug Detection Tool initially using an empty set of
suppression points and no specified target instruction instance. The Suppression and Concurrency
Bug Detection Tool then records memory access tracing information from the execution, and
simultaneously invokes the Failure Repeatability Component to record the order in which threads
are scheduled during execution. Based on this information, an initial suppression point (and a target
write instruction instance at which to search for a concurrency bug) is identified. This information
is then passed to another invocation of the Suppression and Concurrency Bug Detection Tool. If no
concurrency bug is reported but another failure occurs, then the process iterates again. Eventually,
either a concurrency bug will be reported as the likely root cause, or else the execution will
terminate without any failure, in which case the most recent suppression point is reported as the
likely root cause.

4. EXPERIMENTS

To study the effectiveness of our approach in isolating the root causes of multithreading bugs
that involve memory corruption, we selected a set of multithreaded programs and their associated
bugs as shown in Table I. This set of programs involves six data race bugs (one in apache,
two in pbzip2, two in mysqld, and one in mozilla), two atomicity violation bugs (one in
mysqld and one in mozilla,), one order violation bug (in mozilla), as well as four other
memory bugs: one uninitialized read (in mysqld), as well as three stack buffer overflows (in
programs prozilla and axel). We selected these subject programs because they are relatively
well known and widely used, and they are multithreaded (although not all executions of each
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Table I. Subject programs and their associated bugs used in our experiments.

Program # Lines
name of code Program description Root cause of failure

apache 191K HTTP server (ver. 2.0.48) Data race [29]
pbzip2-1 2K Parallel file compressor (ver. 0.9.4) Data race [30]
pbzip2-2 2K Parallel file compressor (ver. 0.9.4) Data race [15]
mysqld-1 924K MySQL database server (ver. 5.1.25) Data race [21]
mysqld-2 508K MySQL database server (ver. 3.23.56) Data race [31]
mysqld-3 508K MySQL database server (ver. 3.23.56) Atomicity violation [32]
mysqld-4 508K MySQL database server (ver. 3.23.56) Uninitialized read [33]
mozilla-1 2647K Web browser (ver. 1.9.1) Data race [34]
mozilla-2 1433K Web browser (ver. M11) Atomicity violation [12]
mozilla-3 2454K Web browser (ver. 0.9.9) Order violation [35]
prozilla-1 16K Download accelerator (ver. 1.3.5.1) Stack buffer overflow [36]
prozilla-2 16K Download accelerator (ver. 1.3.5.1) Stack buffer overflow [37]
axel 3K Download accelerator (ver. 1.0a) Stack buffer overflow [38]

Table II. Results for isolating the root causes of the bugs in our experiments.

Program # Executions required Max # entries # Threads Identifies
name (orig+supp+race+vio) in trace (size) created root cause?

apache 3 (1+1+1+0) 16.3M (391MB) 28 Yes
pbzip2-1 3 (1+1+1+0) 18.7M (468MB) 10 Yes
pbzip2-2 3 (1+1+1+0) 29.1M (749MB) 10 Yes
mysqld-1 3 (1+1+1+0) 4.5M (112MB) 10 Yes
mysqld-2 3 (1+1+1+0) 2.2M (51MB) 5 Yes
mysqld-3 4 (1+1+0+2) 2.1M (51MB) 5 Yes
mysqld-4 2 (1+1+0+0) 2.1M (50MB) 4 Yes
mozilla-1 3 (1+1+1+0) 15.7M (394MB) 3 Yes
mozilla-2 4 (1+1+0+2) 23.4M (585MB) 3 Yes
mozilla-3 4 (1+1+0+2) 39.5M (987MB) 2 Yes
prozilla-1 2 (1+1+0+0) 2.1M (52MB) 1 Yes
prozilla-2 4 (1+3+0+0) 0.75M (18MB) 1 Yes
axel 3 (1+2+0+0) 0.27M (6MB) 1 Yes

program necessarily involve more than 1 thread). Further, the bugs we selected for our experiments
are real errors that have been discovered in practice.

