
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Human Eyes – Ray Tracing and Modeling approach

A project submitted in partial satisfaction
of the requirements for the degree of

Master of Science

In

Computer Science

By

Ulises Amaya

August 2005

Project Committee:
Dr. Victor Zordan, Chairperson
Dr. Eamonn Keogh

Copyright by
Ulises Amaya

2005

The project of Ulises Amaya is approved:

 Committee Chairperson

University of California, Riverside

Human Eyes – Ray Tracing and Modeling Approach
Ulises Amaya Master’s project

Advisor: Dr. Victor Zordan

University of California, Riverside
Computer Science and Engineering Department

uamaya{at}cs.ucr.edu

ABSTRACT

In this project a ray tracer is constructed with the flexibility to specify multilayered

objects with properties such as transparency, absorption, shininess, reflectivity and

refractivity among others that create an approximate model of a human eye. The iris is

modeled using a number of probability and randomness functions to specify the colour

and intensity at every point.

1. Introduction

Ray tracing is a computer graphics global illumination rendering method. It traces the

rays of light backwards. A ray is shot from a selected viewpoint through a 2D grid or

image plane and into a virtual world and finally back to the light source. Intersections

with the objects are computed and the pixel is coloured according to a number of factors

specified by the objects, the lights and the optical physics laws.

Through various mathematical models which are shown in this document we are

able to construct the iris by specifying the RGB value at every point in the corresponding

pixel. The ray tracing gives us the intersection, then we get the illumination properties of

the material and the mathematical model gives us the RGB value. We also use controlled

randomness to model an approximation of what happens in the biological model of the

eye.

2. Background

Ray tracing has been around for a while now. There has been much research in this CG

technique. This technique is an approach on how we see in the real world. Light is

generated from many sources, and travels through many mediums. It may bounce around

multiple objects as it gets absorbed and scattered. By absorbed we mean that the light as a

form of energy is partially transformed to another form. But in ray tracing what we care

about is the actual light that gets to our eyes. So in this case we say that it is absorbed and

thus we loose some light.

In ray tracing a ray is shot from a selected viewpoint or camera through a 2D

image plane and into a virtual world. The ray is traced as it travels and intersects the

objects in this world. The closest intersection is stored and secondary rays are spawned

from the intersection point. These secondary rays may be reflected rays or refracted rays

in the case that the surface is transparent or translucent. Another type of rays named

shadow rays is also used. These rays test weather the light sources ‘sees’ the intersection

point directly or not. This is also used for specular light calculations. So for every

intersection we spawn a number of rays which then become primary rays themselves and

spawn more rays as they intersect other objects and so on making this a recursive ray

tracer.

We are using the well known Phong illumination model which assumes constant

intensity throughout the scene. The colour and appearance of the intersected point is

given by the intensity at this point as well as the contribution from the ambient, specular

and diffuse lights.

This model is given by the equation of:

Ix = Ax Ka Dx + Att Lx [Kd Dx (N · L) + Ks Sx (R · V)n]

Where Ix is the resulting colour, A, D, S, are the corresponding contributions from

ambient, diffuse and specular lights. R, L and V are the reflection, light and view vectors

correspondingly and N is the normal to the intersected point. Notice that the model has

been extended to incorporate attenuation as well. We will talk more about this during the

description of the model.

3. Extended Algorithm

The basic algorithm that we use is ray tracing. The rays are traced up to a 3rd level

of depth. This level was chosen arbitrarily, a depth of 5 was also tested with no visible

results. It is to notice that in ray tracing, intersections and depth level contribute

considerably to the time complexity. This algorithm was extended by including

attenuation and absorption. Attenuation simulates the scattering of light as it travels

through the environment. Absorption is the amount of light being ‘lost’ as it goes through

a medium inside an object.

The latter is the one that contributes more to the look of the eye. The first is

included so that the system is more complete in case that the animator wants to include

objects at very different depth distances. Attenuation is basically 1/distance2. Absorption

is modeled using Beer’s Law:

Light out = light in * e–(e * c * d)

where e inside the parenthesis is the amount that the medium absorbs, c is the density of

the medium and d is the distance that the light has traveled.

Constructive Solid Geometry (CSG) is also incorporated in the system. Using

CSG we are able to construct each part of the eye separately. This is done so that we can

specify for each part a different index of refraction (IOR), as well as coefficients for the

amount of refraction, reflection, attenuation, absorption, colour and shininess. This allows

us to create a virtual eye which is similar to the biological eye. Figure 1 illustrates a cross

section of the eye so that the reader becomes familiar with it.

Fig. 1 A cross section of the human eye

4. Construction of the Eye

We begin by using CSG to construct the sclera with two layers. The top layer

allows light to go through a bit more than the lower one. Both have the same IOR and

same white colour. Then we continue to construct the cornea. Again it has two layers and

both are mostly transparent. The outer layer has the IOR of the cornea found in the

literature, which is of 1.37. The second layer acts as the interface between the cornea and

the iris. In the real eye there is a small amount of aquous humor which has a different

IOR and so the second layer has the IOR of the aquous humor which is of 1.33.

Following is the construction of the retina which is modeled very similar to the sclera.

The main difference is that the absorption is higher and the colour is red since is it

the one mainly made out of blood vessels. We now arrive at the lens. The lens is the other

main part of the eye that is responsible for refracting the light after the cornea. It was

modeled as close to the real one as possible. The literature shows human lens as slightly

non symmetric. The created lens has IOR of 1.4 and is almost fully transparent. The lens

again has two layers which make it possible to change the IOR from the lens to the

aquous humor. Here we show a few images illustrating the different parts of the virtual

eye using CSG.

