In More Depth: DeMorgan's Theorems

In addition to the basic laws we discussed on pages B-4 and B-5, there are two important theorems, called DeMorgan's theorems:

$$
\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \text { and } \overline{\mathrm{A} \cdot \mathrm{~B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}
$$

B. $1[10]<\S$ B. $2>$ Prove DeMorgan's theorems with a truth table of the form

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\overline{\mathbf{A + B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	$\overline{\mathbf{A} \cdot \mathbf{B}}$	$\overline{\mathbf{A}}+\overline{\mathbf{B}}$
0	0	1	1	1	1	1	1
0	1	1	0	0	0	1	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

B. $2[15]<\S$ B. $2>$ Prove that the two equations for E in the example starting on page B-6 are equivalent by using DeMorgan's theorems and the axioms shown on page B-6.
B. 15 [15] <§§B.2, B.3> Derive the product-of-sums representation for E shown on page B-11 starting with the sum-of-products representation. You will need to use DeMorgan's theorems.
B. 16 [30] $<\S \S B .2, B .3>$ Give an algorithm for constructing the sum-ofproducts representation for an arbitrary logic equation consisting of AND, OR, and NOT. The algorithm should be recursive and should not construct the truth table in the process.