For each of the 13 bugs listed in Table I, we identified an execution that would trigger the
bug. This execution was provided as the input to our execution suppression approach to try to
isolate the root cause. The results for each of our 13 analyzed bugs are shown in Table II. In this
table, the first column shows the program name. The second column shows the total number of
executions required by our approach to isolate the root cause. This number is broken down into four
components: the original execution to trigger the failure (‘orig’, which is always 1); the number of
suppression executions required to detect concurrency bugs and/or carry out suppression (‘supp’);
the number of re-executions required to force a different thread interleaving to check whether a
detected data race is potentially harmful (‘race’); and the number of re-executions required to check
potential atomicity/order violation bugs to see if they are true violations (‘vio’). The third column
in the table shows the maximum trace length recorded by our approach among all re-executions for
each benchmark program. The number of entries is specified in millions; each entry contains the
relevant information necessary to be recorded at each load and store instruction during execution
(the values in parentheses are the number of megabytes of space required to store these traces).
The fourth column in the table shows the total number of threads created during execution. The
fifth column describes whether the true root cause is identified by our approach. We now describe
the results for each of our analyzed bugs in detail.
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Program apache. In this subject program, there is a data race bug in which there is a write to
a buffer, followed by an update to a buffer count variable. These two memory accesses involve a
shared variable that is not protected in a critical section. Further, this piece of code is related to
writing information to a server log. In the event that multiple requests are writing to the server log
simultaneously, it is possible that the data in the server log will get corrupted due to the data race.
In this case, the root cause can be represented by either a WAR or a WAW data race associated
with the unprotected instructions.

When our approach is run on this program using two conflicting requests that trigger the bug,
a failure occurs when the server log is found to be corrupted. The associated instruction instance
of the corrupting write to the log is identified. This instruction instance uses two variables, a
pointer to the buffer itself, as well as a count variable. Since either of these can be corrupted, our
approach identifies the last instruction instances in the execution in which these two variables were
defined. It turns out that the count variable was last defined in the update instruction mentioned
above that is associated with a data race. Our approach then performs the first re-execution in
which concurrency bug detection (and possibly suppression) will be carried out. The first target
instruction reached during the execution is the update to the buffer count variable. At this point,
the approach determines that the last access to this shared variable by a different thread occurs
at the same instruction (but an earlier instance), representing a WAW dependence. Further, there
is no synchronization between the executions of these two accesses, so a data race occurs here.
The approach performs one more execution to force the different thread interleaving to occur,
and determines that the final value in the shared variable in question, has changed at the point
of the second memory access. As a result, the approach determines that the identified data race
is potentially harmful, and reports it to the user. This data race is in fact directly associated with
the expected root cause of the failure. Overall for this subject program, even though the execution
involved 28 threads in total, there were only three program executions required by the approach:
the original execution to repeat the failure, the first suppression execution in which a data race
was detected, and a final execution to determine that the data race was potentially harmful.

Program pbzip2-1. In this subject program, there is a data race bug in which one writer thread
writes NULL to a shared heap object named fifo, but fails to acquire a lock on this shared object.
Meanwhile, another reader thread (which has the correct lock) reads from this shared object. The
program can crash when the reader thread attempts to access this shared object after the writer
thread has unexpectedly nullified the object. In this case, the programmer has wrongly assumed
that all reader threads will finish before the writer thread executes.

When applying our approach on bug-triggering input for this program, the program crashes
when the reader thread tries to access the shared heap object fifo, which has unexpectedly been
nullified by the writer thread. It is determined that the last definition (write access) of fifo occurs
when the writer thread nullifies it. Our approach then re-executes the program to search on-the-fly
for concurrency bugs while also carrying out suppression as necessary. Once execution reaches the
identified definition of shared object fifo where it is prematurely nullified, then it is determined
that the last access to this shared object by a different thread happens to be an earlier read operation
in the reader thread. In this case, there is no synchronization between the earlier read and the
current write, since the writer thread fails to acquire the correct lock on the object, even while the
reader thread has the correct lock. Thus, this is a data race representing a WAR dependence. Our
approach next executes the program a third time and forces the write to fifo in the writer thread
to be executed before the associated read in the reader thread. This alternate thread interleaving
causes the resulting value within the shared object to change, so the data race is determined to
be potentially harmful and is reported to the user. In this case, the reported data race is indeed
associated with the root cause of the failure because it involves the unexpected nullification of
object fifo by the writer thread, which fails to acquire the necessary lock on the object.

