1 Real-Time Spring Mesh Deformations

Ulises Amaya Victor Zordan

University of California Riverside, Riverside Graphics Lab

Universidad Autonoma del Estado de Morelos, Facultad de Ciencias

Abstract. Animating deformations on solid objects is a very interesting
and most useful research area in computer graphics. Research has been done
in this area by approaching the problem both via linear strain measures and
non-linear strain tensors, all having advantages and disadvantages. In the first
approach the problem arises with large deformations, as it yields a unnatural
growth in volume when computing large deformations. Problems are related to
the computation of rotations. The advantage is that the computations are not
costly as they are linear. In the second approach, the problem arises because of
the complexity of the computations, and thus, makes it not possible to compute
it in real-time. The advantage is that it is much more accurate specially in large
deformations when compared with the linear approach. The objective of this
work is to be able to simulate solid object deformations in real-time as accurate
as possible but keeping the calculations as simple as possible. We are basing
this project on the work presented by M.Miiller et. al. on Stable Real-Time
Deformations. The goal of this project is to set up a 3-D animated spring mesh.

Keywords: Physically Based Animation, Stiffness, Damping, Elasticity.

1.0.1 1 Introduction

This work is a physically based dynamic simulation of a deformable solid
object. In the computer graphics world people want to model the real world
as accurate as possible but having in mind that the computations need to be
efficient. This is not as easy as sometimes it seems. Usually there is a trade-off
between the accuracy and the efficiency of the computations. There has been
a lot of research in how to reduce the gap within this trade-off. In dynamic
simulation we can have realistic motion and high level of control as well as
specify constraints. We are very interested in learning how to set up and control
these characteristics. The main objective behind this work is to become familiar,
understand the difficulties, and see the different solutions that have been given
to the problems of physically based dynamic simulations of deformable objects.
To achieve this, we will construct our own version of a deformable spring mesh
having in mind that a visual accuracy and efficiency in the computations is very
important.

1.0.2 2 Constructing The Base Case

We begin by remembering the classic physics that we were once taught when
we where kids.

F=K(X - Xo)

Where F is the force, K is the stiffness constant and X - Xo is the distance
from the rest length of the spring.
We can use this force law in addition to the following basic equations:

F=m=xa
- F
a_m

Vit = (a*dt) +V;

Posir1 = (Viqq * dt) + Posy

Where a is the acceleration, dt is the time interval, V is the velocity at
time ¢ and Pos is the position of the particle also at time ¢. So, the particles
are determined by position and velocity.

This is the first approach, used for the base case which is the 1-D. This ap-
proach is only ideal since we are not taking the damping term into account. We
simulate the object using 3 particles and a spring between each of them on one
axis. With the force described as above we would end with an oscillating struc-
ture. Unfortunately this was not the case, the simulation showed an unexpected
increase of the force in the structure as opposed to the oscillating structure we
wanted. After analyzing the equations and the program we realized that there
where many little problems, this is where the research starts teaching lessons
and the interesting things arise.

91000062 RN B [o = JOlo] 00 el

Hownoaoa 2 ENENENTE ewcoron: [wensc: nanope

T omnoaon) IENEIRE

Hownoaoa 2 ENENENTE ewcoron: [enscs nanope EEEEER =1

T ou00 008 > TENENEN 8 e [o e e =[O0/ O5 e8]

1-D simulation with no damping. The initial state can be seen and how it turns
into an unstable simulation where particles pass through one another and eventually
the system blows up.

