
Lecture 0: Preface CS 152: Compiler Design Slide 1

Preface, Disclaimer, and all that. . .

These lecture notes are always under construction, and will be
stable only in the limit.

They are a snapshot of what I think the course should be like at
any given moment, not what it was like when you attended a
particular lecture.

Certain slides, lectures, or chapters may even be missing or
outdated if I did not have the time to transcribe them. In those
cases, I sincerely hope you took notes. . . :-)

I am interested in improving these lecture notes, so please email
me about any errors, omissions, or untoward words you find.

Copyright c© 2001–2004 by Peter H. Fröhlich. All rights reserved.

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

mailto:phf@acm.org
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/
http://www.factorial.com/forward/phf/work/

Lecture 0: Preface CS 152: Compiler Design Slide 2

Table of Contents

1 Welcome!

2 Compiler
Architecture

3 Formal
Languages

4 Lexical
Analysis

5 Syntactic
Analysis

6 Semantic
Analysis

7 Semantic
Analysis II

8 Interpreters

9 Code
Generation

10 Summary

11 Flow Graphs

12 SSA Form

13 Register
Allocation

14 Instruction
Scheduling

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 3

CS 152: Compiler Design

Welcome!

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

September 24, 2004

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 4

Today’s Lecture

1 Welcome!
The Three Questions. . .
Administrivia
Important Warning
Literature
Compilers and Interpreters
A Little History

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 5

The Three Questions. . .

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 6

What is this course about?

Study compilers (and interpreters) to

I finally understand how the tools you use all the time work

I learn a bunch of generally useful programming techniques

I better appreciate the costs of certain language features

I hone your hacking skills, hopefully quite a bit. . . :-)

Learn in three ways:

I Lecture: theoretical background, algorithms and data
structures, software engineering considerations

I Lab: additional material, often more applied; discussion of
compiler implementation

I Assignments: hack your own compiler and interpreter for a
small imperative language

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 7

Does this course work?

I am the worst person to ask, but some apparently think so:

I “. . . your course in compilers is the most educational and
enjoyable course I’ve ever taken at UCR. I really enjoyed the
hands-on approach you gave us . . . I have a sufficient
background . . . to continue doing work on compilers, which is
more that I can say for any other course I’ve taken at UCR.”

— “A” student, Winter 2004

I “Total ///////////nutcase when it comes to work load, but still definitely
the best CS teacher at UCR by far. Sure he gives you alot of
work, but you actually learn something about the subject at
hand when you take one of his classes, but lazy students
beware.” — Anonymous, Spring 2004

You can find negative opinions on your own, just ask around. . .

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 8

How much work is this course?

Rule of thumb:

I 1 unit ≈ 3–4 hours / week

I 4 units ≈ 12–16 hours / week

Hours break down as follows:

I Lectures: 3 hours / week

I Labs: 3 hours / week

I Assignments: 6–10 hours / week

Some hints (for less work):

I You can choose C++ or Python to write your compiler.

I Experience shows that Python reduces workload by ≈ 50%.

I You can share test cases (but not code) on the mailing list.

I Old exams are online, and I like my questions, so. . . :-)

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 9

Administrivia

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 10

People

Instructor: Peter H. Fröhlich http://www.cs.ucr.edu/~phf/

I PhD, UC Irvine: component-oriented programming languages

I Research interests: programming languages, software
engineering, compilers and interpreters, networking
(peer-to-peer), social implications (patents, privacy)

I Teaching experience: algorithms and data structures, software
construction, software engineering, compilers and interpreters,
programming languages

Assistant: Mikiko Matsunaga http://www.cs.ucr.edu/~matsunam/

I Interests: Graphics, was a grader for this course before

Assistant: Vi Pham http://www.cs.ucr.edu/~vpham/

I Interests: Databases, took a similar course at Pomona before

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/
http://www.factorial.com/forward/phf/work/
http://www.cs.ucr.edu/~phf/
http://www.factorial.com/forward/phf/work/
http://www.cs.ucr.edu/~matsunam/
http://www.cs.ucr.edu/~matsunam/
http://www.cs.ucr.edu/~matsunam/
http://www.cs.ucr.edu/~vpham/
http://www.cs.ucr.edu/~vpham/
http://www.cs.ucr.edu/~vpham/
http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 11

Style

Feel free to interrupt and ask questions

I right when you don’t get something is the best moment to ask

I I am more than happy to do more/different examples, just ask

I am a person, not a teaching machine

I I make mistakes, please point them out when you notice any

I I have opinions, and sometimes they come out in a rant

I feel free to disagree, “free speech” applies to you as well

I like democracy, the more direct the better

I feel free to start/sign petitions for whatever you want changed

I I can’t guarantee that I’ll accept everything, but give it a shot

Applies to lecture! Ask your TA how he or she likes to run labs. . .

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 12

Evaluation

Final grade determined on the “usual” 60/70/80/90 scale

I possibly with some slight “fudging” at the end

4 Exams (in class, 40% of grade, graded by instructor)

I two quizzes (10% = 5% each)

I midterm (15%, builds on quiz)

I comprehensive (15%, builds on quizzes, midterm)

I no final exam

8 Assignments (home & lab, 60% of grade, graded by assistants)

I mostly hacking of course, namely your own compiler

I also a short weekly log for tracking your progress

I final assignment involves writing a short reaction paper

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 13

Miscellaneous

Read the policies http://www.cs.ucr.edu/~phf/

I cheating will be taken seriously, so please don’t even try

I no late homework, no make-up exams, no extra-credit stuff

Sign up for the mailing list cs152@lists.cs.ucr.edu

I important announcements (changes, extensions, etc.)

I ongoing discussion of compiler implementation

Attend lab every week

I material from lab will be on exams, you have been warned

I lab is your chance to discuss the compiler with others, use it

I your TA will help you in any way he or she can, just ask

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/
http://www.cs.ucr.edu/~phf/
http://www.factorial.com/forward/phf/work/
mailto:cs152@lists.cs.ucr.edu
cs152@lists.cs.ucr.edu
mailto:cs152@lists.cs.ucr.edu
http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 14

Important Warning

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 15

We interrupt this lecture. . .

You must have good
programming skills to succeed!

If you do not have those skills

I you will probably spend a lot more time on assignments

I you should attend all labs and ask lots of questions

I you should attend office hours frequently and do the same

Also, you might want to consider

I taking CS 100 (or CS 180) before taking CS 152

I taking only less “intense” courses while in CS 152

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 16

Literature

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 17

Compilers

Niklaus Wirth:
Compiler Construction.
Addison-Wesley, 1996.

Andrew Appel, Jens Palsberg:
Modern Compiler Implementation in Java (or ML or C).
Cambridge University Press, 2003 (and earlier).

Keith Cooper, Linda Torczon:
Engineering A Compiler.
Morgan Kaufmann, 2004.

I Wirth’s text is close “in spirit” to this course, recommended.
I Best of all, it’s available as a PDF file on the course website.

I Appel’s and Cooper’s texts are way more comprehensive. . .
I Recommended if you still like compilers after the course. :-)

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 18

Programming

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides:
Design Patterns.
Addison-Wesley, 1995.

Andrew Hunt, David Thomas:
The Pragmatic Programmer.
Addison-Wesley, 1999.

Brian Kernighan, Rob Pike:
The Practice of Programming.
Addison-Wesley, 1999.

I Gamma discusses lots of useful object-oriented techniques.
I Not just for compilers, it’s a classic you really should read.

I Hunt and Kernighan discuss software development techniques.
I Not just for compilers, but you’ll hack a lot in this course.

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 19

Compilers and Interpreters

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 20

What is a Compiler?

A compiler is a machine that translates sentences

I from a source language (e.g. C++, Pascal, ML)

I to a target language (e.g. C, MIPS, x86)

Usually translation from higher to lower level

I e.g. C++ (classes) ⇒ C (structs) ⇒ x86 (addresses)

I e.g. ML (functions) ⇒ MIPS (addresses, jumps)

However, there are also “decompilers” that go the other way

I e.g. Java byte code ⇒ Java source code

I e.g. MIPS object file ⇒ MIPS assembly source

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 21

What is an Interpreter?

An interpreter is a machine that executes sentences

I either a “real” hardware machine (e.g. MIPS, x86 processors)

I or a “virtual” software machine (e.g. SPIM, Java VM)

The sentence being executed is usually called a program

I a running program reads input and writes output Doh!

I in particular, the program could be a compiler :-)

Essence of Computer Science: sentence = program = machine

I it’s all the same to us, which is a curse and a blessing

I actually the genetics guys are taking it a step further. . .

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 22

Qualities

Compilers and interpreters should be. . .

1. Correct: the meaning of sentences must be preserved

I given a[7] := 10 a compiler can’t spit out a[6] := 1
I given a[7] := 10 an interpreter can’t format your drive

2. Robust: wrong input is the common case

I compilers and interpreters can’t just crash on wrong input
I they need to diagnose all kinds of errors safely and reliably

3. Efficient: resource usage should be minimal in two ways

I the process of compilation or interpretation itself is efficient
I the generated code is efficient when interpreted (for compilers)

4. Usable: integrate with environment, accurate feedback

I work well with other tools (editors, linkers, debuggers, . . .)
I descriptive error messages, relating accurately to source

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 23

A Little History

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 24

The Big Bang

Compilers and Interpreters: The Big Picture

I used to be (pretty) hard, but is (relatively) easy today

I shaped by computer architecture and programming languages

First (widely adopted) compiler: FORTRAN (1957) Backus

I 18 staff-years, a “huge” project for the time

I arithmetic expressions, arrays, non-recursive functions, static
typing

First (widely adopted) interpreter: LISP (1959) McCarthy

I about 4 staff-years, the EVAL “accident”

I symbolic expressions, lists, recursive and higher-order
functions, dynamic typing

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 25

Imperative Highlights

Algol (1960) Naur

I first “committee” language, Backus and McCarthy influential

I concise language definition, Backus-Naur form (BNF)

I block structure (static scoping), recursion

Pascal (1970) Wirth

I Wirth’s “protest” against the Algol-68 monster (in part)

I modern type concept, lots of improvements on Algol

I recursive descent parsing, virtual “p-code” machine

Recent History: C++, C#, Java, ML, Oberon, . . . “thousands”

I modules, classes and objects, components, . . .

I exceptions, templates, overloading, . . .

I concurrent, parallel, distributed, . . .

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 1: Welcome! CS 152: Compiler Design Slide 26

History References

R. L. Wexelblat (Ed.):
History of Programming Languages.
Academic Press, 1978.

T. J. Bergin, R. G. Gibson (Eds.):
History of Programming Languages.
ACM Press, 1996.

I If you are a history buff like me, these two are essential reading

I Volume 1: Algol, COBOL, FORTRAN, LISP, Simula, . . .
I Volume 2: Ada, C, CLU, Pascal, Prolog, Smalltalk, . . .

I Two cool websites on the history of programming languages
I http://hopl.murdoch.edu.au/
I http://www.levenez.com/lang/

Revision 58 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://hopl.murdoch.edu.au/
http://hopl.murdoch.edu.au/
http://hopl.murdoch.edu.au/
http://www.levenez.com/lang/
http://www.levenez.com/lang/
http://www.levenez.com/lang/
http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 27

CS 152: Compiler Design

Compiler Architecture

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

September 27, 2004

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 28

Today’s Lecture

2 Compiler Architecture
Introduction
Architecture
Typical Phases
Frontend and Backend
Bootstrapping and Porting

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 29

Introduction

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 30

Why Functional Decomposition?

CompilerSource Target

Compiler translates source to target language:

I i := i + 1 ⇒ add #1, -24(a5)

Simple enough, right? But consider this:

I i := j + 1 ⇒
move -28(a5), d0
add #1, d0
move d0, -24(a5)

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 31

Why Functional Decomposition?

Two very similar constructs yield very different code!

I for i := i + 1 we can
I load i, add 1, and store i directly

I for i := j + 1 we must
I load j into the register d0
I add 1 to the register d0
I store the register d0 to i

Implementing the translation is complex!

I real source languages have many different constructs

I real target languages have many different instructions

Decompose into subtasks, don’t try to do everything at once!

I each task is comparatively simple, probably more reliable

I each task can be tested independently, maybe even reused

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 32

Architecture

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 33

Static Architecture: What happens where?

Compiler

Phase 0Source
(IR 0) IR 1 Phase 1

Target
(IR n)

IR 2

IR n-1 Phase n-1Phase n-2... etc ...

The standard pipeline architecture:

I a “series” of tasks, usually called phases for compilers
I replace one “big” compiler by many “small” ones

I connected by intermediate representation (IR) of sentence
I appropriate data structures for the task at hand

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 34

Dynamic Architecture: What happens when?

Multi pass (left) versus single pass (right):

I Multi: each phase finishes before the next phase starts
I multi pass compiler ⇔ one phase active concurrently

I Single: all phases interleaved until translation finishes
I single pass compiler ⇔ all phases active concurrently

I Of course there are also compilers that mix the two. . .

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 35

Remarks on Architecture

Note the difference between phase and pass:

I phase is a static notion, a certain unit of functionality

I pass is a dynamic notion, a certain pattern of execution

Lots of variations on the “basic” pipeline are possible:

I two or more intermediate representations between phases

I hierarchical decomposition: split a phase into it’s own pipeline

Intermediate representations can be on disk or in heap:

I typically in heap for single pass compilers
I faster on average, but require more heap memory
I if heap runs out, swapping can easily ruin that gain. . .

I typically on disk for multi pass compilers
I slower on average, but require less heap memory
I historically, the compiler itself would often not fit. . .

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 36

Typical Phases

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 37

Lexical Analysis

ScannerSource
File Tokens

Translate from individual characters into larger tokens

I n 2 : = c n t + 1 2 ⇒ n2 := cnt + 12

I distinguishes keywords, operators, identifiers, numbers, . . .