Program pbzip2-2. This subject program has a similar data race bug to that in program
pbzip2-1. Here, a main writer thread performs resource deallocation, nullifying a shared
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condition variable named fifo->notFull. Later, a reader thread attempts to access this shared
condition variable, resulting in a program crash since the shared variable was previously unex-
pectedly deallocated. Synchronization is missing between these two memory accesses.

When our approach is run on this program with input to decompress one large file that will
trigger the bug, the program crashes when the reader thread tries to access the condition variable
fifo->notFull that was previously deallocated by the main writer thread. On the next execution
that monitors for concurrency bugs and performs suppression as necessary, execution reaches the
point of the last definition of fifo->notFull, in which the variable is nullified. At this point, it
is discovered that the last access to this shared variable by a different thread occurs from a reader
thread, and there is no synchronization between these two memory accesses. The next execution
forces these two memory accesses to occur in reverse order, and the data race is reported because
it is determined to be potentially harmful.

Program mysqld-1. This program involves a crashing data race bug. One thread accesses a
shared variable named thd->proc info after first testing to ensure that it is not NULL. However,
after the NULL test but prior to accessing the variable, another thread can unexpectedly assign NULL
to this shared variable, causing a program crash when NULL is then subsequently dereferenced.
The problem can occur here because there is no synchronization specified around these memory
accesses.

When our approach is run on this program using three simultaneous client connections, the
program crashes when one thread accesses variable thd->proc info, immediately after another
thread unexpectedly nullifies it. The last definition of this accessed memory location occurs when
it is unexpectedly nullified. When our approach re-executes this program, execution reaches the
unexpected NULL definition of variable thd->proc info. At this point, it is found that the last
access to this location from another thread is when it is tested to determine if it is NULL. Since
there is no synchronization between these two accesses, this represents a WAR data race. On the
next execution of our approach to determine the potential harmfulness of this data race, the NULL
definition of the shared memory location is forced to occur before the NULL test by the reader
thread. This results in a modified program state so the data race is determined to be potentially
harmful and is reported.

Program mysqld-2. In this program, there is a data race bug in which a close and subsequent
open of a log file is correctly protected in a critical section, while a read to the log file status is
unexpectedly interleaved in-between these two operations because it does not acquire the appro-
priate lock. This kind of data race is called an asymmetric race [39], which occurs when one thread
correctly protects a shared variable using a lock, while another thread accesses the same variable
without correct synchronization. The interleaving read in this case checks the log file status to
determine whether it is open or closed, and if open, then writes some messages to the log. It is
possible with two conflicting threads that one thread closes the log file, but before re-opening it,
another thread notices that the log is closed and therefore does not write its messages to the log.
The effect is that some database updates may be silent and will not be recorded in the log.

When executing our approach on bug-triggering input for this program, a failure occurs when it
is determined that the log file is closed when it was expected to be open. Our approach determines
that the last definition (write access) to the log file status occurred when the log file was closed. On
the next execution of our approach, execution proceeds until it reaches the point at which the log
file is marked as closed. At this point, it turns out that there are no prior accesses to this variable
from a different thread (only from the same thread), so there are no WAR or WAW data races, and
no atomicity or order violations, up to this point. Thus, execution continues from this point while
performing suppression and also monitoring accesses to this variable for possible RAW data races
and other violations. Once execution reaches the point at which the log file is accessed (read)
and determined to be closed, then our approach discovers that no synchronization was specified
between the current point and the last point at which the log was marked as closed (by a different
thread). Thus, a RAW data race is detected at this point. Next, the approach executes the program
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again and forces the update to the log to occur before the log is closed by the other thread. It turns
out that this new interleaving changes what is contained in the log, so it is determined that the
RAW data race is potentially harmful, and it is reported as the root cause of the failure.

Program mysqld-3. In this program, there is an atomicity violation bug in which an update to
the database state and an associated update to the log file are not protected in a critical section.
When two requests are being handled simultaneously, the effect of this bug is that the order of
entries in the log file may not match the actual order in which updates occurred to the database.