A careful analysis of the system setup and its simulation tells us the following.
First the simulation has very particular initial conditions. The way it was set
up is that we have a particle at location 0,0 the origin, then a particle at 0,4
and then the last one at 0,8 all in the X-axis. This sets up the system in its rest
position with a rest length of 0.4cm.There is no force being applied and thus,
there is no movement. To start the simulation the third particle is displaced
0.5cm and then we start counting from there, t = 0. This means that the
particles 1 and 2 are at their rest position when the 3rd is not. In a natural
system there would already be a force being applied to the particle 2 from 3 and
thus it would not be at its rest position. Its important to note that the units
used are the most common, meaning the metric system. The particles are of 1kg
of weight, and the distances are in centimeters. The stiffness constant used is of
1000 units, the time step is of 0.001 seconds. The other problem is that its very
difficult to simulate a spring mesh particle system accurately since problems
of numeric precision arise. Every oscillation of the system involves many time
steps and if there is a small numeric problem then this one would be carried
along and in a few seconds it would be noticeable. There are several ways to
approach this problems, one is by decreasing the time step and thus decreasing
the numeric problems. Another solution is to include a damping term. This

last approach will help stabilize the system and make it more real.

It is also important to note that in this system there are no boundaries
and no physical limitations, the particles can be taken as far as one wants, the
springs will stretch and will not break. Of course since this is not a real system,
when simulating we could end up with an unreal simulation. This first part of
the code was done using C programming language.

After having the previous simulation, we decided to add the damping term to
make it more real and stable. The damping term is proportional to the relative
velocity and acts in the direction of the spring force. In one dimension the force
term is as follows:

F=—-K[z2—-21|— Xr;s]— B(V2-V1)

After inputting the damping term in the equation we where able to see
in the simulation a clear change. There was no more increase in the force of
the system and the simulation behaved as a real spring mesh. The constants
used where K = 1000 and B = 70 units respectively. The rest of the variables
where kept with the same values as before. We could see how important it was
to keep the system as close to reality as possible when simulating and reality
has damping and thus we needed damping.

1.0.3 3 Constructing the 2-D case

This case was very difficult. I personally thought that it was not going to be so
difficult since the base case was already working and as the name suggests, it is
the case where the others are based upon. But unfortunately this did not turn
out like that. We begin by analyzing the equations in two dimensions:

F, = —K x (Pos2, — Posl,) + BxV,

Fy, = —K x (Pos2y — Posl,) + B*V,

3=

Ay =

This is for the X and Y axis respectively. As we can see the equations are
now more complex since they involve components of each axis for each particle
and this means using cosines and sines with the angles in between. The above
equations give us the force that a particle feels from its neighbor, but if the
particle has more than one neighbor then the forces must be added for all
neighbors. In the 2-D case we constructed a basic triangular structure keeping
it as simple as possible, so each particle has two neighbors and there are a total
of three particles and three springs.

There are basically two ways of dealing with the 2-D equations. One is
by considering cartesian components of each physical property for each axis,
this is what we have in the previous equations regarding force . In this case
we work with individual components X and Y for F, V, Accel. and Pos. The
other way is by considering the use of vectors. In the latter case we would
need to use vector operations such as the dot product and the cross product,
normalizations and sums or substractions in terms of vectors. I decided to use
the first approach since it seemed closer to what I did for the 1-D case, big
mistake, it turned out to be much more difficult. Also in this stage of the
project, I decided to move from C to C++ programming language to make it
more maintainable and easier to program and to follow. All this mixed changes
and approaches resulted in a chaos that just delayed the whole simulation of the
2-D case. The first results where totally unstable, we had several problems of
keeping the numeric precision, problems porting the code to the C++ language
and problems of separating the two components of each physical property.

Lets first analyze the case without damping, then we will add it to make
the simulation more real. The x component of the force for particle 3 due to
particle 1 is:

fize = —Kus [V/(@ = a1)7 + (s — D)7 — 113 cos bl

The x component of the force for particle 3 due to particle 2 is:

f335 = —Kos [\/(w?é — b)2+ (y§ —yh)? — Tzs] cos By

If we interchange 2 for 3 and 3 for 2 we obtain the same result, but with the
sign changed, which is exactly what we should have. For the Y coordinate we
use the sined.