I filters comments, whitespace, . . . and tracks positions

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 38

Syntactic Analysis

ParserTokens Parse
Tree

Translate from linear tokens to hierarchical trees

I n2 := cnt + 12 − b ⇒ n2 := cnt + 12 − b

I distinguish precedence and associativity of operators

I recognize more structure that is not explicit in the source

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 39

Semantic Analysis

Semantic
Analysis

Syntax
Tree

Symbol
Table

Parse
Tree

A fuzzy phase with a variety of tasks. . .

I collect information on declarations in symbol table
I simplify the parse tree and connect uses with declarations
I perform type inference and type checking

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 40

Code Generation (High-Level or Intermediate)

High-Level Code
Generation

Instruct
ions

Symbol
Table

Syntax
Tree

Symbol
Table

Translate from checked IR into virtual instructions

I some could be real instructions already, depends on context

I probably no registers yet, generic “placeholders” instead

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 41

Code Improvement (Optimization)

Code
Improvement

Instruct
ions

Symbol
Table

Instruct
ions

Symbol
Table

Translate from instructions into instructions

I but improve instruction sequence according to certain criteria

I often speed as criterion, sometimes size or energy though

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 42

Code Generation (Low-Level or Object)

Low-Level Code
Generation

Object
File

Instruct
ions

Symbol
Table

Translate from virtual instructions into real instructions

I typically includes register allocation and instruction scheduling
I also determines memory layout, object format depends on OS

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 43

Remarks on Phases
Again, lots of variations are possible:

I some compilers do not build a parse tree explicitly

I some compilers perform semantic analysis while parsing

I some compilers do not include any code improvement phase

The concrete architecture is engineered as needed:

I “throwaway prototype” versus “GNU Compiler Collection”
I simplicity of implementation helps getting things done quickly
I however, it limits how well you can cope with evolution later

I capabilities of the language the compiler itself is written in
I certain languages invite you to take shortcuts more often
I others encourage (and enforce) modular architectural design

Sometimes non-technical concerns play a role:

I Got 5 developers? Don’t be surprised if their compiler has 5
phases as well. . . :-)

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 44

Frontend and Backend

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 45

Analysis versus Synthesis

Semantic
Analysis

Syntax
Tree

Symbol
Table

Scanner

Source
File

Tokens

Parser

Parse
Tree

Low-Level Code
Generation

Object
File

Code
Improvement

Instruct
ions

Symbol
Table

High-Level Code
Generation

Instruct
ions

Symbol
Table

Frontend Backend

Phases fall in two major areas:

I Analysis (green-ish)
I “understand” the source

sentence
I mostly dependent on

source language
I also known as

“frontend” of compiler

I Synthesis (orange-ish)
I “formulate” the target

sentence
I mostly dependent on

target language
I also known as “backend”

of compiler

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 46

Extensible Compilers

C

Source

CIR

Target

MIPS

C++

Source

Pascal

Source

Target

68K

Target

x86

Utilize a common intermediate
representation

I languages must be
reasonably similar,
otherwise IR too big

I UNCOL: Universal
Computer-Oriented
Language (1958)

I write n frontends + m
backends to get n ×m
compilers

I scales better, more
flexible, but also more
complicated

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 47

Bootstrapping and Porting

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 48

Graphical Notation (T-Diagrams)

M

I

TS L

I

I Compiler
I translating from source language S to target language T
I written in implementation language I

I Interpreter
I executing programs written in language L
I written in implementation language I

I Machine
I executing programs written in machine language M
I implemented in hardware, bottom of the game. . .

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 49

Bootstrap: C Compiler (Part I)

x86

x86

x86C'C'

x86C'

x86

x86C'

1. Write a compiler for a small subset C’ of C
I written in x86 assembly, “by hand” of course

2. Write (again) a compiler for small subset C’ of C
I written in the C’ subset our bootstrap compiler understands

3. Compile new compiler with existing bootstrap compiler
I Now we have a C’ compiler written in C’ and executable on x86

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 50

Bootstrap: C Compiler (Part 2)

x86

C'

x86C'

x86

x86C' x86

x86C'

1. Recompile the C’ compiler with itself
I if not an identical copy, there is at least one bug somewhere
I fix bugs and repeat until identical copy is obtained. . .

2. Now we can get rid of the bootstrap compiler
I in principle anyway, of course we keep it around “just in case”

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 51

Bootstrap: C Compiler (Parts 3, 4, 5, . . .)

x86

C'

x86C''

x86

x86C' x86

x86C''

1. Extend existing compiler to a bigger subset C” of C
I written in C’ still, can’t use C” extensions yet

2. Compiling yields an executable compiler from C” to x86
I recompile again, until all bugs are gone and copies are identical
I now we can use C” features to implement the next version

3. Keep extending and recompiling as appropriate until full C
I And if you don’t go crazy, you get a nice compiler. . .

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 2: Compiler Architecture CS 152: Compiler Design Slide 52

Porting: From x86 to MIPS

x86

C

MIPSC

x86

x86C x86

MIPSCC

MIPSC

MIPS

MIPSC

x86

1. Replace x86 backend with MIPS backend in existing compiler
I another reason to use frontend/backend architecture

2. Compiling yields compiler from C to MIPS running on x86
I cross compiler: runs on A but translates to B

3. Recompile identical source with new compiler
I yields a compiler from C to MIPS running on MIPS
I transfer to MIPS machine and debug as usual. . .

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 53

CS 152: Compiler Design

Formal Languages

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

September 29, 2004

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 54

Today’s Lecture

3 Formal Languages

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 55

What are Languages?

I The language L consists of all sentences
I with the subject “Peter” or “Joe”
I with the verb “sleeps” or “works”

I The language L is this set of four sentences
I L = {“Peter sleeps”, “Joe works”, “Peter works”, “Joe

sleeps”}
I But our description above is “vague”

I natural language is very ambigious
I programming languages can’t afford that

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 56

Formal Languages

I A language is defined formally by
I a set T of terminal symbols (not substitutable)
I a set NT of non-terminal symbols (substitutable)
I a set P of productions (substitutions)
I a start symbol S ∈ NT

I For example, L = (TL,NTL,PL,SL):
I TL = { “Peter”, “Joe”, “sleeps”, “works” }
I NTL = { Sentence, Subject, Verb }
I PL = { Sentence → Subject Verb, Subject → “Peter”, Subject
→ “Joe”, Verb → “sleeps”, Verb → “works” }

I SL = Sentence

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 57

Grammars

I The set P of productions is also called a grammar
I generate sentence: go “forward” from S
I recognize sentence: go “backward” from T

I We can generate the sentence “Peter works”
I Sentence ⇒ Subject Verb ⇒ “Peter” Verb ⇒ “Peter” “works”

I Or recognize the sentence “Joe works”
I “Joe” “works” ⇐ Subject “works” ⇐ Subject Verb ⇐

Sentence

I The sentence “sleeps Joe” is not in L
I “sleeps” “Joe” ⇐ Verb “Joe” ⇐ Verb Subject ⇐ ???

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 58

Syntax Trees

I Sequence of substitutions leads to a parse tree
I “Joe” “sleeps”
I (Subject (“Joe”)) (Verb (“sleeps”))
I (Sentence (Subject (“Joe”)) (Verb (“sleeps”)))
I also derivation tree or (concrete) syntax tree

I Abstract syntax trees: Forget substitutions!
I (Sentence (“Joe”) (“sleeps”))
I only retain the “essential” structure
I not how we got there

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 59

Optional And Repetitive Phrases

I Empty right-hand side to make things optional
I Example: P = {A → “x” B “z”, B → “y”, B → }
I Generates: xyz, xz
I Note: Often ε denotes “empty”

I Recursive right-hand side to make things repeat
I Example: P = {A → “(” A “)”, A → “x”}
I Generates: x, (x), ((x)), (((x))), . . .
I Note: Language generated by P is infinite

I “All useful languages are infinite!”

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 60

Notations for Grammars

I Canonical Backus-Naur-Form
I Productions have the form α → β

I (Plain) Backus-Naur-Form
I Allows α → β|γ instead of α → β, α → γ

I Extended Backus-Naur-Form (in EBNF)

Grammar = Production {Production}.
Production = identifier "=" Expression ".".
Expression = Term {"|" Term}.
Term = Factor {Factor}.
Factor = string | identifier
| "(" Expression ")" | "[" Expression "]"
| "{" Expression "}".

string = """ character {character} """.
identifier = letter {letter | digit }.

I Notes: | = choice, () = precedence, [] = zero or one
(optional), {} = zero or many

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 61

Syntax Trees Again

I A simple expression grammar

E = T {"+" T}.
T = F {"*" F}.
F = "0" | "1" | "2" | "3".

I Play compiler, recognize 1 + 2 * 3
I “1” “+” “2” “*” “3”
I (F “1”) “+” (F “2”) “*” (F “3”)
I (T (F “1”)) “+” (T (F “2”) “*” (F “3”))
I (E (T (F “1”)) “+” (T (F “2”) “*” (F “3”)))

I Abstract syntax tree for 1 + 2 * 3
I (+ (1) (* (2) (3)))
I Can be interpreted by traversing the tree

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 62

Ambiguity, Precedence (1)

I Another expression grammar

E = E "+" E | E "*" E | "0" | "1" | "2" | "3".

I Play compiler, recognize 1 + 2 * 3
I “1” “+” “2” “*” “3”
I (E “1”) “+” (E “2”) “*” (E “3”)
I Alternative 1

I (E (E “1”) “+” (E “2”)) “*” (E “3”)
I (E (E (E “1”) “+” (E “2”)) “*” (E “3”))

I Alternative 2
I (E “1”) “+” (E (E “2”) “*” (E “3”))
I (E (E “1”) “+” (E (E “2”) “*” (E “3”)))

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 63

Ambiguity, Precedence (2)

I A grammar is ambigious if
I one sentence can lead to multiple parse trees

I In this example: precedence of operators
I does + bind stronger than * or vice versa?

I The earlier grammar used
I two separate productions for
I two levels of precendence

I The design of the grammar matters!
I two grammars producing the same language might not lead to

the same parse trees

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 64

Classification of Languages (1)

I Assume a set of productions α → β

I Class 3: Regular languages
I Condition: α = NT, β = T | T NT
I Example: A → “b” | “b” A
I Finite automata (finite state machines)

I Class 2: Context-free languages
I Condition: α = NT, β 6= ε
I Example: A → “b” | “(” A “)”
I Push-down automata

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 3: Formal Languages CS 152: Compiler Design Slide 65

Classification of Languages (2)

I Class 1: Context-sensitive languages
I Condition: |α| ≤ |β|
I Example: “a” A → “a” “b” “c”
I Linear-bounded automata

I Class 0: Unrestricted languages
I Condition: None!
I Example: “a” A “b” → “c” “d”
I Turing machines

I Compilers only use regular and context-free!

Revision 65 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 66

CS 152: Compiler Design

Introduction to Lexical Analysis

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

October 1, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 67

Today’s Lecture

4 Lexical Analysis
Introduction
Finite Automata (Finite State Machines)
Implementation
More on Lexical Analysis
Generating Scanners

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 68

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 69

What is Lexical Analysis?

I Lexical analysis: Characters into Tokens

I Characters → Scanner → Tokens
I but that’s not the whole story

I i : = i + 1 → Scanner → i := i + 1
I also filter whitespace (e.g. blank, tab)

I (* x z *) → Scanner →
I also filter comments

I Why do we separate this from syntax analysis?
I Simplify the grammar for parsing (whitespace).
I Simpler techniques suffice for lexical analysis.
I Isolate later phases from representation (e.g. new

representations for existing tokens).

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 70

Implementation Concerns

I Lexical analysis can be expensive
I accesses source file, possibly from disk
I accesses every character at least once
I production compilers use efficient techniques

I to buffer the input stream
I to touch characters “as little as possible”

I Interface to the parser
I return token objects vs. return small integers
I return one token vs. return list of tokens

I Source text: file name vs. file handle vs. string

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 71

Regular Languages and Grammars (1)

I How do we recognize the structure of a sequence of
characters? ⇒ Formal languages!

I Regular languages (class 3)
I suffice for most lexical analysis tasks (e.g. not for nested

comments)
I Productions α → β: α = NT, β = T | T NT
I Or: Single non-recursive EBNF production

I Examples
I identifier = letter {letter | digit}.
I number = digit {digit}.
I while = "W" "H" "I" "L" "E".

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 72

Regular Languages and Grammars (2)

I Is this grammar regular? Try to transform it. . .

E = T {"+" T}.
T = F {"*" F}.
F = "0" | "1".

⇒
E = T {"+" T}.
T = ("0" | "1") {"*" ("0" | "1")}.

⇒
E = ("0" | "1") {"*" ("0" | "1")}

{"+" ("0" | "1") {"*" ("0" | "1")}}.

I Yes, the grammar is regular! If it were not, the transformation
process would never end. . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 73

Finite Automata (Finite State Machines)

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 74

What is a Finite Automaton?

I A finite automaton is defined formally by
I a set Q of symbols
I a set S of states
I a set T ⊆ S × Q × S of transitions
I a set F ⊆ S of final states
I a start state R ∈ S

I For example:
I Q = { b, c }, S = { A, B, C }
I T = { A →b→ B, A →c→ C, B →c→ C, C →b→ B }
I F = { B }, R = A

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 75

Drawing Finite Automata

I Things get easier if we use some graphics
I each state becomes a circle
I each transition becomes a labeled arrow
I final states are marked with another circle
I the start state has a “blank” arrow coming in

I For example:

?

��
��

A

b �
�

�	

��
��
"!