When our approach is run on this program using two simultaneous connections that trigger the
bug, a failure occurs when it is determined that the log entries have become out of order. For this
subject program, we treat the log itself as shared memory, so our approach identifies the last write
to the log that caused the out-of-order entry. It is assumed that this write has been corrupted in
some way. During re-execution, the program proceeds while the approach monitors for accesses
to the log to look for possible concurrency bugs. In this case, the involved memory accesses are
protected by proper synchronization, so no data races are detected. However, a potential violation
is detected that involves two memory accesses from one thread, interleaved by the offending write
from another thread that causes the out-of-order log. Our approach then executes the program two
additional times, each time forcing the interleaved access to occur either before or after the other
two memory accesses. It turns out that both of these executions cause the log file entries to become
in proper order, so the potential violation is determined to be a true atomicity violation, and is
reported as the root cause of the failure.

Program mysqld-4. In this program, there is a memory bug in which the act of loading data
from an input file into a database table can cause a segmentation fault, if no database has been
first selected. The bug in this case is an uninitialized read of the variable thd->db that should
be associated with an open database, but is instead unexpectedly NULL.

When our approach is run on bug-triggering input for this program, it is determined that a
segmentation fault occurs at a call to strlen when the pointer passed to it is NULL. Our approach
determines that the last definition of thd->db occurs at an earlier instruction instance in the
execution. When our approach re-executes the program, control reaches the initial definition of
the NULL variable. At this point, our approach determines that there are no prior accesses to this
variable from other threads, so there are no concurrency bugs up to this point. Thus, execution
continues until it reaches the point of the second memory access (the read of the value NULL).
Our approach determines that the write and subsequent read are from two different threads, but
in this case, there exists specified synchronization between the two memory accesses, so no RAW
data race occurs here. No potential atomicity or order violations occur here either. Thus, execution
continues by suppressing all instruction instances directly or indirectly affected by this NULL value.
It turns out that at the end of this execution, no additional failures occur. Thus, the definition of
the NULL value is reported as the root cause of the failure. This can help developers to understand
that the execution unexpectedly tried to dereference the value NULL that was defined at this point.

Program mozilla-1. This program contains a data race bug in the mozilla Javascript engine.
The program can crash when a thread nullifies a shared pointer variable, which is followed by a
dereference of this pointer by another thread.

When our approach is run on this program using two threads that trigger the bug, the Javascript
engine crashes when one thread tries to access shared pointer rt->scriptFilenameTable,
which was previously deallocated by another thread. On the next iteration of our approach, execution
reaches the point at which variable rt->scriptFilenameTable was last defined (where it
was assigned the value NULL). At this point, it is discovered that the last access to this variable
from a different thread is found to be a read operation from the other conflicting thread. A WAR
data race is identified here since there is no synchronization specified between these two memory
accesses. The next execution of our approach forces the alternate order of these two memory
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accesses to occur during execution, and it is determined that the data race is potentially harmful.
This race is reported as being associated with the root cause of the failure.

Program mozilla-2. In this program, there is an atomicity violation bug in which initialization
of a script protocol and the associated compiling and execution are not protected in a critical
section. Due to lack of atomicity protection, the program can crash when one thread unexpectedly
sets the script protocol to NULL (variable mCurrentScriptProto in the program), just after
the initialization phase but before the compilation phase in another thread.

When our approach is run on this program using two threads to load, compile, and execute
Javascript code that triggers the bug, the program crashes when one thread tries to dereference
mCurrentScriptProto, which was previously set to NULL by another thread. The last defini-
tion of this shared variable occurs when it was set to NULL by the other thread. Upon re-execution,
no data races are identified because synchronization is found to exist between the memory accesses
associated with this last definition. However, a W1W2R1 memory access pattern related to this
shared variable is identified in which the interleaving write is the NULL definition of variable
mCurrentScriptProto. To determine whether this potential violation is a true atomicity or
order violation, our approach executes the program two additional times, each time forcing the
interleaving write to occur either before or after the other two memory accesses. In this case,
both re-executions cause the program failure to be avoided, so the violation is identified as a true
atomicity violation, and it is reported as the root cause of the failure.