The damping force is proportional to the relative velocity on the line that
joins the particles 1 and 3. The X component of the vector which has the
direction from particle 1 to 3 is obtained by multiplying this component times
the cosine of the angle between the x-axis and the line 1 to 3. After simplifying
we obtain:

[=) (v —vh0)+ (3 =9 (v, v,]2 —h)
(z5—23)*+(y3—v1)?

And so the X component of the Force in particle 3 due to particle 1 will be:

i opi pl@i—e) (05—l)+ (i —yl) (vi, —vi,)] (@i —a)
F3, =f3, — B (zi—2%)2+(yi—y)?

And so consequently the velocity with the damping term looks like this:

i+l _ g
V3:c _U3w+

dt [i [(25—21) (vh. —via)+(wh—vD) (vd, —vi)](@—2d) | ., [(25—23) (vga —v3a) +(v3—v3) (v, —v5,)] (3 —25)
E(fﬁm—B i 7 S - i +f53z_B — (zz—z;)2a-|r(yz—y2)2 - —

(z5—71)?+(y3—v1)?

Where i is the time-step and i+ is the new time-step. We are only left to
get the position of the particle so that we can draw it on the screen which is
given by:

. . vi_ it
zitt = o} + dt el

Now, the true reason why we are taking the average of the velocities is
because when we did the first calculations in the two dimensional simulations
it was not stable, after carefully reviewing the equations and analyzing the
simulation we realized that one possible error could come from the fact that if
we only take one velocity through the whole time step then we are introducing
an error since in reality this velocity will vary and we are taking only one velocity
at one given moment of time through a length of time. By taking the average
between the initial and final velocities in the time step, we reduce this error
significantly. We realized that this error was also present in the one dimensional
simulation but it became bigger and more noticeable when all particles where
having two neighbors and the arrangement was more complex.

At this moment of the research we realized how complex it was getting and
that moving into the third dimension will be very challenging. Dr. Zordan’s
wisdom and experience pointed towards using vectors instead of our current
approach of Cartesian coordinates. So we decided to make the 2-D case work
with vectors and then move to the third dimension. It was time to take a look
to our old elementary-first grade physics notes.

)

3.1 2-D Case with Vectors Lets remember how the vectors are used and
how they work by explaining the equations we used before in terms of vectors.
The position vector of a particle p at time 7 is defined by:

Where the vectors i and j are the unit vectors (of magnitude 1). Given this,
we can see that the force on particle 3 due to particle 1 is:

f§ = —Kiz [Ir§ —ril — r1s] ui

uisis a unit vector in the directionsf rom particlel to particle 3. As we
mentioned before, the damping is proportional to the component of the relative
velocity along the line that joins the two particles. This relative velocity can be
written as:

i i i
Vri; =vi —vi

And thus, the component of the velocity along the line that joins the two
particles will be the scalar product:

i i
uijs - Vris

Coding this was much easier but longer since we needed to define in the
program how to compute scalar products, length of a vector, normalizations,
substraction, addition and multiplication of vectors and how to get a unitarian
vector. Once having this working, coding the above equations was straight
forward, then performing the simulation was a nice and very enjoyable success.

Hom0oaom 2 IRENENEN 1= e [X o amys [somc naroe (D[] DR [RB]) B OB00 & 08 2 IR 2 coevcons [Xuses amays [onees nance] (B[O AR TR

Homnoaon 2 NENENEN = ceucrc [Xvses maya [onscs mancs] (D [O]DE TRB]Y H WD A0S 2 TIMENIEN = :oencano [X wises anaya [encs anowea] (B[OO 2 3"

B oMo aos 2 |NENENEN - ®encaro: | X s amya | omes nanoee] (B[O] DD BB, H OB RO 2 (NI B oecanco | X wses rmaya | snacs nanovee] (D] O] |AD LR

Homnoasa 2 ENENEN = o0

2-D case with damping of 20, we can see a real behavior in the triangular spring
mesh as it ends in its rest position.

