
Introduction to Prolog
Accumulators, Debugging

CS181: Programming Languages

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 2

Topics:

� More list processing
� Accumulators
� Prolog in action: Towers of Hanoi
� Debugging

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 3

List processing

� The goal nextto(X,Y,L) succeeds if elements
X and Y are consecutive elements of list L:

nextto(X, Y, [X,Y|_]).
nextto(X, Y, [_|Z]) :- nextto(X, Y, Z).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 4

List processing

� Delete all occurrences of element X from list
L1 and create the resulting list L2:

delete(_, [], []).
delete(X, [X|L], M) :- !, delete(X,L,M).
delete(X, [Y|L1], [Y|L2]) :- delete(X, L1, L2).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 5

List processing

� The rule subst(X,L,A,M) constructs a new list
M made up from elements of list L, except
that any occurrence of X is replaced by A:

subst(_, [], _, []).
subst(X, [X|L], A, [A|M]) :- !, subst(X, L, A, M).
subst(X, [Y|L], A, [Y|M]) :- subst(X, L, A, M).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 6

List processing

� The rule sublist(X,Y) suceeds if X is a sublist
of Y, that is, if every element of X appears in
Y, consecutively, in the same order:

sublist([X|L], [X|M]) :- prefix(L, M), !.
sublist(L, [_|M]) :- sublist(L, M).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 7

Accumulators

� An accumulator is an argument of the
predicate used to represent the “answer so
far”.

len(L, N) :- lenacc(L, 0, N).

lenacc([], A, A).
lenacc([H|T], A, N) :- A1 is A + 1,

lenacc(T, A1,N).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 8

Accumulators

[a, b, c, d, e]

lenacc([a, b, c, d, e], 0, N)
lenacc([b, c, d, e], 1, N)
lenacc([c, d, e], 2, N)
lenacc([d, e], 3, N)
lenacc([e], 4, N)
lenacc([], 5, N)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 9

Accumulators

� The rule remdup(L,M) succeeds if M is a list
with same elements as L, but the duplicate
elements are removed:

remdup(L, M) :- dupacc(L, [], M).

dupacc([], A, A).
dupacc([H|T], A, L) :- member(H, A),

dupacc(T, A, L).
dupac([H|T], A, L) :- dupacc(T, [H|A], L).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 10

Towers of Hanoi

� Stack of n disks arranged from largest on the bottom
to smallest on top placed on a rod

� Two empty rods: goal and an auxiliary rod
� Minimum number of moves to move the stack from

one rod

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 11

Towers of Hanoi

A CB

2

3

1

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 12

Towers of Hanoi

hanoi(N) :- move(N, left, centre, right).

move(0, _, _, _) :- !.
move(N, A, B, C) :- M is N-1,

move(M, A, C, B), % 1
inform(A, B), % 2
move(M, C, B, A). % 3

inform(X,Y) :-
write([move, disk, from, X, to, Y]), nl.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 13

Debugging

� Don’t forget to write the dot .
� Add at least one “white space” after the dot
� Some characters belong in pairs: (), [], /**/
� Do not misspell names of facts, rules, built-in

predicates
� Use parentheses to define explicitly the

associativity of operators.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 14

Debugging (lists)

� How do [a,b,c] and [X|Y] match?
� Do [a] and [X|Y] match?
� Do [] and [X|Y] match?
� Is [X, Y | Z] meaningful?
� Is [X | Y, Z] meaningful?
� Is [X | [Y | Z]] meaningful?
� Is there more than one way to match to lists?

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 15

Debugging (Tracing Model)

� The trace predicate prints out information
about the sequence of goals in order to show
where the program has reached in its
execution

� Example (see trace_example.pl)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 16

Debugging (Tracing Model)

Some of the events which may happen during a trace:

- CALL: A CALL event occurs when Prolog tries to
satisfy a goal

- EXIT: An EXIT event occurs when some goal has
just been satisfied

- REDO: A REDO event occurs when the system
comes back to a goal, trying o re-satisfy it

- FAIL: A FAIL event occurs when a goal fails

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 17

References

� Clocksin, W.F., and Mellish C.S.
Programming in Prolog. 4th edition. New
York: Springer-Verlag. 1994.

� Van Le, T. Techniques of Prolog
Programming. John Wiley & Sons, Inc. 1993.