Program mozilla-3. An order violation bug is present for this subject program in mozilla
XPCOM, a cross-platform component object model. In a rare situation, the program can hang forever
when TimerThread::Shutdown sends an exit signal before TimerThread::Run goes
to sleep and waits for that signal. This scenario breaks the programmer assumption that the Run
thread always finishes its computation and waits for the exit signal before the Shutdown thread
sends this signal. For our approach to work with this program that can result in a hanging execution,
we modified our tool to kill a program execution if the same instruction executes repeatedly for a
long threshold length of time.

When our approach is run on this program using two threads that trigger the bug, the program
is terminated by our tool when the Run thread waits for a long time, continually reading for the
exit signal implemented by the shared condition variable named mCondVar. It is determined
that the last definition of this shared variable occurs when it is set by the Shutdown thread. Upon
re-execution, control reaches this last definition but no data races are detected up to this point since
the associated memory accesses are synchronized. Also, no potential violations are identified at this
point either. Execution then continues by suppressing while also monitoring for other data races
or potential violations. Once execution reaches the read operation in the Run thread at which the
program begins to hang, a W1W2R1 memory access pattern is identified for variable mCondVar,
representing a potential violation. Our approach, therefore, executes the program two additional
times to determine whether this violation is a true atomicity or order violation bug. First, the
program is re-executed while forcing the last definition of the shared variable in the Shutdown
thread to occur before the other two memory accesses. In this case, the same program failure
occurs. Next, the program is re-executed while forcing the last definition of the shared variable in
the Shutdown thread to occur after the other two memory accesses. In this case, the failure is
avoided. Since only one of these two alternate thread interleavings causes the failure to be avoided,
an order violation bug is reported as the root cause of the failure for this program.

Program prozilla-1. In this program, there is potential for a stack buffer overflow at an
unchecked call to strncpy; in this case, no check is made to ensure that the source string will
actually fit into the allocated destination buffer.

When our approach is run on an input that triggers the stack overflow, a crash occurs at the return
of a function called parse html mirror list, due to corruption of the return address of the
function call on the stack. Our approach determines that the last definition of the memory location
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associated with this corrupted return address is in fact from the unchecked call to strncpy. Upon
re-execution, there are no data race, atomicity violation or order violation bugs identified since all
instructions associated with the failure are from the same thread. As a result of the suppression
conducted on this execution, it turns out that no additional failures occur during execution. Our
approach then reports the faulty call to strncpy as the root cause of the failure.

Program prozilla-2. In this program, there is potential for a stack buffer overflow of a
variable called buffer, which is declared to be of fixed maximum size on the stack. A call to
sprintf using this buffer can potentially write more data into the buffer than what will fit into
the allocated size.

When our approach is run on this program using an input that triggers the overflow, a segmen-
tation fault first occurs when dereferencing a pointer that is declared on the stack. This is due
to the pointer variable on the stack being corrupted by the stack overflow. It is determined that
the last definition of this corrupted memory location occurred in the unchecked sprintf. No
concurrency bugs are detected during the first re-execution because there is only one thread present
in the execution. When our approach performs suppression during the first re-execution, another
crash occurs at the return from a function named http fetch headers (due to the function
call return address being corrupted by the stack overflow). It is determined that the corrupted
return address was also last defined in the unchecked sprintf. The program is then executed
again to conduct further suppression, but a third failure occurs at the return of a function called
get http info. The corrupted return address in this case is again last defined at the unchecked
sprintf. Finally, when the program is executed once more to conduct suppression, no additional
failures occur. Thus, the root cause is identified to be the unchecked call to sprintf. In all of
these suppression executions, no concurrency bugs were found since only one thread was ever
present during execution.

Program axel. In this program, there is potential for a stack buffer overflow in an unchecked
call to sscanf. In this case, the destination stack buffer is declared to be of fixed size 256 bytes.
Since the source string can be of arbitrary size in this case, the stack buffer may overflow.