B

c@
@

@R

��
��
C

b�
-

c
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 76

Language Accepted by Finite Automata

I A finite automaton

1. Starts in the start state (surprise!)
2. Looks at the next input symbol

I if symbol triggers transition: consume symbol, change state,
goto 2; else: goto 3

3. If the current state is a final state, accept the input,
otherwise fail

I For example:
I accepts: “b”, “bcb”, “bcbcbcbcbcbcb”, . . .
I rejects: empty input, “bc”, “cbcbc”, . . .
I L = ["c"] "b" {"c" "b"}.
I special: “cbb”, “cbx” ⇒ accepts “cb” part!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 77

Some Notes on Finite Automata

I A finite automaton
I recognizes regular (class 3) languages
I regular grammar ⇔ finite automaton

I Can be implemented by
I a transition table: index by current state and symbol, resulting

element is next state
I nested if/switch instructions, current state is the position in

the program

I Abreviations for drawing transitions
I unlabeled: taken for “all other” symbols
I combined: one arrow for many symbols

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 78

Implementation

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 79

Work from EBNF Productions (1)

I identifier = letter {letter|digit}.
read(ch)
if is_letter(ch):
read(ch)
while is_letter(ch) or is_digit(ch):
read(ch)

else:
error()

I Construct k leads to a program fragment p(k)
k p(k)

“x” if ch == ”x”: read(ch) else: error()

(e) p(e)

[e] if ch in first(e): p(e)

{e} while ch in first(e): p(e)

f0f1 . . . p(f0)p(f1) . . .

t0|t1| . . . if ch in first(t0): p(t0)
elif ch in first(t1): p(t1)
. . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 80

Work from EBNF Productions (2)

I What is first(e)?
I all starting symbols of e, all valid characters e can begin with
I first(identifier) = {“a”,. . . ,“z”,“A”,. . . ,“Z”}
I if |first(e)| is small compare characters, otherwise write a

function (e.g. is letter). . .

I Required grammar properties:
I grammar must be unambigious (deterministic)
I choices: all first sets must be disjunct (i.e. their intersection

must be empty)

I Of course, you also have to “assemble” the symbol, in case of
identifiers, numbers, strings, . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 81

Dealing with Keywords

I while = "W" "H" "I" "L" "E".

read(ch)
if ch == "W":
read(ch)
if ch == "H":
read(ch)
...

else:
error()

else:
error()

I This is way too complicated!
I write a function to check whether a string is a keyword
I after recognizing an identifier call that function
I return either the correct keyword token or the identifier token

with the value of the “assembled” string

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 82

Representing Tokens

I Various possibilities, for example as a class:

public class Token {
public int kind;
public String str; // for identifiers
public int val; // for numbers
public int start_pos, end_pos;

}

I Create an instance when one token is recognized
I set kind according to the kind of token, e.g. 1 for identifiers,

2 for numbers, 3 for the keyword PROGRAM, 4 for the keyword
WHILE, etc.

I define constants for these values so the parser can access the
kind field easily

I set str and val to the recognized content of identifier and
number tokens

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 83

Scanner Skeleton
I The scanner can be structured like this (at least for Simple):

...
while not end-of-file:
read(ch)
if is_whitespace(ch):
read(ch)

elif is_letter(ch):
must be an identifier or a keyword
process according to earlier slide
return either keyword or identifier token

elif is_digit(ch):
must be a number
process and assemble as string
convert string to integer
return number token with integer value

elif ch == "(":
read(ch)
return token for open parenthesis

...
else:
error("Illegal character!")

I The specifics are up to you, especially dealing with positions,
end-of-file, . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 84

More on Lexical Analysis

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 85

Regular Expressions

I Regular expressions (REs) are
I a different notation for regular grammars
I used heavily in text processing languages

I One possible definition:
I the empty string ε is a RE
I terminal symbols are REs
I if α and β are REs

I αβ is a RE (concatenation)
I (α|β) is a RE (choice)
I (α)+ is a RE (one or more)
I (α)∗ is a RE (zero or more)

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 86

Non-Deterministic Finite Automata

I A finite automaton is non-deterministic if
I there exists a state from which the same input symbol leads to

two or more different states

I For example:

?

��
��

A

b �
�

�	

��
��
"!

B

b@
@

@R

��
��
C

b�
-

cI If we are in A and read a “b” we can go to B or C
I Every NDFA can be converted to a DFA

I makes scanner generators easier to write
I see Appel or Aho for the algorithm

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 87

Automata ⇔ Grammars (1)

I Deterministic finite automata ⇔ regular grammars?

I Two simple rules:

��
��

X ��
��
"!

c

- ��
��

X ��
��

Y

b

-

X → “c” X → “b” Y

I How to apply these rules:
I go through states, apply rules for each transition out of the

state we are considering
I first rule: only transitions to a final state
I second rule: all transitions, including the ones we applied the

first rule to

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 88

Automata ⇔ Grammars (2)

I For example:
?

��
��

A

b �
�

�	

��
��
"!

B

c@
@

@R

��
��
C

b�
-

cI Applying the rules yields a bunch of productions:

A → “b”, A → “b” B, A → “c” C
B → “c” C
C → “b”, C → “b” B

I That doesn’t show structure well enough, simplify:

A → “b” | “b” B | “c” C
B → “c” C
C → “b” | “b” B

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 89

Automata ⇔ Grammars (3)

I Still not great, so substitute C into A and B:

A → “b” | “b” B | “c” (“b” | “b” B)
B → “c” (“b” | “b” B)

I Simplify again, by removing parenthesis:

A → “b” | “b” B | “c” “b” | “c” “b” B
B → “c” “b” | “c” “b” B

I Convert B production to EBNF-like notation:

A → “b” | “b” B | “c” “b” | “c” “b” B
B → “c” “b” { “c” “b” }

I Substitute B into A:

A → “b” | “b” (“c” “b” { “c” “b” }) | “c” “b” |
“c” “b” (“c” “b” { “c” “b” })

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 90

Automata ⇔ Grammars (4)

I Drop the parenthesis:

A → “b” | “b” “c” “b” { “c” “b” } | “c” “b” | “c”
“b” “c” “b” { “c” “b” }

I Eliminate redundant prefixes (first two terms):

A → “b” { “c” “b” } | “c” “b” | “c” “b” “c” “b” {
“c” “b” }

I Eliminate redundant prefixes (last two terms):

A → “b” { “c” “b” } | “c” “b” { “c” “b” }
I Combine the alternatives:

A → [“c”] “b” { “c” “b” }

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 91

Automata ⇔ Grammars (5)

I Lessons to learn from this:
I We can play with grammars like we play with equations in

algebra.
I Rewritten in “proper” EBNF we have exactly what we

“guesstimated” in the last lecture.
I The process can be very involved; if you need a little challenge,

make C into a final state as well and try the same thing!
I To get to a result, you can freely invent notation, you just

have to use your notation consistently.

I Of course, we can also go from EBNF to an automaton,
provided the language is regular. . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 4: Lexical Analysis CS 152: Compiler Design Slide 92

Generating Scanners

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 93

CS 152: Compiler Design

Introduction to Syntactic Analysis

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

October 1, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 94

Today’s Lecture

5 Syntactic Analysis
Introduction
Context-Free Languages
Fundamentals of Parsing
Recursive Descent Parsing
Implementation
Handling Syntax Errors
Parsing Algorithms and Language Classes
Visualization
Generating Parsers

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 95

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 96

What is Syntactic Analysis? (1)

I Syntax analysis: Tokens into Tree + Symbol Table

I Tokens → Parser → Tree + Symbol Table
I but that’s not the whole story

I IF 17 THEN → Parser → ?
I also error handling, “17” is not a condition (at least not in our

language, Simple)

I There is more than one way of course. . .
I Less passes ⇒ Symbol Table + Code
I More passes ⇒ Tree, Symbol Table later
I For simple languages we can do semantic analysis (e.g. type

checking) in the parser as well

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 97

What is Syntactic Analysis? (2)

I Syntactic analysis
I recognizes (and checks!) the structure of the input
I produces some form of intermediate representation

I In most languages we can clearly distinguish
I parts of the parser that build the symbol table (declarations in

the syntax)
I parts of the parser that build the tree (instructions and

expressions in the syntax)

I Therefore building those two structures in the parser seems to
be a good idea. . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 98

What is Syntactic Analysis? (3)

I Why do we separate this from lexical analysis?
I Many of the same reasons explained earlier
I We also need more powerful algorithms

I i.e. a different kind of automaton

I Why do we separate this from semantic analysis and code
generation?

I Transformations that simplify both (e.g. rewrite WHILE into
IF/REPEAT, fold constants)

I Flexibility to exchange the “back end” (e.g. different target
machines, interpreter)

I In general, this is again just “good software engineering” as
learned in other classes

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 99

Context-Free Languages

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 100

What is a Context-Free Language?

I How do we recognize the structure of a sequence of tokens?
⇒ Formal languages!

I Context-free languages (class 2)
I suffice for syntax analysis tasks (but not for semantic

constraints, e.g. type checking)
I Productions α → β: α = NT, β 6= ε

I Examples:
I Expr = ident | "(" Expr ")".
I Inst = Assign | While | If.

While = "WHILE" Cond "DO" Inst "END"

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 101

Context-Free versus Regular Languages

I Regular languages can not express “recursion in the middle”
I a finite automaton has at most n states
I but we can always take n + 1 recursions

I Context-free languages
I are recognized by pushdown automata

I which are similar to finite automata
I but also have an infinite stack

I Context-free languages can express “recursion in the middle”
I occurs frequently in programming languages

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 102

Deterministic Push-Down Automata (1)

I Deterministic push-down automata
I start with a symbol on the stack
I have (deterministic) transitions that

I fire on input symbol and top of stack
I push new symbols on the stack

I accept if stack empty and input exhausted
I no final states

I Context-free languages ⇔ non-deterministic PDAs
I deterministic PDAs are less powerful
I but easier to play with (i.e. can be implemented)

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 103

Deterministic Push-Down Automata (2)

I For example: E = "x" | "(" E ")".

��
��

1 ��
��

2

��
��

3 ��
��

4

-
E

-
“x”, E, ε

?

“(”, E, EE

-
“x”, E, ε

6

“(”, E, EE

6

“)”, E, ε
Input Stack Transition

“(” “(” “x” “)” “)” E 1 → 3

“(” “x” “)” “)” E E 3 → 3

“x” “)” “)” E E E 3 → 4

“)” “)” E E 4 → 4

“)” E 4 → 4

accepted

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 104

Fundamentals of Parsing

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 105

Overview

I The parser tries to recognize a sentence
I which comes down to constructing a parse tree
I but it’s not as smart as we are (hopefully :-)

I Most parsing algorithms
I go from left to right over the input
I look at the current token and the next one
I have to make local choices

I Two basic approaches:
I top-down: start symbol ⇒ what to derive next
I bottom-up: terminal symbols ⇒ what to reduce next

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 106

Top-Down Parsing (1)

I Grammar: E = “x” | “[” E “]”. Input: “[” “[” “x” “]” “]”
I Top-down parse:

Goal Parse Tree Choices

E0 (E ?) “x”, “[”

E0 (E “[” ?) E

E1 (E “[” (E ?) ?) “x”, “[”

E1 (E “[” (E “[” ?) ?) E

E2 (E “[” (E “[” (E ?) ?) ?) “x” , “[”

E1 (E “[” (E “[” (E “x”) ?) ?) “]”

E0 (E “[” (E “[” (E “x”) “]”) ?) “]”

E (E “[” (E “[” (E “x”) “]”) “]”) none, accepted
I In each step: Match token choices to the actual input or set

new goal if no token choices.
I Parse tree “grows” from the root to the leaves

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 107

Top-Down Parsing (2)

I Another expression grammar:
E = T {"+" T}.
T = F {"*" F}.
F = id | num | "(" E ")".

I Top-down for the sentence 1 * (i + 3):
Goal Parse Tree Choices

E0 (E ?) T

T0 (E (T ?) ?) F
F0 (E (T (F ?) ?) ?) id, num , “(”

T0 (E (T (F “1”) ?) ?) ε, “*”

T0 (E (T (F “1”) “*” ?) ?) F

F1 (E (T (F “1”) “*” (F ?) ?) ?) id, num, “(”

F1 (E (T (F “1”) “*” (F “(” ?) ?) ?) E

E1 (E (T (F “1”) “*” (F “(” (E ?) ?) ?) ?) T
.

I (E (T (F “1”) “*” (F “(” (E (T (F “i”)) “+” (T (F “3”))) “)”)))

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 108

Bottom-Up Parsing (1)

I Grammar: E = “x” | “[” E “]”. Input: “[” “[” “x” “]” “]”
I Bottom-up parse:

Input / Parse Tree Stack Action

“[” “[” “x” “]” “]” shift “[”

“[” “[” “x” “]” “]” “[” shift “[”

“[” “[” “x” “]” “]” “[” “[” shift “x”

“[” “[” “x” “]” “]” “[” “[” “x” reduce E

“[” “[” (E “x”) “]” “]” “[” “[” E shift “]”

“[” “[” (E “x”) “]” “]” “[” “[” E “]” reduce E

“[” (E “[” (E “x”) “]”) “]” “[” E shift “]”

“[” (E “[” (E “x”) “]”) “]” “[” E “]” reduce E

(E “[” (E “[” (E “x”) “]”) “]”) E done, accepted

I In each step: Reduce on stack if possible, otherwise shift next
input symbol.

I Parse tree “grows” from the leaves to the rootRevision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 109

Bottom-Up Parsing (2)

I Expression grammar again:1

E = T {"+" T}.
T = F {"*" F}.
F = id | num | "(" E ")".