1.0.4 4 Constructing the 3-D case

This case was much easier having the 2-D case working with vectors, as we only
needed to add the third coordinate to our vectors in the calculations (the z axis
in other words) and thus we have the position vector as follows:

T, =X+ y,J + 2k

Of course the initializations and number of particles would change, for this
case we now have a basic construction of a pyramid with a triangular base, so
the number of particles increases as well as the number of springs and neighbors
to each particle and thus the calculations. It would have been much more
complicated using the previous method to do the computations as opposed to
the vector approach, and this is because now we have 3 axis, thus 3 Cartesian
coordinates and two different angles to work with. It was difficult already in
two dimensions.

Homnoaos 2 NENENEN = oencnc [Xwses maya = onacs nancsia] (B[O] i

Homponom 2 NN 1= vecoucac [X vises naya [onacs: nancisa] EEREEE

Homnoaos 2 NIRRT ® oencno [Xwses naya [=jenscs aancsea] (O] O] A 2N @m0 ®om 2 RN [T= vecoucc [Xvisss naya o onacs: nancisa] EENEEL]

W o000 3om 2 TRNIRIEN [B oo | X e mmaya | =lonacs nanoea] TRH) Ho®00 3657 |ENENRN 2w [Xuwmy = o] | B]0]AG TR]

10

T om0 0 n0n 2 NN 8 oo [e = o o] o) i = TEloaE eS|

3-D case with 20 of damping. The pyramid construction shows real behavior and
a stable simulation

5 The Algorithm The implemented simulation algorithm is the following:
Force Vectors [i] = 0.0 fori=1..n

Base Vectors are (1,0,0) (0,1,0) (0,0,1)
loop on all particles

Calculate Force due to every neighboring particle
Sum the Forces

Calculate Velocity

Calculate Position

Draw Particle in space

end loop

1.0.5 6 Applications

This area of research is very useful for animating any solid object deformations,
it can be used to model cloth, skin or other physical objects. This program can
be easily changed to be able to simulate a solid object with different properties
in it by changing the stiffness and damping along the mesh as well as the rest
length and the mass of each particle. We can also simulate different forces being
applied to the spring mesh. This research focuses on the use of classic physics
and keeps the computations as simple as possible in order to achieve results in
real time.

11

1.0.6 7 Conclusions

This research was very useful to make myself realize of the complexities and
challenges that arise in real world research. The area is fascinating and the
possibilities are very big. I also realized how important research is for life in
general as its accomplishments can be used in all areas of science even if they
are not meant for that. Research involves not only knowledge of one particular
area but rather a conjunction of many, and experience counts as a great ally
if you have it. For this particular research it is important to note that there
are big efforts to make these simulations in real time. This involves that the
computations should not be mathematically too complex. There is always a
trade off between accuracy of the simulation and the speed. Accurate results
have been achieved using partial differential equations that describe the static
and dynamic behavior or the object but this is not real time as the computers
take several minutes to get the results. As stated previously this research was
done keeping computations simple and thus achieving results in real time but
unfortunately not predicting exact results.

1.0.7 8 References

Miiller, M., Dorsey, J., Leonard, M., Jagnow, R. Cutler, B. Stable Real Time
Deformations 2000. MIT.

Terzopolus, D., And Witkin , A. 1998. Physically based models with rigid
and deformable components. IEEE Computer Graphics & Applications. Oxford
Univ. Presss, NY.

Terzopolus, D. Platt, J., Barr, A. And Fleisher, K. 1987 Elastically de-
formable models. In Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH 87, 205-214.

1.0.8 SPECIAL THANKS

To my father:
Dr. Alejandro Amaya

for his continuous support

12

and contributions to this work.

To My family:
for all their
support and love
throughout my

entire life.

To Monica:
For her love
courage and

all things we share.

To Dr. V. Zordan:
For his patience that
was taken to the limits
and his guidance through

the course of this work.

To My friends:
In Mexico, Switzerland,
and the U.S.
For their inspiration
and courage given

at all times.

13