When our approach is run on this program, a first segmentation fault occurs when dereferencing
a pointer that is declared on the stack. The last definition of the corrupted memory location was
in the unchecked call to sscanf. On the first re-execution, no concurrency bugs are detected
since only one thread is present. After suppressing during this execution, a new crash occurs at the
return of a function called conn info, due to a corrupted function call return address. Again,
the last definition of the corrupted location was in the unchecked call to sscanf. Upon the next
suppression execution, no additional failures occur, and the unchecked call to sscanf is identified
as the root cause of the failure. No concurrency bugs were detected in these suppression executions
since only one thread was ever present during execution.

Overall, we found that our approach could accurately identify the root cause of the failures in
all of our subject programs. On the other hand, these subject programs happened to involve little
propagation of corrupted memory. In general, some multithreading bugs may involve significant
propagation of corrupted memory, and in these cases, we expect that our approach may continue
to be effective due to the iterative nature of the execution suppression technique.

In terms of the number of threads, program apache required the most at 28 threads during
execution. However, only two threads were involved in the data race that caused the failure for
this program, and our approach focused only on these relevant threads when identifying the root
cause. In terms of trace size, program mozilla-3 involved the largest trace for any single
execution: just under 40 million entries, requiring just under 1 GB of space for storage. We
stored the necessary tracing information naively in our experiments, but we believe that more
sophisticated compression schemes could be used to significantly reduce this storage requirement if
necessary.

All subject programs in our experiments required only between two and four program executions
to identify the root cause using our approach. However, the time required to run each execution using
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Table III. Time to run the longest execution, and total time to run the approach, for each program.

Time to perform longest execution (in s)
Program Total time
name Native execution ‘Stock’ Valgrind Tracing Valgrind (s)

apache 12.5 18.0 26.5 80.5
pbzip2-1 0.6 2.0 28.2 36.2
pbzip2-2 1.0 5.7 44.2 67.3
mysqld-1 3.4 10.9 112.2 155.7
mysqld-2 1.1 2.8 38.4 49.6
mysqld-3 1.0 3.1 39.2 58.6
mysqld-4 1.3 2.6 36.6 41.8
mozilla-1 0.7 10.1 35.2 63.1
mozilla-2 1.0 2.1 8.4 21.0
mozilla-3 2.5 4.3 122.5 148.3
prozilla-1 2.2 2.5 3.7 7.5
prozilla-2 0.03 0.17 0.83 1.85
axel 0.002 0.122 0.387 0.753

our approach varied widely from among the subject programs. Table III shows the time required to
run the longest execution (in terms of trace size) for each benchmark program in our experiments,
as well as the total time required to run all executions of our approach for each program. The
left-most column shows the program name. The next three columns show the time required to run
the single longest execution for each benchmark program, broken up into three types of executions:
(1) the native execution time when the program is run on the original machine, outside of the
Valgrind environment; (2) the execution time for running in ‘stock’ Valgrind, that is basic Valgrind
without any additional instrumentation added during execution; and (3) the execution time within
Valgrind when the execution is instrumented to record the tracing information necessary to run our
approach. Finally, the right-most column shows the total time required to run all executions of our
approach for each subject program, including the time required to perform suppression as well as
to perform analysis for concurrency bugs. In the worst case, program mysqld-1 required about
2.5min in total to run our approach. Most programs required less than 2min, and three programs
required less than 10 s. We believe these running times are reasonable in a debugging context.
Given this, we also observe that the use of Valgrind can impose a very high runtime overhead over
native execution times. This is because Valgrind was designed for ease of program instrumentation
and not for runtime efficiency. For example, in program mozilla-1, the native execution time is
about 0.7 s, but the time to execute the program while tracing in Valgrind is over 35 s, a slowdown
factor of 50×. The slowdown factor is less in other programs: in apache, the native execution
time is about 12 s, but the Valgrind tracing time is about 26 s, a slowdown factor of just over 2×.
One reason the slowdown factor is so low in apache is because much of the runtime in both the
native and Valgrind tracing executions is spent waiting for many server connections to be made.
During this time, the native execution time increases relative to the Valgrind tracing execution
time, since Valgrind is not performing any tracing while the execution waits. Thus, it is the nature
of the given program that determines the slowdown factor observed under Valgrind, and this varies
for different programs.

