In More Depth: DeMorgan's Theorems

In addition to the basic laws we discussed on pages B-4 and B-5, there are two important theorems, called DeMorgan's theorems:

 $\overline{A + B} = \overline{A} \cdot \overline{B}$ and $\overline{A \cdot B} = \overline{A} + \overline{B}$

B.1 [10] <§B.2> Prove DeMorgan's theorems with a truth table of the form

A	В	Ā	B	A + B	Ā·B	A · B	A + B
0	0	1	1	1	1	1	1
0	1	1	0	0	0	1	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

B.2 [15] \leq B.2> Prove that the two equations for *E* in the example starting on page B-6 are equivalent by using DeMorgan's theorems and the axioms shown on page B-6.

B.15 [15] \langle B.3 \rangle Derive the product-of-sums representation for *E* shown on page B-11 starting with the sum-of-products representation. You will need to use DeMorgan's theorems.

B.16 [30] <§§B.2, B.3> Give an algorithm for constructing the sum-ofproducts representation for an arbitrary logic equation consisting of AND, OR, and NOT. The algorithm should be recursive and should not construct the truth table in the process.