I Bottom-up for the sentence 1 * (i + 3):
Input / Parse Tree Stack Action

“1” “*” “(” “i” “+” “3” “)” shift “1”

“1” “*” “(” “i” “+” “3” “)” “1” reduce F

(F “1”) “*” “(” “i” “+” “3” “)” F shift “*”

(F “1”) “*” “(” “i” “+” “3” “)” F “*” shift “(”

(F “1”) “*” “(” “i” “+” “3” “)” F “*” “(” shift “i”

(F “1”) “*” “(” “i” “+” “3” “)” F “*” “(” “i” reduce F

(F “1”) “*” “(” (F “i”) “+” “3” “)” F “*” “(” F reduce T

(F “1”) “*” “(” (T (F “i”)) “+” “3” “)” F “*” “(” T shift “+”

(F “1”) “*” “(” (T (F “i”)) “+” “3” “)” F “*” “(” T “+” shift “3”

(F “1”) “*” “(” (T (F “i”)) “+” “3” “)” F “*” “(” T “+” “3” reduce F

.
1If you want to see this through to the end, you should transform the grammar

from EBNF into BNF!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 110

Derivations and Reductions (1)

I Terminology:2

I A non-terminal symbol derives to a string
I A string reduces to a non-terminal symbol

I Notation: Assume E → E “-” E, E → “x”, E → “y”
I E ⇒ E “-” E ⇒ “x” “-” E ⇒ “x” “-” “y” (direct)

E ⇒∗ “x” “-” “y” (indirect)
I “x” “-” “y” ⇐ E “-” “y” ⇐ E “-” E ⇐ E (direct)

“x” “-” “y” ∗⇐ E (indirect)

I It is undefined
I which non-terminal is derived in each step
I which string is reduced in each step

2A string, here, is a sequence of terminals or non-terminals.
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 111

Derivations and Reductions (2)

I Canonical derivations (reductions)
I define the order of derivations (reductions)

I Derivations:
I Left-canonical: derive left-most non-terminal
I Right-canonical: derive right-most non-terminal

I Reductions:
I Left-canonical: reduce left-most string
I Right-canonical: reduce right-most string

I Left-most derivations ⇔ Right-most reductions
(and vice versa)

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 112

Derivations and Reductions (3)

I Example: E → E “-” E, E → “x”, E → “y”
I Left-most derivation:

E ⇒ E “-” E ⇒ “x” “-” E ⇒ “x” “-” “y”
I Right-most derivation:

E ⇒ E “-” E ⇒ E “-” “y” ⇒ “x” “-” “y”
I Left-most reduction:

“x” “-” “y” ⇐ E “-” “y” ⇐ E “-” E ⇐ E
I Right-most reduction:

“x” “-” “y” ⇐ “x” “-” E ⇐ E “-” E ⇐ E

I Relation to Parsing:
I Top-down parser ⇔ left-most derivations
I Bottom-up parser ⇔ left-most reductions

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 113

Recursive Productions (1)

I Classification:
I left recursion: A → A “x” | “y” yxxx. . .
I right recursion: A → “x” A | “y” . . . xxxy
I central rec.: A → “x” A “x” | “y” xx. . . y. . . xx
I indirect recursion: A → “x” B | “z”, B → A “y”

I Top-down parsers and left recursion:
I top-down parsers perform left-most derivations
I if a production is left-recursive, this never ends
I (A ?) ⇒ (A (A ?) ?) ⇒ (A (A (A ?) ?) ?) ⇒ . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 114

Recursive Productions (2)

I Eliminating left recursion:
I transform into right recursion

I from E → E “+” T, E → T
I into E → T E’, E’ → “+” T E’, E’ → ε

I transform into iteration
I from E → E “+” T, E → T
I into E = T {“+” T}.

I observe the how {“+” T} is exactly E’

I Why not E → T “+” E, E → T instead?
I the parser can’t choose the “right” E!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 115

Recursive Descent Parsing

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 116

What is Recursive Descent Parsing? (1)

I Recursive descent parsing (predictive parsing)
I easy-to-implement top-down parsing technique
I non-terminal productions become procedures

I While = “WHILE” Condition “DO” Instructions “END”.

def While():
match("WHILE")
Condition()
match("DO")
Instructions()
match("END")

def match(kind):
if kind == current.kind:
next() // updates current

else:
raise "Expected " + kind + " not " + current

I PDA states = position in the procedure
PDA stack = procedure activation stack

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 117

What is Recursive Descent Parsing? (2)

I Recursive descent parsing only works
I if the parser is always able to choose an alternative by looking

only one token ahead

I We need to ensure this
I by analyzing the grammar of the language
I by transforming it if necessary (and possible)

I Consider: E → T “+” E, E → T, T → “x”
I Which E production when we look at “x”?

I choose longer one: can’t parse “x” alone
I choose shorter one: can’t parse “x+x+. . . ”

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 118

First and Follow Sets (1)

I For a string3 α, first(α) is defined as
I the set of all tokens that prefix any sentence derivable from α

I For a non-terminal X , follow(X) is defined as
I the set of all tokens that can immediately follow X in any

derivation

I Example: A → “0” | “1”
α first(α) follow(α)

“0” “0” undefined

“1” “1” undefined

A “0”, “1”

3Remember that “string” means “sequence of terminals or non-terminals”
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 119

First and Follow Sets (2)

I Example: A → B | A B, B → “0” | “1”
α first(α) follow(α)

“0” “0” undefined

“1” “1” undefined

A “0”, “1” “0”, “1”

B “0”, “1”
I Example: Z → X Y Z, Z → “d”, Y → “c”, Y → ε,

X → “a”, X → Y
α first(α) follow(α)

“a” “a” undefined

“c” “c” undefined

“d” “d” undefined

X “a”, “c” “a”, “c”, “d”

Y “c” “a”, “c”, “d”

Z “a”, “c”, “d”

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 120

First and Follow Sets (3)

I Example: S → A | B, A → “c” A “+” “b” | “a”,
B → “c” B “+” “a” | “b”
α first(α) follow(α)

S “a”, “b”, “c”

A “a”, “c” “+”

B “b”, “c” “+”

I Example: E = T {(“+”|“-”) T}. T = F {(“*”|“/”) F}.
F = “x” | “(” E “)”.
α first(α) follow(α)

E “x”, “(” “)”

T “x”, “(” “+”, “-”, “)”

F “x”, “(” “*”, “/”, “+”, “-”, “)”

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 121

First and Follow Sets (4)

I Example: E → T E’, E’ → “+” T E’ | “-” T E’ | ε,
T → F T’, T’ → “*” F T’ | “/” F T’ | ε,
F → “x” | “(” E “)”

α first(α) follow(α)

E “x”, “(” “)”

E’ “+”, “-” “)”

T “x”, “(” “+”, “-”, “)”

T’ “*”, “/” “+”, “-”, “)”

F “x”, “(” “*”, “/”, “+”, “-”, “)”

I Notes:
I Last two: Same language, different grammar
I Algorithms for first/follow: see Aho or Appel

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 122

LL(1) Grammars (1)

I A grammar is an LL(1) grammar if
I all productions conform to the LL(1) conditions

I LL(1) conditions:

1. For each production A → σ1|σ2| . . . |σn:

first(σi) ∩ first(σj) = ∅, ∀i 6= j

2. If non-terminal X can derive the empty string:

first(X) ∩ follow(X) = ∅
I Notes:

I condition 1 means we always know which alternative to choose
I condition 2 means we always know whether something optional

is there or not

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 123

LL(1) Grammars (2)

I Example: S → A | B, A → “c” A “+” “b” | “a”,
B → “c” B “+” “a” | “b”
α first(α) follow(α)

S “a”, “b”, “c”

A “a”, “c” “+”

B “b”, “c” “+”
first(A) ∩ first(B) = { “c” } ⇒ not LL(1)!

I Example: E = T {(“+”|“-”) T}. T = F {(“*”|“/”) F}.
F = “x” | “(” E “)”.
α first(α) follow(α)

E “x”, “(” “)”

T “x”, “(” “+”, “-”, “)”

F “x”, “(” “*”, “/”, “+”, “-”, “)”
first({(“+”|“-”) T}) ∩ follow({(“+”|“-”) T}) = ∅,
first({(“*”|“/”) F}) ∩ follow({(“*”|“/”) F}) = ∅
⇒ LL(1)!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 124

First and Follow Sets (1)*

I first(α): defined for a string4 α
I set of terminal symbols that α starts with
I t ∈ first(α) if any derivation contains

. . . ⇒ α ⇒ “t” β ⇒ . . .

I Example: A → B “x”, B → “a” | “b” | ε

I A ⇒ B “x” ⇒ “a” “x”

I A ⇒ B “x” ⇒ “b” “x”

I A ⇒ B “x” ⇒ ε “x”

I first(“a” “x”) = {“a”}, first(“b” “x”) = {“b”},
first(ε “x”) = {“x”}, first(B) = {“a”, “b”, “x”},
first(B “x”) = {“a”, “b”, “x”},
first(A) = {“a”, “b”, “x”}

4terminal and non-terminal symbols
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 125

First and Follow Sets (2)*

I follow(X): defined for a non-terminal symbol X
I set of terminal symbols that follow X
I t ∈ follow(X) if any derivation contains

. . . ⇒ X “t” ⇒ . . .

I Example: A → B “x”, B → “a” | “b” | ε

I A ⇒ B “x” ⇒ “a” “x”

I A ⇒ B “x” ⇒ “b” “x”

I A ⇒ B “x” ⇒ ε “x”

I follow(B) = {“x”}, follow(A) = {}

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 126

First and Follow Sets (3)*

I Example: A → “y” | A “x”
I first(α):

I A ⇒ “y”

I A ⇒ A “x” ⇒ “y” “x”

I A ⇒ A “x” ⇒ A “x” “x” ⇒ . . .

⇒ “y” “x” . . . “x”

I therefore e.g. first(A) = {“y”}
I follow(X):

I A ⇒ “y”
I A ⇒ A “x” ⇒ “y” “x”

I A ⇒ A “x” ⇒ A “x” “x” ⇒ . . .

⇒ A “x” . . . “x” ⇒ “y” “x” . . . “x”
I therefore follow(A) = {“x”}

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 127

First and Follow Sets (4)*

I Example: A → “y” | “x” A
I first(α):

I A ⇒ “y”

I A ⇒ “x” A ⇒ “x” “y”

I A ⇒ “x” A ⇒ “x” “x” A ⇒ . . .

⇒ “x” “x” . . . “y”

I therefore e.g. first(A) = {“x”, “y”}
I follow(X):

I A ⇒ “y”
I A ⇒ “x” A ⇒ “x” “y”
I A ⇒ “x” A ⇒ “x” “x” A ⇒ . . .
⇒ “x” “x” . . . “x” A ⇒ “x” “x” . . . “x” “y”

I therefore follow(A) = {}

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 128

Implementation

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 129

Working from EBNF Grammars (1)

I The basic idea:
I left side of production ⇒ procedure
I A = ⇒ def A(): . . .
I right side of production ⇒ call
I . . . = . . . A ⇒ . . . A() . . .

I Example: A = B C D. B = C = D =

def A():
B()
C()
D()

def B(): ...
def C(): ...
def D(): ...

I If B, C, and D are successful, we recognized A.

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 130

Working from EBNF Grammars (2)

I Optional Parts: A = . . . [B]

def A():
...
if current.kind in first(B):
B()

...

I Repetitive Parts: A = . . . { B }

def A():
...
while current.kind in first(B):
B()

...

I Use comparison for small first sets, a separate procedure for
large ones. . .

I Lexical analysis used the same rules, but there was no
recursion!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 131

Working from EBNF Grammars (3)

I Each non-terminal (production)
I becomes a procedure that parses (sub-) sentences of that part

of the grammar
I (indirectly) recursive productions become (indirectly) recursive

procedure calls

I While = “WHILE” Condition “DO” Instructions “END”.

def While():
match("WHILE")
Condition()
match("DO")
Instructions() // possible recursion
match("END")

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 132

Working from EBNF Grammars (4)

I Condition = Expression (“=” | “#” | “<” | “>” |“<=” |
“>=”) Expression.

def Condition():
Expression()
if current.kind in ["=","#","<",">","<=",">="]:
next() // updates current

else:
raise "Comparison expected not " + current

Expression()

or (with a smart match procedure)

def Condition():
Expression()
match(["=","#","<",">","<=",">="])
Expression()

however that can be problematic later when we actually want
to know which operator it was. . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 133

Working from EBNF Grammars (5)

I Requesting Tokens from the Scanner

def next():
last = current
current = Scanner.next()

It can be useful to remember the previous token for semantic
analysis. . .

I Matching Terminal Symbols

def match(kind):
if current.kind == kind:
next()

else:
error(kind + " expected, not " + current)

Read next token if everything’s fine, else give an error

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 134

Working from EBNF Grammars (6)

I Assignment = identifier Selector “:=” Expression.

def Assignment():
match("identifier")
Selector()
match(":=")
Expression()

I If = “IF” Condition “THEN” Instructions [“ELSE”
Instructions] “END”.

def If():
match("IF")
Condition()
match("THEN")
Instructions()
if current.kind == "ELSE":
match("ELSE") // redundant, can use next
Instructions()

match("END")

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 135

Working from EBNF Grammars (7)

I Instructions = Instruction {”;” Instruction}.
def Instructions():
Instruction()
while current.kind == ";":
next() // look ma, no match!
Instruction()

I Factor = identifier | number | “(” Expression “)”.

def Factor():
if current.kind == "identifier":
next()

elif current.kind == "number":
next()

elif current.kind == "(":
next()
Expression()
match(")")

else:
error("Factor expected, not " + current)

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 136

Tricks of the Trade (1)

I Using an “end-of-file” token
I We want to avoid checking for the end of the input all the time
I If the scanner returns an “end-of-file” token, we can do that

I S = ”PROGRAM” X ”END”. ⇒ S = ”PROGRAM” X
”END” ”eof”.

def S():
match("PROGRAM")
X()
match("END")
match("eof")

I If “eof” turns up within X, an error message will be generated
by match()

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 137

Tricks of the Trade (2)

I Simplify the parser by tweaking the grammar. . .
I Decls = { ConstDecl | TypeDecl | VarDecl }.

I first(ConstDecl) = “CONST”, first(TypeDecl) = “TYPE”,
first(VarDecl) = “VAR”

I We would need to check for these in Decls() and in
ConstDecl(), TypeDecl(), and VarDecl()

I Decls = { “CONST” ConstDecl | “TYPE” TypeDecl | “VAR”
VarDecl }.

I Move “CONST”, “VAR”, “TYPE” into Decls() and only
match them there

I However we need to be careful not to change the language5

5And you still need to produce the right output for the assignment
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 138

Handling Syntax Errors

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 139

Handling Syntax Errors (1)

I Task: Find as many errors as possible within one compilation,
but. . .