5. RELATED WORK

We first proposed the idea of execution suppression for locating memory bugs in [40]. In this
prior work, a basic execution suppression approach was described, and some experimental results
were given that highlight the effectiveness of execution suppression. However, this prior work
considered only single-threaded programs and their associated memory bugs. The current work is
more comprehensive because it generalizes the execution suppression approach to be applicable
and effective for multithreaded programs. In addition to handling memory bugs such as buffer
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overflows and uninitialized reads in multithreaded code, our approach can now also detect when
a harmful data race, atomicity violation, or order violation is the likely root cause of a failure in
a multithreaded program.

Our current work that generalizes our approach to handle multithreading bugs is inspired by
several key observations taken from prior work. The first of these comes from Tallam et al.
work on extending dynamic slicing to capture data race bugs [11]. In this work, the authors
observed that dynamic slicing traditionally considers only RAW data and control dependencies,
and this may result in dynamic slices failing to capture relevant data race bugs in an execution.
To remedy this limitation, the authors proposed a generalized dynamic slicing algorithm that
also considers dynamic WAR and WAW dependencies. In our current work, we have taken this
observation about the three important kinds of dependencies to consider for data races, and have
incorporated it into our algorithm for detecting data races. We have also incorporated into our
algorithm for detecting atomicity and order violations, the observation by Lu et al. [12] that only
four particular sequences of memory accesses need to be considered when detecting atomicity
violations involving three memory accesses (in which the middle access is caused by an interleaving
thread). Finally, the work by Narayanasamy et al. on classifying benign and harmful data races
[13] has provided the key observation that not all data races are potentially harmful, and one way
to check the potential harmfulness of a data race is to repeat an execution twice, each time forcing
the two involved memory accesses to occur in a different relative order. If the order of the two
memory accesses influences the resulting values of variables in memory, then the data race is
potentially harmful. In our approach, we use this key idea of repeating an execution while altering
the relative order of memory accesses, to determine whether identified data races or potential
atomicity/order violations are indeed harmful and should be reported as the likely root cause for a
failure.

Handling concurrency bugs. Lu et al. [21] conducted a comprehensive study of real-world concur-
rency bug characteristics, which serves as a useful guide for concurrency bug testing and detection.
Zhang et al. [30] also conducted a study of concurrency bugs that result in program crashes to
identify common thread interleavings that are typically associated with memory bugs. Based on
this study, they developed a technique to predictively detect concurrency bugs that result in crashes.
Park et al. [15] developed a technique that focuses on exposing atomicity violation bugs that may
be difficult to expose in practice. Their approach looks for particular types of interleavings that are
inherently correlated with atomicity violations, and uses trace analysis to systematically identify
such interleavings that are likely to be feasible in a program, but are unlikely to occur in practice.
Farzan et al. [41] developed another technique for detecting atomicity violations, and argued in
their work that if a concurrent program uses nested locking, then the task of predicting common
types of atomicity violations can be solved efficiently. Recent works [39, 42] have focused on
detecting and tolerating asymmetric data races, race conditions in which one thread correctly
acquires and releases a lock for a shared variable, while another ill-behaved thread disobeys the
locking discipline for this variable.

Other approaches for detecting general data races in multithreaded programs can be classified
into those that use the happens-before algorithm [1, 43, 44], the lockset algorithm [3, 5, 45, 46],
or a hybrid algorithm that combines both approaches [2, 4, 47]. The key idea behind lockset-
based algorithms is to check whether shared variables are protected by at least one lock. The
algorithm employs heuristics that can cause false positives to be reported. On the other hand,
the key idea behind happens-before algorithms is to check whether accesses to shared vari-
ables in a program are explicitly ordered through synchronization operations. This approach
may miss some data races, but all identified data races will be true data races (though some of
them may be benign). Hybrid algorithms generally attempt to achieve coverage close to that of
lockset-based algorithms, while reducing false positives. In the current work, our approach for
detecting data races is based on a happens-before relationship because it identifies conflicting
memory accesses for which there is no explicit synchronization between them. Thus, all iden-
tified data races in our approach are true data races. However, our approach further checks
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to see if a data race is potentially harmful before reporting it as a likely root cause of a
failure.