Fig 2. Sclera, Iris and lens created using CSG. The sclera is the white part of the eye which is hollow and

will host the iris and lens. The iris base is a truncated cone with a hole in the middle and the lens is slightly

non-symmetric having one side bigger than the other.

4.1 Iris

The iris is the most interesting and complicated part of the eye. With its

complicated patterns which are unique to every individual and the colours that embellish

these patterns, we have had a tough time finding the right mathematical functions that

would allow us to model the iris. The iris base is a cone-shaped disc shown in figure 1.

The colours are given to it depending on the position of the pixel. Basically for every

pixel we compute, through a series of functions that we will describe now, its

corresponding colour. First there are a few things to notice. By looking at various real

examples we can observe that close to the center of the eye there is a ring of sharper or

slightly different colour than the rest of the iris. Also, that the patterns tend to be radial

rather than tangential and finally that there is a darker ring in the contour of the iris as it

merges into the sclera.

Fig. 3 A picture of a real iris, notice that close to the pupil

 there is an area which has a different colour.

The approach we take is to get the pixels in a tangential way, this means that we

get all the pixels that lie in certain angle and compute their colour. The colour is

computed according to a combination of functions. The first that we will describe is an

exponential probabilistic function. This function grows rapidly and allows us to darken

the outer edge of the iris which corresponds to the last 20% of it. Using Gaussian white

noise we are able to make this darker ring look more biological as opposed to only a ring

by itself. The colours used are blue and green, red is maintained at 0 but by varying the

red we can obtain colours such as for brown eyes. This function is described by the

following equation.

P = (1-P) * (1- e(I * (-1 * k))) + P

Where P is the probability, I and k are initial parameters. The next two functions are the

ones that give colour to the rest of the iris.

Colour 1 = - A(C * t – C * x) – A(-C + C * x)

 A(C * x) – A(-C + C * x)

Where A is the arctangent, C is a constant set by the user, t is the radius from the center

of the pupil and x is a random number between 0 and 1. By varying the constant C, the

user can make the function decrease at a different rate. Fig 4 shows 3 different ways that

the function can decrease. This number is chosen randomly and this is how we colour

tangentially the lines in the iris. So that the lines are not only discreet the result of ‘Colour

1’ is multiplied by a cosine function that makes the transition between one line and the

next one to be smooth. ‘Colour 1’ goes from green into blue in a continuous and smooth

way.

Fig 4. 3 different ways in which Colour 1 can go from green into blue

With all of the above we achieve an iris which goes smoothly from green into

blue, that changes intensity depending on the radius distance and that near the outer ring

it darkens quickly. The tangential lines are obtained the same way by working with the

arctangent but this time with more precision. Fig 5 shows examples of high quality

renderings. The blue reflection on top is a sphere in the world not shown in the image.

Fig 5. Final rendering of the virtual human eye

5. Discussion and Results

We have presented an approach to create virtual human eyes with a combination

of a ray tracer and a mathematical model for the iris. This allows the flexibility to create

different colours for the iris, eyes with a contracted or dilated pupil, different looks

depending on the absorption of the iris or other parts of the eye, red eyes like the ones in

the pictures with flash, and eyes with colours that are non-human. The code is

implemented in C++ and allows for easy change of functions that model the eye and

straight forward modification of the characteristics of the parts of the eye layer by layer

such as shininess, absorption, ambient, diffuse and specular components, amount of

refraction and reflection, index of refraction and density of the material. It is also

important to mention that super sampling is incorporated in the code which allows the

user to specify the number of rays shot through each pixel in the image plane. The high

quality renderings where made with 16 rays per pixel and the computation time is of the

order of 15 minutes on a P IV machine with 1Gb of RAM. The code is not optimized and

can be done so by using a KD-Tree data structure. The code only incorporates as

primitives the cone, sphere and plane, a cube could also be desirable to make more and

different models. The code can be further benefited if a better illumination model is

incorporated as well as more functions to model different types of irises such as the one

of a cat. Figures 6 and 7 show different types of results and how the eyes would look with

the surrounding environment of flesh and eyelashes. The surrounding environments

where not created by us and are used only for illustrative purposes.

Fig 6. Final renderings of a dilated eye, different colours, a red-eye like the ones that appear in a

flash fotograph, and an eye with exaggerated density.

Fig 7. The iris is incorporated in virtual environments not created by me to show that it really

gives a feeling of a natural eye.

Acknowledgements

I would like to thank Dr. Victor Zordan for his guidance during the course of this project.

The software discussed in this report was built on top of the CS130 undergraduate

computer graphics project by Mikiko Matsunaga. I would also like to thank all that

participated in the scientific discussions for their valuable input.

References

1. The human eye: structure and function Clyde W. Oyster, 1999.

2. Halliday & Resnick, Fundamentals of Physics, 3E, Wiley 1988

3. Computer Graphics: principles and practice. J. D. Foley. 1995

4. Ray Tracing information:

www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm

5. Jennifer Beers, The RT Ray Tracing Project, University of Washington, Bothell.

6. Beer’s Law www.shu.ac.uk/schools/sci/chem/tutorials/molspec/beers1.htm

7. Eye structure images and information:

 http://www.mydr.com.au/default.asp?Article=3429

 http://www.tedmontgomery.com/the_eye/overview.html

 http://hyperphysics.phy-astr.gsu.edu/hbase/vision/eyescal.html

8. Eye surroundings in fig. 7:

 Aki from the movie “Final Fantasy: The Spirits Within”

 http://www.desktopexchange.com/gallery/albums/3D-wallpapers/3D_eyes_big.jpg