I Avoid “cascading” errors that only occur because of a previous
one

I Don’t ever crash, for a parser “wrong” input is the common
case

I Don’t slow down error free parsing, don’t inflate the parser
code

I There is no “perfect” solution, error handling is full of
heuristics

I We need to make assumptions what the programmer
“intended” to do, which is bound to fail in some cases

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 140

Handling Syntax Errors (2)

I Suppressing cascading errors
I Once an error is detected, the parser might be “out of sync”

with the input
I Then more “errors” would occur, that are not really there

I A simple heuristic:
I Keep track of how many tokens were processed since the last

error message
I As long as we only moved n tokens, we don’t generate new

error messages
I Obviously, the choice of n is critical, and there must be a way

for the parser to get “in sync” with the input again

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 141

Handling Syntax Errors (3)

I Weak and strong symbols
I Weak symbols are often left out, for example the semicolon

separating instructions
I Strong symbols are almost never left out, for example the

“CONST” keyword

I If we detect that a weak symbol is missing
I we first generate an error message, but then pretend it was

there
I Examples: “;” between instructions, “)” in factors, use of “=”

for assignment

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 142

Handling Syntax Errors (4)

I If we detect any other syntax error
I we first generate an error message, and then try to find a

strong symbol to synchronize
I Examples: “CONST”, “VAR”, “TYPE” for declarations, “IF”,

“WHILE”, “REPEAT” for instructions

I Using modified grammars
I Decls = [“CONST” {ConstDecl}] [“VAR” {VarDecl}].
I Constants must be declared before variables, but we could

process them either way. . .
I Use: Decls = {“CONST” {ConstDecl} | “VAR” {VarDecl} }.

but generate error messages

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 143

Handling Syntax Errors (5)

I Obviously, if the input is “wrong enough” none of these
approaches will work. . .

I For your Simple compiler, you will use “panic mode” for error
handling

I As soon as the parser finds one error, it throws an exception
(incl. message) and aborts!

I Advantages:
I simple and cheap to implement
I sufficient for our purposes

I Problems:
I not appropriate for production compilers

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 144

Parsing Algorithms and Language Classes

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 145

Parsing Algs. and Language Classes (1)

I Depending on the algorithm used for parsing
I we can only recognize a subset of context-free languages
I we need to transform the grammar, or change it altogether

(language design)

I Algorithms for all context-free languages exist
I but their worst-case time complexity for n input symbols is

O(n3)
I although recent results indicate that in practice they are often

“almost” linear

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 146

Parsing Algs. and Language Classes (2)

I LL(k) Parsers and Languages
I parse the input from left to right
I proceed with left-most derivations
I make decisions based on the next k tokens

I LR(k) Parsers and Languages
I parse the input from left to right
I proceed with right-most derivations
I make decisions based on the next k tokens
I SLR(k), LALR(k) are common subclasses

I See Appel or Aho for a more detailed discussion

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 147

Visualization

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 148

The Observer Pattern

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 5: Syntactic Analysis CS 152: Compiler Design Slide 149

Generating Parsers

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 150

CS 152: Compiler Design

Introduction to Semantic Analysis

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

October 1, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 151

Today’s Lecture

6 Semantic Analysis
Introduction
Attribute Grammars
Symbol Tables
Visualization

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 152

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 153

What is Semantic Analysis? (1)

I A variety of things, not easily classified!
I Books give definitions the authors find useful.
I Here things begin to get really fuzzy. . .

I Enforce context conditions the parser could not:
I e.g. identifiers need to be declared before use

I . . . VAR i : INTEGER; . . . k := 10 . . .

I e.g. distinguish constants, variables, types, . . .

I . . . CONST A = 10; VAR a: A ; . . .

I e.g. distinguish between different types

I . . . VAR i: INTEGER ; . . . i[14] := 20 . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 154

What is Semantic Analysis? (2)

I Evaluate the program as far as possible:
I e.g. fold constant expressions

I . . . a := 10*3+2; . . .⇒ . . . a := 32; . . .

I e.g. eliminate “dead” code
I . . . IF 0 > 10 THEN . . . END . . .⇒ . . .

I e.g. perform advanced error checks

I . . . VAR a: ARRAY 8 OF INTEGER; . . .

. . . a[12] := 10 . . .

I But not further than sensible:
I e.g. don’t do code generation yet (portability!)
I e.g. the last two are easier to perform later in a more general

fashion

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 155

What is Semantic Analysis? (3)

I Build intermediate representation for the next phase:
I e.g. abstract syntax trees

I . . . a := a + 1; . . .⇒ . . . (:= a (+ a 1)) . . .

I e.g. abstract machine languages
I . . . a := a + 1; . . .⇒ . . . add a, 1, a . . .

I Our (arbitrary) choices for Simple:
I enforce context conditions
I fold constants
I build abstract syntax tree

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 156

What is Semantic Analysis? (4)

I Syntax analysis reconsidered:6

I Our previous idea of syntax analysis:

I Tokens → Parser → AST + ST

I A refined view (only conceptual!):

I Tokens → Parser → CST

I CST → Sem. Analysis → AST + ST

I A recursive descent parser
I builds CST implicitly as procedure calls
I semantic actions inside parsing procedures

6CST = concrete syntax tree (parse tree), AST = abstract syntax tree, ST
= symbol table

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 157

Attribute Grammars

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 158

Attribute Grammars (1)

I Start with a context-free grammar
Expr = Term { ”+” Term }.
Term = Factor { ”*” Factor }.
Factor = number | ”(” Expr ”)”.

I Add attributes to terminals and non-terminals
Expr<↑val> = Term<↑val> { ”+” Term<↑val1> }.
Term<↑val> = Factor<↑val> { ”*” Factor<↑val1> }.
Factor<↑val> = number<↑val> | ”(” Expr<↑val> ”)”.

I Two kinds of attributes:
I <↑x> synthesized (output attribute)

I “flows” from a symbol into its context

I <↓x> inherited (input attribute)
I “flows” from the context into a symbol

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 159

Attribute Grammars (2)

I Add semantic actions, e.g. as Java code
Expr<↑val> int val, val1;
= Term<↑val>
{ ”+” Term<↑val1> val = val + val1;
}.
Term<↑val> int val, val1;
= Factor<↑val>
{ ”*” Factor<↑val1> val = val * val1;
}.
Factor<↑val> int val;
= number val = token.value;

| ”(” Expr<↑val> ”)”.

I What do we do now?
I build the parse tree according to the grammar
I propagate attributes up along the parse tree

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 160

Attribute Grammars (3)

I An attributed production like this. . .
Expr<↑val> int val, val1;
= Term<↑val>
{ ”+” Term<↑val1> val = val + val1;

}.
I . . . becomes a procedure like this:

def Expr():
val = Term()
while current.kind == "+":
next()
val1 = Term()
val = val + val1

return val
I Existing parser code gets augmented with semantic actions

from the attribute grammar!
I Synthesized attributes ⇔ Output parameters

Inherited attributes ⇔ Input parameters

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 161

Symbol Tables

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 162

What is a Symbol Table?

I A symbol table keeps track of declarations
I associates the name of a declared identifier
I with a value representing its meaning

I Example: . . . CONST a = 26*3+1; . . .
I name: “a” ⇒ value: 79

I Example: . . . CONST b = 2*a; . . .
I name: “b” ⇒ value: 158

I We must be able to
I insert a new (name, value) pair
I find the value for a given name

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 163

Data Structures for Symbol Tables

I Many data structures support insert and find
I How many entries? More insert or more find? Overhead of

data structure itself. . .

I Linear lists
I insert fast, find slow, keeps declaration order

I Search trees
I insert okay, find okay, loses declaration order

I Hash tables
I insert okay, find okay, loses declaration order

I Linear lists are usually good enough for “small” symbol tables
(all we ever need). . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 164

Handling Nested Scopes (1)

I Scopes in programming languages
I define the visibility of a declaration
I in different parts of the source text

I In many languages, scopes can be nested
I certain declarations introduce new scopes

I procedures, methods, classes, modules, . . .

I inside already existing scopes
I methods in classes, classes in classes, . . .

I Since symbol tables store declarations
I they must handle relevant scope rules correctly

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 165

Handling Nested Scopes (2)

I Common case: Block-structured languages
I declarations in scope X are not visible outside
I declarations made outside X are visible in X

I provided they are not shadowed by a new declaration in X

I common exception: “dot-notation” for fields of records,
members of classes, . . .

I Block-structured symbol tables
I separate table for each scope, each table knows its outer scope
I insert modifies current table, find searches current table first,

outer if needed

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 166

Handling Nested Scopes (3)

I Universe scope
I a “virtual” scope outside the “largest” scope in a programming

language
I contains predeclared identifiers, e.g. types INTEGER, REAL,

functions ABS(), ORD(), . . .
I handling these as keywords introduces more special cases than

putting them in the universe

I Universe in Simple
I contains the type INTEGER, nothing else
I set up by the parser before parsing begins

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 167

Handling Declarations (1)

I What are the kinds of declarations?
I Constants, can only be read
I Variables, can be read and written
I Types, can be used in variable declarations
I Procedures, can be called, assigned, . . .
I . . .

I What do we store for constants?
I Value (obviously!)
I Type (if there are multiple)
I Address (depending on the back end)
I . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 168

Handling Declarations (2)

I What do we store for variables?
I Type (if there are multiple)
I Address (depending on the back end)
I . . .

I What do we store for types?
I Kind (basic vs. structured types)
I Size (depending on the back end)
I Structure

I Arrays: Type of elements, length (index range)
I Records: Fields (a new symbol table!)
I . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 169

Handling Declarations (3)

I Note on types:
I Basic types are usually singleton objects, i.e. the compiler

only creates one instance and puts it into the universe

I What do we store for procedures?
I Address (depending on the back end)
I Signature

I Parameters (a new symbol table)
I Return type

I Local declarations (new symbol table)
I . . .

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 170

Handling Declarations (4)

I Note on procedures and types:
I If procedures can be assigned to variables and passed as

parameters, procedures become type constructors as well

I Various additional information
I storage classes in C or Java (e.g. register, volatile)
I estimated usage patterns (for optimizations)
I . . .

I The symbol table is a central data structure
I shared by front end and back end, both may add information

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 171

Handling Declarations (5)

I Implementation as class hierarchy
I base class Entry for all symbol table entries
I derived classes for kinds (Constant, Variable, Type, Procedure,

. . .)
I derived classes for basic types (Integer, . . .), structured types

(Array, . . .)

I Implementation as a single type/class
I use a kind field to distinguish, slots for all possible things we

need to store

I Compromise (see Wirth):
I one class for Variables, Constants, Procedures
I one class for Types

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 6: Semantic Analysis CS 152: Compiler Design Slide 172

Visualization

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 173

CS 152: Compiler Design

Introduction to Semantic Analysis II

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

October 1, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 174

Today’s Lecture

7 Semantic Analysis II
Abstract Grammars
Abstract Syntax Trees
Simple AST Transformations
Visualization

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 175

Abstract Grammars

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 176

What is an Abstract Grammar? (1)

I Concrete Grammars
I describe the syntactic structure of a source language text
I are filled with “punctuation symbols” to guide the parser (e.g.

to avoid ambiguities)
I depend on parsing algorithms (e.g. no left recursion for

top-down parsers)

I Abstract Grammars
I describe the essential structure of a language
I disregard parsing, error handling, and all that
I provide a better basis for defining semantics

I Concrete Syntax Tree vs. Abstract Syntax Tree

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 177

What is an Abstract Grammar? (2)

I Concrete grammar for conditional instructions
I If = “IF” Condition “THEN” Instructions [“ELSE”

Instructions] “END”.
I “IF” guides parser to recognize a conditional
I “THEN”, “ELSE” indicate start of instructions
I “END” avoids the “dangling else” problem

I What is there to know about a conditional?
I evaluates condition to a boolean result
I executes these instructions for true
I executes those instructions for false

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 178

What is an Abstract Grammar? (3)

I Abstract grammar for conditional instructions
I If = Condition Instructionstrue [Instructionsfalse].
I only the essential constituents remain
I lexical and syntactic details disappear

I Concrete grammars ⇒ Abstract grammar
I If = “if” “(” Condition “)” “{” Instructions “}” [“else” “{”

Instructions “}”].
I If = “if” Condition “:” Instructions [“else” “:” Instructions].
I If = Condition “?” Instructions [“:” Instructions].
I C-like, Python-esque, and insane concrete grammars have the

same abstract grammar!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 179

What is an Abstract Grammar? (4)

I Example: Repetitive instructions
While = “WHILE” Condition “DO” Instructions “END”.
⇒
While = Condition Instructions.

I Example: Type declarations
TypeDecl = “TYPE” { identifier “=” Type }.
⇒
TypeDecl = { Identifier Type }.
⇔
TypeDecl = ε | Identifier Type TypeDecl.

I Example: Write instruction
Write = “WRITE” Expression.
⇒
Write = Expression.

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 180

What is an Abstract Grammar? (5)

I Example: Expressions
Expression = Term {“+” Term}.
Term = Factor {“*” Factor}.
Factor = identifier | number | “(” Expression “)”.
⇒
Expression = Expression Operator Expression.
Expression = Identifier | Number.
Operator = Plus | Times.

I Concrete grammar is designed for parsing
I avoid ambiguity, model precedence, model associativity, simple

parsing algorithms, . . .

