
Introduction to Prolog
read, write, assert, retract

CS171: Expert Systems

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 2

Topics:

� Read and write predicates
� Assert and retract predicates
� Cuts
� Tracing

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 3

Write predicate

� write() Writes a single term to the terminal.
� For example: write(a), or write(‘How are you?’)

� write_ln() Writes a term to the terminal followed
by a new line.

� tab(X) Writes an X number of spaces
to the terminal.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 4

Read predicate

� read(X) Reads a term from the keyboard and
instantiates variable X to the value of
the read term.

� This term to be read has to be followed by a dot “.” and a
white space character (such as an enter or space).

� For example:
hello :-

write(‘What is your name ?’),
read(X),
write(‘Hello’), tab(1), write(X).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 5

Assert predicate

� assert(X) Adds a new fact or clause to the
database. Term is asserted as the last
fact or clause with the same key
predicate.

� asserta(X) Same as assert, but adds a clause at
the beginning of the database

� assertz(X) Exactly the same as assert(X)

� ‘a’ being the first letter and ‘z’ being the last letter of the
alphabet should remind you where in the database you
are adding a new fact or a clause.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 6

Assert predicate

� For example:

:- dynamic good/2.
:- dynamic bad/2.
assert(good(skywalker, luke)).
assert(good(solo, han)).
assert(bad(vader, darth)).

?- listing(good).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 7

Retract predicate

� retract(X) Removes fact or clause X from the
database.

� retractall(X) Removes all facts or clauses from the
database for which the head unifies
with X.

� For example:
retract(bad(vader, darth)).
retractall(good(_, _)).
?- good(X, Y).
No

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 8

Cuts

� ! is a Prolog feature called the cut.
� Cuts may be inserted anywhere within a clause to

prevent backtracking to previous subgoals.
� For example:

a(X) :- b(X), c(X), !, d(X), e(X).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 9

Cuts
� What do cuts do?
� Suppose that clause a() from the previous slide has been

invoked and the subgoals b(X) and c(X) have been
satisfied. On encountering the cut:

� The cut will succeed and Prolog will try to satisfy subgoals d(X)
and e(X).

� If d(X) and e(X) succeed then a(X) succeeds.
� If d(X) and e(X) do not succeed and backtracking returns to the

cut, then the backtracking process will immediately terminate and
a(X) fails.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 10

Cuts
� For example:

max(A,B,B) :- A < B.
max(A,B,A).
?- max(3,4,M).
M = 4 ;
M = 3

� Using a cut:
max(A,B,B) :- A < B, !.
max(A,B,A).
?- max(3,4,M).
M = 4 ;
No

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 11

Cuts

� Cuts are commonly used in the generate-and-test
programming paradigm:

find_just_one_solution(X) :-
candidate_solution(X),
test_solution(X),
!.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 12

Cuts

� cut – fail combination cab be used to express negation:
� For example:

nonsibling(X, Y) :- sibling(X, Y), !, fail.
nonsibling(X, Y).

� Fail A predicate that always returns false (i.e. it
always fails, causing the whole clause to fail
and Prolog to try another branch in the
recursion tree.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 13

Trace predicate

� The trace predicate prints out information about the
sequence of goals in order to show where the program
has reached in its execution.

� Example (see trace_example.pl on the course web site)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 14

Trace predicate

� Some of the events which may happen during a trace:

� CALL: A CALL event occurs when Prolog tries to
satisfy a goal

� EXIT: An EXIT event occurs when some goal has
just been satisfied

� REDO: A REDO event occurs when the system
comes back to a goal, trying o re-satisfy it

� FAIL: A FAIL event occurs when a goal fails

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 15

Reference

� Clocksin, W.F., and Mellish C.S. Programming in Prolog.
4th edition. New York: Springer-Verlag. 1994.

� Van Le, T. Techniques of Prolog Programming. John
Wiley & Sons, Inc. 1993.

