Lab Assignment 2

1. Implement the following Prolog rules:

 a) length(L, N) \(N \) is length of the list \(L \)
 b) member(E, L) \(E \) is an element of the list \(L \)
 c) prefix(P, L) \(P \) is a prefix of list \(L \)
 d) suffix(S, L) \(S \) is a suffix of list \(L \)
 e) append(L1, L2, BigL) \(\text{BigL} \) is the result of concatenating \(L1 \) and \(L2 \)
 f) sum(L, S) \(S \) is the sum of all elements in \(L \)
 g) product(L, P) \(P \) is the product of all elements in \(L \)
 h) split(L, N, L1, L2) The list \(L1 \) contains the first \(N \) elements of the list \(L \), the list \(L2 \) contains the remaining elements.

Note: some of the aforementioned rules may be already existing predicates in Prolog. Before deciding to name your rule in a certain way, you can use help(something) to check if something is already defined in Prolog.

Prefix: something attached to the front of a word to produce a derivative word. For example: river in riverside.

Suffix: something attached to the end of a word to produce a derivative word. For example: side in riverside.

You can take that the product of elements in an empty list is 1, as the base case.
2. Suppose that we have the following database:

(0).
f(1) :- !.
f(2).

Write the answers to the following queries:

a) ?- f(X).
b) ?- f(X), f(Y).
c) ?- f(X), !, f(Y).

3. Use cuts to define the if_then_else rule

\[\text{if_then_else}(C, S1, S2) \]

If C is true then execute S1, else execute S2

Then use the if_then_else_rule to write a rule that finds the minimum of two numbers.

Hint: look at the min/max examples in the lab notes.

4. Use cuts to write the rule delete_first(E, L, A), which deletes only the first occurrence of element E from list L, producing answer A. For example:

?- delete_first(a, [b,a,n,a,n,a], A).

A = [b, n, a, n, a] ;

No

5. (extra credit) Implement the rule bubblesort(L, S) that sorts the list L using bubble sort and stores the result in a sorted list S.