I Abstract grammar is designed for representation
I once done with parsing, a lot of simplifications can be made

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 181

Abstract Syntax Trees

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 182

What is an Abstract Syntax Tree? (1)

I Abstract syntax trees (ASTs)
I common form of intermediate representation
I retains structural properties of source language
I described by abstract grammars
I easily produced during parsing
I easily traversed by backends

I For Simple:
I Declarations ⇒ Symbol Table (ST)
I Instructions, Expressions ⇒ AST
I ST + AST = validated representation of input (provided

context conditions were enforced)

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 183

What is an Abstract Syntax Tree? (2)

I Example: Expression
“1” “+” “2” “*” “3” Source
⇒
(E (T (F “1”)) “+” (T (F “2”) “*” (F “3”))) CST
⇒
(+ (“1”) (* (“2”) (“3”)) AST

I Seems convoluted? No!
I source text is linear, without any structure
I concrete grammars impose a structure

I which can be “hard” to find, many steps

I abstract grammars retain the structure
I but forget the “ugly” details of how we got it

I In Simple: CST is implicit in parsing procedures!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 184

What is an Abstract Syntax Tree? (3)

I Example: If Instruction
“IF” “x” “=” “3” “THEN” “x” “:=” “0” “END” Source
⇒
(If “IF” CST
(Condition (E (T (F “x”))) “=” (E (T (F “3”))))
“THEN”
(Instructions (Instruction
(Assignment “x” “:=” (E (T (F “0”))))
))
“END”)
⇒
(If (= (“x”) (“3”)) (:= (“x”) (“3”)) ()) AST

I Would you rather remember the CST or the AST?
I AST has all the information without any of the complexity!

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 185

Representing Abstract Syntax Trees (1)

I Work from the abstract grammar (“specification”)
I kinds of nodes ⇔ left-hand side
I contents of nodes ⇔ right-hand side

I Example: Instructions
Instructions = Instruction | Instructions Instruction
⇒ (mechanical) ⇒
class Instructions {
Instructions next;
Instruction inst;

}

⇒ (with some thinking) ⇒
class Instruction {
Instruction next;

}

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 186

Representing Abstract Syntax Trees (2)

I An object-oriented design for Instructions:
I abstract base class Instruction
I derived conrete classes for Assignment, If, While, . . . with

corresponding members

I Example: If Instructions
If = Condition Instructionstrue [Instructionsfalse].
⇒
class If extends Instruction {
Condition cond;
Instruction true;
Instruction false; // can be null

}

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 187

Representing Abstract Syntax Trees (3)

I Design tradeoffs:
I A single class and a “kind” field

I prohibits type checking (of the compiler)
I needs extra documentation for “generic” fields

I Too many classes (one for “+”, one for “*”, . . .)
I doesn’t really gain anything anymore
I increases complexity of the data structureI Traversal of ASTs:

I decoupling of backend specifics from ASTs
I can’t put eval() or code() methods there

I external traversal easier for class hierarchy
I the Visitor design pattern

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 188

Representing Abstract Syntax Trees (4)

I An object-oriented design for Expressions:
I abstract base class Expression
I derived conrete classes for Number, Location, Binary, . . .

I For Simple we don’t need Unary
I we can use the binary “0 - x” for “-x”
I works for integers, not for floating point

I Locations model “anonymous variables” (memory)
I for example arrays: what kind of node is “i[10]”?
I Location = Variable | Index.

Index = Location Expression.

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 189

Generating Abstract Syntax Trees (1)

I Inspired by attribute grammars
I parsing procedures return subtrees of the AST
I the synthesized attribute of each non-terminal

I Similar to the symbol table
I parser procedures “collect” all the information
I all information there? ⇒ create the subtree

I Example: Instructions (pseudo-code)

def Instructions():
first = last = Instruction() // store subtree
while current.kind == ";":
next = Instruction() // store subtree
last.next = next // link instructions
last = next

return first // return subtree

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 190

Generating Abstract Syntax Trees (2)

I Notes:
I although Instructions() returns a list, we still call it an

abstract syntax tree
I Instruction() parses whatever instruction there is in the

input
I and returns the appropriate tree, e.g. for an assignment

I Example: While Instructions (pseudo-code)

def While():
match("WHILE")
cond = Condition() // store subtree
match("DO")
inst = Instructions() // store subtree
match("END")
return AST.While(cond, inst) // return subtree

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 191

Generating Abstract Syntax Trees (3)

I Sometimes inherited attributes are needed
I Factor = identifier Selector |

Selector = { “[” Expression “]” }.
I Selector: which identifier to index from?
I Factor passes it to Selector as a parameter

I Example: (pseudo-code, no error handling)

def Factor():
if current.kind == "identifier":
name = current.value
next()
value = table.find(name)
if value.kind == "VAR":
id = AST.Location(value)

elif ...
result = Selector(id)

elif ...

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 192

Generating Abstract Syntax Trees (4)

I Example: (pseudo-code, no error handling)

def Selector(id):
top = id
while current.kind == "[":
next()
expr = Expression()
match("]")
top = AST.Index(top, expr)

return top
I For i[10][20][30] this yields

(Index
(Index
(Index (Loc “i”) (Num “10”))
(Num “20”))

(Num “30”))I Checking context conditions gets a little hairy
I each expression node should get a type field
I helps decide if another “[]” pair is okay

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 193

Simple AST Transformations

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 194

What are AST Transformations? (1)*

I ASTs can be designed in various ways. . .
I very close to the source language
I very close to the target language
I somewhere in between

I Example: Consider a[2] := 3
I Close to source

(Assign (Index (Var a) (Num 2)) (Num 3))
I Closer to target

(Store (+ (Address a) (* (Lit 2) (Size a[]))
(Lit 3))

I Really close to target
(move (add (lea a) (mul (load #2) (load #4))
(load #3))

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 195

What are AST Transformations? (2)*

I We don’t have to model every source construct
I store value instead of constant expression
I store common subexpressions only once
I transform control-flow instructions

I Good:
I can simplify the back end
I can preserve memory during compilation

I Bad:
I transformation costs compilation time
I some information easier to derive in backend

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 196

Constant Folding (1)*

I If the subtrees of a binary operation are constant
I the result of the operation is constant as well

I Example: Consider 5+3*4
I Simple AST: (+ (5) (* 3 4))
I Folded AST: (17)

I We can either
I build the simple AST and then transform
I or build the folded AST right away

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 197

Constant Folding (2)*

I Where binary operation nodes are created
I check if subtrees are constant
I evaluate directly if they are

I Example: Pseudo-code for parsing procedure
def Expression():
t1 = Term()
while current.kind in ["+","-"]:
op = current.kind
next()
t2 = Term()
if constant(t1) and constant(t2):
if op == "+":
t1 = Number(t1.val+t2.val)

else:
t1 = Number(t1.val-t2.val)

else:
t1 = Binary(op, t1, t2)

return t1

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 198

Common Subexpressions (1)*

I If the subtrees of a binary operation
I have identical structure
I we could store them only once

I Example: Consider (a+b)*(a+b)7

I Simple AST: (* (+1 a b) (+2 a b))
I Better “AST”: (* (+1 a b) (+1 a b))

I Results in a DAG: Directed Acyclic Graph
I common subexpressions are identified
I need to be evaluated only once
I except when there are side-effects!

7Since I can’t draw the tree or dag, I give the nodes numbers. . .
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 199

Common Subexpressions (2)*

I Where binary nodes are created
I check for identical node created before
I return that node instead of a new one8

I Example: Pseudo-code for parsing procedure

def Expression():
t1 = Term()
while current.kind in ["+","-"]:
op = current.kind
next()
t2 = Term()
t1 = Binary(op, t1, t2)
// return t1 again if not found
t1 = archive.find(t1)
return t1

I Common subexpression elimination is usually done in the
backend since it needs detailed analysis. . .

8The design pattern Factory would be useful here. . .
Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 200

Control Flow Transformations (1)*

I Example: Transforming FOR into WHILE

FOR i := 1 TO 10 DO x[i] := i END

⇒

l := 1; u := 10;
WHILE l <= u do

x[l] := l
l := l + 1

END

I While parsing the FOR we
I collect all the necessary parts, but generate subtrees for the

WHILE

I Simplifies backend, but we lose information, e.g. that a FOR is
“properly bounded”

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 201

Control Flow Transformations (2)*

I Example: Transforming WHILE into IF/REPEAT

WHILE condition DO instructions END

⇒

IF condition THEN
REPEAT

instructions
UNTIL NOT condition END

END

I Simplifies backend, but we blow up the AST
I like for most other things, the tradeoff can be difficult to make

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 7: Semantic Analysis II CS 152: Compiler Design Slide 202

Visualization

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 203

CS 152: Compiler Design

Introduction to Interpreters

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

October 1, 2004

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 204

Today’s Lecture

8 Interpreters
Introduction
Environments
More on Interpreting Simple

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 205

Introduction

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 206

What is an Interpreter?

I Compiler vs. Interpreter
I There is no clear distinction!

I a processor “interprets” machine language
I a compiler “interprets” parts of a program (e.g. when folding

constants)
I Just-in-time (JIT) compilers, adaptive compilers, . . .

I Where do the results come from?
I compilers generate “object files” that need a separate

“interpreter” to produce results
I interpreters process some intermediate representation and

produce results

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 207

Interpreting Simple (1)

I Symbol Table (ST) and Abstract Syntax Tree (AST)
I provide a complete representation of a Simple program

I everything we need to execute a program

I are already checked syntactically and semantically
I exception: array indices out of array bounds

I Strategy: Traverse AST and “simulate” program.
I traverse in post-order and from left to right
I simulate what a stack machine would do

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 208

Interpreting Simple (2)

I Constant expressions:
I constant node: push the value on our stack
I binary node: pop two values, perform operation, push result

I Example: 1+2*3 ⇒ (+ 1 (* 2 3))
start traversal at “+” with empty stack
visit “1” ⇒ push “1” on stack
visit “*”
visit “2” ⇒ push “2” on stack
visit “3” ⇒ push “3” on stack
back at “*” ⇒ push(pop()*pop())
back at “+” ⇒ push(pop()+pop())
end traversal with “7” on stack

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 209

Interpreting Simple (3)

I The interpreter could look like this (pseudo-code):

stack = []
...
def Interpret(ast):
if isinstance(ast, Number):
stack.push(ast.value)

elif isinstance(ast, Binary):
Interpret(ast.left)
Interpret(ast.right)
if ast.operator == "+":
stack.push(stack.pop() + stack.pop())

elif ast.operator == "*":
stack.push(stack.pop() * stack.pop())

elif...
...

elif ...
...
elif isinstance(ast, Write):
Interpret(ast.expr)
print "Output: %s" % stack.pop()

elif ...
...

I Alternative: Visitor pattern. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 210

Environments

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 211

Interpreting Simple (4)

I Handling variables:
I we need to simulate the “data memory”
I to enable access to the current value
I to enable assigning new values

I Environments:
I similar to the symbol table (ST)
I but maps names to “boxes” (variables, memory, storage)

which store values
I while ST maps names to meanings
I can be generated from ST

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 212

Interpreting Simple (5)

I For Simple:
I only one environment necessary
I universe does not have variables in it
I but we need “scopes” for record types

I Languages with nested scopes:
I create new environments at run-time
I whenever a scope is entered dynamically

I Example: a := b + c ⇒
(:= (Var a) (+ (Var b) (Var c)))
lookup a and push “box” (“lvalue”)
lookup “boxes” for b and c, push values (“rvalue”)
add values for b and c, push result
store result in “box” for a

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 213

Interpreting Simple (6)

I The interpreter could look like this (pseudo-code):

stack = []
environment = {}
...
def Interpret(ast):
...
elif isinstance(ast, Variable):
location = environment[ast.name]
stack.push(location)

elif isinstance(ast, Assign):
Interpret(ast.location)
Interpret(ast.expression)
val = stack.pop()
loc = stack.pop()
loc.set(val)

elif ...
...

I Binary (earlier slide) needs to be modified to handle locations
on the stack. . .

I Assignments between arrays and records (as a whole) need to
be handled separately. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 214

Representing Current Values (1)

I Symbol Table (ST) vs. Environment (ENV)
I ST: maps names to meanings
I ENV: maps names to boxes

containing current values

I For STs, we represented meanings (compile-time)
I by instances of some class hierarchy
I e.g. Constant, Variable, Type, ArrayType, . . .

I For ENVs, we need to represent values (run-time)
I probably again by instances of certain classes

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 215

Representing Current Values (2)

I What kinds of values do we have at run-time?
I simple Variables ⇒ IntegerBox
I array Variables ⇒ ArrayBox
I record Variables ⇒ RecordBox

I What do we store in IntegerBoxes?
I Just an integer representing the current value!

I What operations do we need on IntegerBoxes?
I we need to get the current value
I we need to set a new value9

9We already performed the checks to ensure that a program never assigns to
a constant. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 216

Representing Current Values (3)

I What do we store for ArrayBox?
I for ARRAY 10 OF INTEGER

I we need 10 IntegerBox instances

I for ARRAY 20 OF ARRAY 10 OF INTEGER
I we need 20 ArrayBox instances
I with 10 IntegerBox instances each

I Each ArrayBox instance stores a list of “other boxes”!

I What operations do we need on ArrayBox?
I we need to index the element “box” at a certain position

within the array

I Similar reasoning leads to RecordBox design. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 217

Representing Current Values (4)

I Resulting class hierarchy for boxes:

class Box:
pass

class IntegerBox(Box):
def __init__(self, value=0):
self.__value = value

def get(self):
return self.__value

def set(self, value):
self.__value = value

class ArrayBox(Box):
def __init__(self, list):
self.__length = len(list)
self.__boxes = list

def index(self, offset):
if 0 <= offset < self.__length:
value = self.__boxes[offset]

else:
error("Index out of bounds!")

return value

I For RecordBox, things are a little trickier. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 218

Building Environments (1)

I Base case: For each variable of type INTEGER
I generate a new IntegerBox initialized to 0
I insert into environment under appropriate name

I Inductive case: For each variable of type ARRAY x OF y
I generate a new ArrayBox referring to x Boxes representing y
I insert into environment under appropriate name
I similar for RECORD variables. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 219

Building Environments (2)

I Recursive procedure for variables:

def make_box(type):
if isinstance(type, IntegerType):

// base case
return IntegerBox()

elif isinstance(type, ArrayType):
// inductive case
list = []
for i in range(0, type.length()):

list.append(make_box(type.type))
return ArrayBox(list)

else: // isinstance(type, RecordType)
...

