
Introduction to Prolog
Reading and writing

CS181: Programming Languages

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 2

Topics:

� Reading and writing
� Prolog in action: Searching a maze
� Prolog in action: Searching directed graphs

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 3

Write predicate

� write() predicate writes a single term to the
terminal. For example:
write(a).

� The term can be a list (as long as it is one
list, and not more):
write([a, b]).

� Or something in the lines of:
writemyname(X):- write([my, name, is, X]), nl.

� nl is (not surprisingly) the new line predicate.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 4

Write predicate

� And from this point on, you can use write() in
the same way as you would have used any
other Prolog predicate:
writelist([]):- nl.
writelist([H | T]):- write(H), tab(1), writelist(T).

� tab() writes a number of spaces to the
terminal.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 5

Read predicate

� read(X) predicate reads a term from the keyboard
and instantiates variable X to the value of the read
term.

� This term has to be followed by a dot “.” and a white
space character (such as an enter or space).

� For example:
hello :- writelist([what, is, your, name, ‘?’],

read(X),
writelist([hello, X]).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 6

Put predicate
� put() predicate prints its argument as a character on

the terminal:
?- put(104), put(101), put(108), put(108), put(111).

� writes:
hello

� Of course, we can do more sophisticated things:
printstring([]).
printstring([H|T]):-put(H), printstring(T).
?- printstring(“Vladimir Vacic”).

� Note the quotation marks “ ” – list of character codes
is a string

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 7

Prolog in action:
Searching

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 8

Searching a maze

� Let’s say we have a simple maze like the one below:

door(a, b).
door(b, e).
door(b, c).
door(d, e).
door(c, d).
door(e, f).
door(g, e).

� Goal is to find a path from a room to another room.

abe

d c

g

f

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 9

Searching a maze

� Since door(a, b) is the same as door(b ,a),
the maze can be modeled with an undirected
graph.

� Using the standard approach: we are either in
the goal room (base case), or we have to
pass through a door to get closer to the goal
room (recursive case).

� To avoid going in circles (b-c-d-e or a-b-a-b),
we need to remember where “we have been
so far” (does this phrase sound familiar?)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 10

Searching a maze

� So, the solution would be something in the lines of:
go(X, X, T).
go(X, Y, T):- door(X, Z),

not(member(Z, T)), go(Z, Y, [Z|T]).
go(X, Y, T):- door(Z, X),

not(member(Z, T)), go(Z, Y, [Z|T]).
� Or, using the semicolon (logical or):

go(X, Y, T):- (door(X, Z) ; door(Z, X)),
not(member(Z, T)), go(Z, Y, [Z|T]).
go(Z, Y, [Z|T]).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 11

Searching a maze

� Let’s add a twist to the story: in one of the rooms
(we do not know exactly which one), there is phone
which is ringing. We need to get to the room in
which the phone is, and pick it up (this actually
sound like an AI problem :-).

� So, we ask the question:
?- go(a, X, []), phone(X).

� This follows the “generate and test” paradigm: we
first generate a solution to the problem of how to get
the room, then check if the phone is in the room.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 12

� Let’s say we have a directed graph as the one below:

edge(g, h).
edge(g, d).
edge(e, d).
edge(h, f).
edge(e, f).
edge(a, e).
edge(a, b).
edge(b, f).
edge(b, c).
edge(f, c).
edge(d, a).

� Again, goal is to find a path from a node to another node.

Searching a graph

a
b

d

c

e

g

f

h

e

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 13

Searching a graph

� The simplest solution is:

cango(X, X).
cango(X, Y):- edge(X, Z), cango(Z, Y).
or
cango(X, Y):- edge(X, Y).
cango(X, Y):- cango(Z, Y), edge(X, Z).

� However, the graph has loops (a-e-d), so Prolog
might never be able to resolve this (remember the
airplane routing problem from assignment 1?)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 14

Searching a graph
� We can use a solution similar to the maze search.

However, let’s say we are also interested in the
route from X to Y:

route(Start, Dest, Route):-
go(Start, Dest, [], R),
rev(R, [], Route).

go(X, X, T, [X|T]).
go(Place, Dest, T, R):- edge(Place, Next),

not(member(Next, T)),
go(Next, Dest, [Place|T], R).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 15

Searching a graph

� This algorithm performs breadth-first search.
� You can of course make this more complex

by adding weights to the edges.
� Searching is actually a big topic in AI:

� breadth-first search
� depth-first search
� best-first search (uses a heuristic do decide what

is the “best” way to go)
� A* search (uses the sum of the path so far and

the heuristic to estimate the path left)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 16

Reference

� Clocksin, W.F., and Mellish C.S.
Programming in Prolog. 4th edition. New
York: Springer-Verlag. 1994.