Handling other memory bugs. Besides the current work, there has been other work that focuses
on detecting memory bugs. Valgrind [8] and Purify [9] can be used to detect memory bugs, but
are restrictive in that they look for particular kinds of memory bugs. Our approach is more general
and can be used for any memory bugs involving corrupted memory, such that they exhibit failures
revealing at least a subset of the memory corruption. However, Purify can be used to detect memory
leaks, while our approach cannot be directly applied to memory leaks since leaks do not involve
corrupted memory. CCured [10] is an approach for verifying type-safety of pointers both statically
and during runtime, which can be used to find potential memory bugs.

There has been recent work on protecting against heap-based memory errors to improve program
reliability. DieHard [48] provides memory safety with high probability by randomizing the location
of objects in a large heap and by replicating execution. Archipelago [49] allocates heap objects
far apart in virtual address space to combat buffer overflows, and protects against dangling pointer
errors by preserving freed objects after they are freed. Exterminator [50] pinpoints heap-based
memory errors and derives runtime patches to avoid them in the current and subsequent executions.
Unlike these approaches that are targeted toward heap-based memory errors, our current work
targets a more general class of memory errors that involve corrupted memory, which may involve
memory other than the heap, and which may also include concurrency bugs. While our current
work attempts to isolate general memory corruption in an execution, the Samurai system [51]
provides safeguards against corruption of critical data through a memory model called critical
memory. Their system uses replication and forward error correction to ensure that non-critical
updates do not corrupt critical data. However, the system requires that critical memory be explicitly
identified by a programmer.

General fault localization techniques. There has been significant prior research on techniques for
locating bugs that often does not explicitly deal with multithreading bugs. Slicing-based techniques
are one such thread of research (though it has recently been extended [11] to handle data race
bugs). Static slicing [52] identifies a subset of program statements that may influence the value
of a variable at a program location. Dynamic slicing [53–55] finds the statements that actually
do influence a variable value in a particular execution. Relevant Slicing [56, 57] is similar to
dynamic slicing, but additionally finds statements that can potentially influence a variable value in
an execution, if a predicate were to evaluate to a different outcome. All slicing-based approaches
identify a subset of program statements that must be examined by a user to locate a bug. This set
of statements can potentially be very large. Unlike slicing-based techniques, our current approach
seeks to identify only a single statement (a few statements on rare occasions) or concurrency bug
that is likely to be the root cause for a failure.

Another thread of research in this area involves state-altering approaches. These approaches
attempt to modify the state of program executions in particular ways to gain insight about the likely
location of a bug. In Delta Debugging, failure-inducing input is identified [58] that allows for the
computation of cause–effect chains for failures [59], which can in turn be linked to faulty code
[60]. This approach involves substituting state (the values of variables) between passing and failing
runs. A related Value Replacement idea was proposed [61] that attempts to replace the values
used at certain statement instances with alternate sets of values; if any value replacement causes
a failing run to become successful, then the statement associated with the value replacement may
be erroneous. Predicate Switching [62] attempts to isolate erroneous code by identifying ‘critical’
predicates whose outcomes can be altered during a failing run to cause it to become successful.

Still other approaches make use of statistical information [63–66]. For example, the Nearest
Neighbor approach [66] compares the spectra for two similar executions (one successful and one
failing) to identify the most suspicious parts of a program. Tarantula [63] ranks program statements
according to suspiciousness values determined by how many failing versus passing tests exercise
each statement.
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6. CONCLUSIONS

We have presented a general approach for isolating the root cause of a failure in a multithreaded
program. Our approach is designed to be general so that it can be applied to any multithreading bugs
that involve memory corruption during execution, and that produce a program failure revealing at
least a subset of this memory corruption. The approach can identify either a harmful concurrency
bug (data race, atomicity violation, or order violation) or a statement causing memory corruption
that is the likely root cause for a failure. Our approach can also be automated if a failure-triggering
thread interleaving for a faulty program is provided. Moreover, our approach includes an iterative
technique called execution suppression that can ensure effectiveness of our approach even in
the presence of significant propagation of corrupted memory during execution. Our experimental
results on a set of real bugs in large-scale multithreaded programs have shown that our approach
can be very effective at precisely identifying the root causes of failures caused by multithreading
and other memory-related bugs.
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