I Can be done using a visitor as well. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 220

More on Interpreting Simple

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 221

Interpreting Conditions

I Conditions occur in IF and REPEAT instructions
I consist of a comparison operator
I and two expressions to be compared

I Strategy for Conditions:
I evaluate the left and right expressions

I values are the two top stack elements

I compare the values according to the condition
I yields a truth value in our implementation language

I encode the truth-value and push it on the stack
I e.g. 0 for false, 1 for true

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 222

Interpreting Repeat (1)

I For REPEAT instructions we simulate control flow
I interpret body (always at least once)
I if condition is false, interpret body again
I if condition is true, interpret instruction

following REPEAT

I Strategy for REPEAT:

do {
"interpret body, do whatever

needs doing";
"evaluate condition,

yields 0 or 1 on stack";
} while "0 on top of stack";
"interpret next instruction";

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 223

Interpreting Repeat (2)

I The interpreter could look like this (pseudo-code):

stack = []
environment = {}
...
def Interpret(ast):

...
elif isinstance(ast, Repeat):

flag = 0
while not flag:

Interpret(ast.body)
Interpret(ast.condition)
flag = stack.pop()

elif ...
...

I IF instructions work almost exactly like this as well!

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 8: Interpreters CS 152: Compiler Design Slide 224

Famous Last Words

I Several things were not discussed in detail (would spoil the
fun), but here are some hints:

I Handling assignments between arrays and records
I All values need to be copied “by hand”, you can’t just assign

a pointer around. . .

I Handling indexing for arrays
I Evaluate the index expression and then access the ArrayValue

object, pushing whatever result on the stack. . .

I Interpreting a sequence of instructions
I You have to follow the “next” pointer for instructions, either

using a “big loop” in the Interpret() procedure, or by
recursion. . .

Revision 46 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 225

CS 152: Compiler Design

Introduction to Code Generation

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

October 1, 2004

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 226

Today’s Lecture

9 Code Generation
Introduction
Code Patterns
Storage Allocation
The VMICS Processor
Code Generation Examples
Organization of the Code Generator
Code Generation Procedures

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 227

Introduction

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 228

What is Code Generation? (1)

I The “big” picture again:

I Source Text → Compiler → Target Code

I i := i + 1 → Compiler → addi #1, -24(a5)

I Code Generation: The “last” remaining step. . .
I from the intermediate representation (IR)
I to a sequence of machine instructions

I The “little” picture for the remaining lectures:

I IR (= ST+AST) → Generator → Instructions

I (:= i (+ i 1)) → Generator → addi #1, -24(a5)

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 229

What is Code Generation? (2)

I The most important criteria for code generation:
I preserve the “meaning” of the source program (correctness)
I use target machine resources in an “optimal” way (efficiency)

I Further considerations:
I code generation itself must be efficient, otherwise nobody uses

the compiler
I obvious mapping from source constructs to target instructions,

simplifies debugging
I modularize code generator itself to ease porting, maybe use a

code generator generator

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 230

What is Code Generation? (3)

I Two basic tasks for code generation:
I storage allocation: Where do things go?
I instruction selection: How do we do things?
I both dependent on specific target machine

I Storage allocation:
I determine where variables, constants, etc. go
I which “address” in memory or which register

I Instruction selection:
I determine which target instruction to use
I also which addressing mode

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 231

What is Code Generation? (4)

I Example: Consider i := i + 1 again
I Where in the store is the value of “i”?

I . . . , -24(a5)

I at offset -24 relative to register a5

I What do we have to do?
I add . . . , -24(a5)
I the “+” operator yields an “add” instruction

I Where is value “1”, what do we have to do?
I addi #1 , -24(a5)
I we add a constant, so we need to choose the “right kind” of

add

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 232

What is Code Generation? (5)

I Instruction Selection ⇔ Storage Allocation
I the two tasks are related
I both depend on the target machine

I Target machine characteristics (see Hennesey, Patterson:
Computer Architecture):

I available instructions and their restrictions
I available memory areas
I available registers
I available addressing modes
I relative size/speed of instructions
I . . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 233

Code Patterns

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 234

Code Patterns (1)

I Before we can generate code we need to
I study the target machine in detail
I develop conventions for using it

I Strategy: Identify code patterns!
I Postulate assumptions for storage allocation
I Examine source language constructs
I Translate source constructs to target patterns
I Iterate until satisfied!

I Code patterns should be general
I to allow combination when translating compound source

constructs

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 235

Code Patterns (2)

I Example: CISC architecture, e.g. Motorola 68K
I two sets of 8 registers, one for data, one for addresses
I lots of addressing modes, e.g. indirect, indexed, immediate

I Example: Decisions for storage layout (simplified)
I put temporaries into registers, variables into memory,

constants into immediate instructions
I address global variables relative to register a5
I address local variables relative to register a7

I Now we can develop code patterns for source language
constructs. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 236

Code Patterns (3)

I Example: Variables as rvalues
a ⇒ move offset a(a5), dx

I Example: Expressions involving variables
a + b ⇒ move offset a(a5), dx

move offset b(a5), dy
add dx, dy

I But: We could do better on a CISC!
a + b ⇒ move offset a(a5), dx

add offset b(a5), dx
I Change the storage allocation:

I temporaries into registers only when needed
I of course this is more complex to implement. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 237

Code Patterns (4)

I Example: Expressions involving constants as well
a + b + 2 ⇒ move offset a(a5), dx

add offset b(a5), dx
addi #2, dx

I Example: Simple assignments between variables
a := b ⇒ move offset b(a5), offset a(a5)

I Example: Combine the patterns
c := a + b ⇒ move offset a(a5), dx

add offset b(a5), dx
move dx, offset c(a5)

I But: We could do better on a CISC!
I . . . this can go on for a long time until we have a satisfactory

collection of patterns. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 238

Code Patterns (5)

I Example: WHILE condition DO instructions END
I evaluate condition, execute instructions, as long as condition is

true

I Example: Pattern for code(while) =

1. code(condition)

2. if false goto ?
3. code(instructions)
4. goto 1
5. . . . things after while. . .

The target of “goto ?” is patched to 5 when that address
becomes known. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 239

Code Patterns (6)

I Example: A concrete WHILE translated. . .

...
WHILE a < 10 DO

a := a + 1
END
...

⇒
$0FFE ...
$1000 cmpi #10, offset_a(a5)
$1002 bge $xxxx
$1004 addi #1, offset_a(a5)
$1006 jmp $0000
$1008 ...

Then we patch address $1008 into the instruction at address
$1002. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 240

Tree Matching

I General code generation from AST (see Appel):
I think of code patterns as “tiles” we can “move” over the tree
I when we find a “tile” that “matches” some part of the tree,

we select the instructions for it
I the goal is to have enough “tiles” to “cover” the whole tree

(not necessarily in a unique way)

I This idea is useful
I to think about the code generation process
I as an approach for code generator generators

I We will only “match” one node at a time
I much simpler, good enough for our purposes

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 241

Target Machine Restrictions

I The Simple language definition did not mention
I maximum values for constants and variables
I maximum size of all variables in a program

I On the target machine, certain restrictions exist
I maximum word-length and instruction set
I maximum available memory for variables

I To keep the frontend “pure,” the backend has to
I traverse the intermediate representation
I generate error messages for violations

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 242

Storage Allocation

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 243

Storage Allocation (1)

I Compute the memory addresses of
I whatever we need an address for at runtime!
I e.g. variables, constants, procedures, . . .

I Depends on source language and target machine
I No constants? No need for their addresses either. . .
I Immediate mode? No need for addresses for constants. . .

I Strategy: Traverse symbol table and add addresses
I this works great for relative addresses
I which are all we need

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 244

Storage Allocation (2)

I Absolute Addressing:
I compute a final physical address for everything
I not useful if there is other things already
I operating system, other programs, etc.

I Relative Addressing:
I compute offsets from a base address obtained at runtime
I allocate memory from operating system, put pointer in register
I for procedures and local variables: allocate on the stack

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 245

Storage Allocation (3)

I Activation Records:
I recursive procedures, nested procedures, etc.
I each call allocates memory on stack for locals
I access to static and dynamic scope

I dynamic link: points to start of previously active scope
I static link: points to start of statically surrounding scope

I For Simple we don’t need any of this, but you might want to
review it in the book anyway. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 246

Storage Allocation (4)

I Example: Sequential allocation, 16-bit words, byte addressed
store

VAR a: INTEGER;
b: ARRAY 10 OF INTEGER;
c: INTEGER;

⇒
Offset Content

0 a

2 b[0]
4 b[1]
6 b[2]
8 b[3]

10 b[4]
12 b[5]
14 b[6]
16 b[7]
18 b[8]
20 b[9]

22 c

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 247

Storage Allocation (5)

I Example: Sequential allocation, 16-bit words, byte addressed
store

VAR a: ARRAY 3 OF ARRAY 2 OF INTEGER;

⇒
Offset Content

0 a[0,0]
2 a[1,0]
4 a[2,0]
6 a[0,1]
8 a[1,1]

10 a[2,1]

or

Offset Content

0 a[0,0]
2 a[0,1]
4 a[1,0]
6 a[1,1]
8 a[2,0]

10 a[2,1]
I row-major vs. column-major allocation (generalizes to more

dimensions as well)
I For Simple it is natural to choose the “inner” array to be

allocated continuously. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 248

Data Alignment (1)

I Processor restrictions on data access
I for example 32-bit RISC, byte-addressed store
I accessing a 16-bit word is only possible at even addresses
I accessing a 32-bit long is only possible at addresses divisible by

4

I Storage allocation
I needs to account for these restrictions
I either by “padding” (really simple)
I or by reordering (almost as simple)

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 249

Data Alignment (2)

I Example: char = 1 byte, int = 2 byte, long = 4 byte

VAR a: CHAR; b: INTEGER; c: LONG; d: CHAR;

⇒
0 1 2 3

0 a b b c

4 c c c d

both b and c not accessible

⇒
0 1 2 3

0 a b b

4 c c c c

8 d

padding

⇒
0 1 2 3

0 c c c c

4 b b a d

reordering

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 250

The VMICS Processor

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 251

What is VMICS?

I The VMICS processor (“vee-mix”)
I is a simple 16-bit stack architecture
I is our target for compiling Simple

I The VMICS package (from course web site)
I includes more detailed documentation

I on the architecture itself
I on the instruction set
I on the object file format

I includes a VMICS simulator written in Python
I includes several example programs

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 252

Basic Architecture (1)

I Three distinct memory areas
I 64kB (= 65536 bytes) data memory
I 64kB (= 65536 bytes) code memory
I stack memory, unspecified sizeI Stack architecture
I no registers, all temporaries on the stack
I instructions push and pop values as neededI Basic operation
I load object file into code memory
I start execution at address 0
I last instruction must be “halt” else error

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 253

Basic Architecture (2)

I Storage allocation
I variables are allocated in data memory
I data memory is byte-addressed
I required size depending on type:

I INTEGER ⇒ 2 bytes
I ARRAY x OF y ⇒ x * size(y) bytes
I RECORD . . . END ⇒ sum of fields

I Machine restrictions
I constants (declared, literal) must fit in 16 bit
I variables (declared) must fit in 64 kB

I Data alignment is not necessary. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 254

Some Instructions (1)

I Instruction formats
I A: code 1 byte

1 byte instruction, no value
I B: code value value 3 byte

1 byte instruction, 2 bytes for 16-bit value

I Note: Instruction formats for CISC and RISC
I CISC: many different formats, length from 1 to over 20 bytes

not uncommon
I RISC: few different formats, length mostly 4 bytes, easier to

decode
I Therefore RISC code generation is usually more regular, with

less special cases to consider.

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 255

Some Instructions (2)

I Categories of instructions:
I stack manipulation, input/output, memory
I arithmetic, conditional and unconditional jumps

Name Code Value Description
halt $00 — stop execution successfully
push $10 value push value on stack
dup $12 — duplicate top of stack
out $20 — print pop()
in $21 — push(input)
add $30 — push(pop() + pop())
sub $31 — push(pop() - pop())
mul $32 — push(pop() * pop())
load $40 — push(memory[pop()])
store $41 — memory[pop()] := pop()
jump $50 address pc := address
jneg $51 address if pop() < 0 then pc := address
jeql $52 address if pop() = 0 then pc := address
jpos $53 address if pop() > 0 then pc := address

I A full list is provided in the VMICS package!Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 256

Object File Format

I Object file is a binary file containing
I size information for data and code memory
I the actual instructions (code) for a program

I Can be specified in a variant of EBNF:

File = Header Code Trailer .
Header = $FF version:1 dataSize:2 codeSize:2 .
Code = $FE {Instruction} .
Instruction = operation:1 [value:2].
Trailer = $F0 .

Literals “$xx” mean that this byte has to occur in the file.
The form “x:y” means that y bytes are used to store the
information “x”.

I For details see the VMICS package!

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 257

Code Generation Examples

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 258

Simple Assignments

I Consider the following source program:

PROGRAM X;
VAR a: INTEGER;

BEGIN
a := 47

END X.

I Storage allocation puts “a” at address 0, occupying bytes 0
and 1, for a data size of 2 bytes.

I What is the code we need for this?
0: push 47 push value 47
3: push 0 push address of “a”
6: store put 47 into “a”
7: halt stop execution

I Code size 8 bytes, code memory bytes 0 to 7.

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 259

Expressions (1)

I Consider the following source program:

PROGRAM X;
VAR a, b: INTEGER;

BEGIN
b := 10; a := b + 3; WRITE a

END X.

I Storage allocation puts “a” at address 0 and “b” at address 2,
for a data size of 4 bytes.

I Notes on the code (see next slide):
I b := 10 ⇒ instructions @ 0–6
I b + 3 ⇒ instructions @ 7–14
I a := . . .⇒ instructions @ 15–18
I WRITE a ⇒ instructions @ 19–23

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 260

Expressions (2)

I What is the code we need for this?
0: push 10 push value 10
3: push 2 push address of “b”
6: store put 10 into “b”
7: push 2 push address of “b”
10: load push value of “b”
11: push 3 push value 3
14: add add the two, result on stack
15: push 0 push address of “a”
18: store put result into “a”
19: push 0 push address of “a”
22: load push value of “a”
23: out print top of stack
24: halt stop execution

I Code size 25 bytes, code memory bytes 0 to 24.

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 261

Organization of the Code Generator

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 262

Introduction

I The code generator transforms
I our intermediate representation (ST+AST)
I into an object file for VMICS

I The basic approach is similar to the interpreter
I we traverse the AST in a certain order
I we emit VMICS instructions whenever we can

I Two questions to answer:
I how do we represent VMICS instructions
I how do we traverse the AST

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 263

Arrays

I Use an array of bytes (see Wirth)
I to represent the sequence of instructions
I append new instructions as we generate them

I Maintain a program counter
I to keep track of where we are in the array
I to perform backpatching (needed for some jumps)

I Tradeoff:
I very close to the eventual object file
I pretty “low-level” approach

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 264

Lists (1)

I Model VMICS instructions with a simple class

class Instruction {
int code; // the operation code

// e.g. 0x30 for "add"
int value; // an optional value

// e.g. address for "jump"
Instruction next; // linear list

}

I Maintain global instruction list and program counter

def emit(code, value=None):
inst = Instruction(code, value)
list.append(inst)
if value == None:
pc = pc + 1

else:
pc = pc + 3

return inst

I Details of list implementation are not important. . .Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 265

Lists (2)

I Points to note:
I provides a little more structure than arrays, but still pretty

“low-level” compared to ST and AST
I we return the instruction generated for backpatching, see later

examples
I we maintain the program counter in form of target machine

addresses for backpatching
I using a class for instructions allows for easy printing, useful for

debuggingI Want more structure?
I insert pointers to other instruction lists instead of addresses
I not recommended for Simple, it’ll cost you too much time. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 266

Code Generation Procedures

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 267

Introduction

I Traverse the AST using
I a recursive function with a big if instruction
I the Visitor pattern (if you know how to)

I Basic structure:

def code(ast):
if isinstance(ast, Number):
// emit code for that case

elif isinstance(ast, Binary):
// emit code for that case

elif ...
...
else:
raise "Oops, illegal node!"

Has to be recursive, e.g. for binary operations. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 268

Numbers and Variables

I Conventions for the resulting code
I Numbers: push integer value on the stack
I Variables: push address on the stack

I We don’t know if we need the actual value (rvalue) or address
(lvalue)

I If we push the address, we can still ”load” the value later

I Relevant cases:

def code(ast):
...
elif isinstance(ast, Number):
emit(PUSH, ast.value)

elif isinstance(ast, Variable):
emit(PUSH, ast.object.address)

elif ...
...

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 269

Binary Operations
I Conventions for the resulting code

I Generate code for the left and right side
I For locations ”load” the actual values

I Generate code to perform the operationI Relevant cases:
def code(ast):
...
elif isinstance(ast, Binary):
code(ast.left)
if isinstance(ast.left, Location):
emit(LOAD)

code(ast.right)
if isinstance(ast.right, Location):
emit(LOAD)

if ast.operator == "+":
emit(ADD)

elif ast.operator == "*":
emit(MUL)

elif ...
...

elif ...
...Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 270

Conditions (1)

I Note: This is different from the discussion on the previous
slide set!

I We need to generate code for conditions
I in a uniform manner
I regardless whether they are part of IF or WHILE

I We need to map
I six kinds of conditions:

l = r, l # r, l < r, l > r, l ≤ r, l ≥ r
I to four kinds of instructions:

sub, jneg, jeql, jpos
I nothing else in VMICS that could be used!

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 271

Conditions (2)

I Conventions for conditions
I code generated for a condition puts TRUE (i.e. 1) or FALSE

(i.e. 0) on the stack
I this is what code generated for IF and WHILE relies on

I Examine conditions and available instructions:
I l = r ⇒ is TRUE if l-r = 0
I l # r ⇒ is TRUE if l-r 6= 0
I l < r ⇒ is TRUE if l-r < 0
I l ≥ r ⇒ is TRUE if l-r 6< 0
I l > r ⇒ is TRUE if l-r > 0
I l ≤ r ⇒ is TRUE if l-r 6> 0

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 272

Conditions (3)

I Common tasks to generate code for conditions
I generate code to evaluate left and right side
I if these are locations, “load” actual value
I subtract right value from left value

I Tasks for the particular comparison
I generate code that pushes TRUE or FALSE
I depending on the difference just calculated

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 273

Conditions (4)

I Basic structure for common tasks:

def code(ast):
...
elif isinstance(ast, Condition):
// code for left and right sides
code(ast.left)
if isinstance(ast.left, Location):
emit(LOAD)

code(ast.right)
if isinstance(ast.right, Location):
emit(LOAD)

// calculate the difference
emit(SUB)
// handle the actual comparison
if ast.comparison == "=":
// emit code for that case

elif ast.operator == "#":
// emit code for that case

elif ...
...

elif ...
...

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 274

Conditions (5)

I Deriving the code pattern for equal (“=”):
I if difference is 0 ⇒ push 1
I if difference is not 0 ⇒ push 0

I Therefore we need something like this:

...instructions before condition...

...instructions for left and right...
sub
jeql x
push 0
jump y

x: push 1
y: ...instructions following condition...

For not equal (“#”) the “pushes” are “inverted”.

I This code sequence will do what we need, but how do we
generate it?

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 275

Conditions (6)

I Code generation for equal (“=”):

def code(ast):
...
elif isinstance(ast, Condition):
...see earlier slide...
if ast.comparison == "=":
// remember the "true" jump for fixup
true = emit(JEQL, 0)
// push FALSE
emit(PUSH, 0)
// remember the "false" jump for fixup
false = emit(JUMP, 0)
// fixup the "true" jump
true.value = pc
// push TRUE
emit(PUSH, 1)
// fixup the "false" jump
false.value = pc

elif ...
...

elif ...
...

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 276

Conditions (7)

I Code generation for not equal (“#”):

def code(ast):
...
elif isinstance(ast, Condition):
...see earlier slide...
elif ast.comparison == "#":
// remember the "false" jump for fixup
false = emit(JEQL, 0)
// push TRUE
emit(PUSH, 1)
// remember the "true" jump for fixup
true = emit(JUMP, 0)
// fixup the "false" jump
false.value = pc
// push FALSE
emit(PUSH, 0)
// fixup the "true" jump
true.value = pc

elif ...
...

elif ...
...

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 277

Conditions (8)

I This is why returning the instruction object from emit()
makes sense!

I for a “forward” jump we have to fix the address as soon as we
know it

I The remaining conditions can be handled the same way, just
with “jneg” and “jpos” instead of “jeql”.

I some optimization is possible, but I just programmed the six
cases out completely. . .

I Now that we are done with conditions, both IF and WHILE
become really easy. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 278

While Loops
I For a WHILE we have

I a forward jump to skip the body
I a backward jump for the loop itself

def code(ast):
...
elif isinstance(ast, While):
// remember address where loop starts
top = pc
// emit code for the condition
code(ast.condition)
// remember "false" jump for fixup
false = emit(JEQL, 0)
// emit code for the body
code(ast.body)
// jump back to the top of the loop
emit(JUMP, top)
// fix the "false" jump
false.value = pc

elif ...
...

I REPEAT is even easier. . .
Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 279

Assignments (1)

I For assignments we have three cases
I INTEGER value to INTEGER variable
I ARRAY value to ARRAY variable
I RECORD value to RECORD variable

I First case is easy to handle:

def code(ast):
...
elif isinstance(ast, Assign):
if isinstance(ast.location.type, IntType):
// integer assignment
code(ast.expression)
if isinstance(ast.expression, Location):
emit(LOAD)

code(ast.location)
emit(STORE)

else:
// array assignment
...

elif ...
...

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 280

Assignments (2)

I For assignments between ARRAYs (or RECORDs)
I all array elements from the source array
I must be assigned to
I all array elements in the destination array

I We “dream” of a VMICS instruction that
I copies a block of n words
I from a source address s
I to a destination address d

I But VMICS does not have such an instruction!
I And you are not allowed to add it!

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 281

Assignments (3)

I A simple solution:
I we know the address of both arrays, we know the length of

both arrays
I we could just emit “enough” push/load/push/store sequences

to make the copy

I The big problem:
I it takes 8 bytes of code to copy 2 bytes of data
I for one assignment between two 16 KB arrays we already run

out of code memory!

I A better solution:
I generate a loop for an array assignment
I the problem then is how to do that. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 282

Assignments (4)

I The loop we need looks like this:

i = 0
while i < n:
memory[d+i] = memory[s+i]
i = i + 2

I It is not easy to translate this into VMICS code!
I We have to maintain 3 values on the stack, only 2 of which are

accessible at any given moment.

I A possible trick to use:
I Always allocate an additional INTEGER variable (e.g. at

address 0) for “i”.
I That is a “bad hack” and costs 2 bytes that should be

available to the user, but it is certainly simpler. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 9: Code Generation CS 152: Compiler Design Slide 283

Indexing

I Indexing (and field selection) will not be discussed here, you
are on your own!

I However, here are some hints:
I we know the address and size of each array
I to index an one-dimensional array

I generate code to evaluate the index
I generate code to check for the array bounds
I multiply the index with the size of a word
I add that to the base address of the array

I to index multi-dimensional arrays
I you also have to take care of the size of the “outer” array. . .

Revision 47 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 284

CS 152: Compiler Design

Summary: The Simple Compiler

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

November 19, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 285

Today’s Lecture

10 Summary
Introduction
Language
Architecture
Extensions
Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 286

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 287

Language

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 288

Architecture

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 289

Extensions

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 10: Summary CS 152: Compiler Design Slide 290

Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 291

CS 152: Compiler Design

Flow Graphs and Basic Blocks

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

November 22, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 292

Today’s Lecture

11 Flow Graphs
Introduction
Straightline Code
Basic Blocks
Extended Basic Blocks
Traces
Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 293

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 294

Straightline Code

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 295

Basic Blocks

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 296

Extended Basic Blocks

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 297

Traces

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 11: Flow Graphs CS 152: Compiler Design Slide 298

Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 299

CS 152: Compiler Design

Static Single Assignment Form

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

November 24, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 300

Today’s Lecture

12 SSA Form
Introduction
Values versus Variables
Straightline Code
Structured Code and Phi Functions
Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 301

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 302

Values versus Variables

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 303

Straightline Code

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 304

Structured Code and Phi Functions

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 12: SSA Form CS 152: Compiler Design Slide 305

Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 13: Register Allocation CS 152: Compiler Design Slide 306

CS 152: Compiler Design

Graph Coloring Register Allocation

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

November 26, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 13: Register Allocation CS 152: Compiler Design Slide 307

Today’s Lecture

13 Register Allocation
Introduction
Register Pressure
Register Allocation
Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 13: Register Allocation CS 152: Compiler Design Slide 308

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 13: Register Allocation CS 152: Compiler Design Slide 309

Register Pressure

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 13: Register Allocation CS 152: Compiler Design Slide 310

Register Allocation

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 13: Register Allocation CS 152: Compiler Design Slide 311

Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 14: Instruction Scheduling CS 152: Compiler Design Slide 312

CS 152: Compiler Design

Instruction Scheduling

Department of Computer Science & Engineering
University of California, Riverside

Peter H. Fröhlich
phf@cs.ucr.edu

November 29, 2004

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.cs.ucr.edu/
http://www.ucr.edu/
http://www.factorial.com/forward/phf/work/
mailto:phf@acm.org
http://www.factorial.com/forward/phf/work/

Lecture 14: Instruction Scheduling CS 152: Compiler Design Slide 313

Today’s Lecture

14 Instruction Scheduling
Introduction
List Scheduling
Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 14: Instruction Scheduling CS 152: Compiler Design Slide 314

Introduction

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 14: Instruction Scheduling CS 152: Compiler Design Slide 315

List Scheduling

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

Lecture 14: Instruction Scheduling CS 152: Compiler Design Slide 316

Outlook

Revision 66 (September 26, 2004) Copyright c© 2001–2004 by Peter H. Fröhlich

http://www.factorial.com/forward/phf/work/

	Welcome!
	The Three Questions…
	Administrivia
	Important Warning
	Literature
	Compilers and Interpreters
	A Little History

	Compiler Architecture
	Introduction
	Architecture
	Typical Phases
	Frontend and Backend
	Bootstrapping and Porting

	Formal Languages
	Lexical Analysis
	Introduction
	Finite Automata
	Implementation
	More on Lexical Analysis
	Generating Scanners

	Syntactic Analysis
	Introduction
	Context-Free Languages
	Fundamentals of Parsing
	Recursive Descent Parsing
	Implementation
	Handling Syntax Errors
	Parsing Algorithms and Language Classes
	Visualization
	Generating Parsers

	Semantic Analysis
	Introduction
	Attribute Grammars
	Symbol Tables
	Visualization

	Semantic Analysis II
	Abstract Grammars
	Abstract Syntax Trees
	Simple AST Transformations
	Visualization

	Interpreters
	Introduction
	Environments
	More on Interpreting Simple

	Code Generation
	Introduction
	Code Patterns
	Storage Allocation
	The VMICS Processor
	Code Generation Examples
	Organization of the Code Generator
	Code Generation Procedures

	Summary
	Introduction
	Language
	Architecture
	Extensions
	Outlook

	Flow Graphs
	Introduction
	Straightline Code
	Basic Blocks
	Extended Basic Blocks
	Traces
	Outlook

	SSA Form
	Introduction
	Values versus Variables
	Straightline Code
	Structured Code and Phi Functions
	Outlook

	Register Allocation
	Introduction
	Register Pressure
	Register Allocation
	Outlook

	Instruction Scheduling
	Introduction
	List Scheduling
	Outlook

