
Graphics and Multimedia
CS 203 Final Project

Ulises Amaya, Paul DiLorenzo, Anna Majkowska

Summary of “Saving Energy with
Architectural and Frequency
Adaptations for Multimedia

Applications” [1]
By: Ulises Amaya

This paper exploits two types of

hardware adaptations with the goal of saving
energy in general purpose processors used in
multimedia applications. The first type is named
Architectural adaptation and the second is
Dynamic Voltage (and frequency) Scaling or
DVS. The paper develops an algorithm to
examine both approaches individually as well as
combined to see which is better and under which
circumstances a specific approach would
perform best.

The way multimedia applications process data is
by dividing its work in units called frames.
These frames must be processed in a finite
amount of time named a deadline. If the
processor finishes its task before the deadline
then it has to wait for the next load to come and
begin processing. This time is called a slack,
which is the time that the processor remains idle.
The aim of the hardware adaptations is to slow
down the processor so that it remains the least
amount of time idle but at the same time
completes the work on time. If the processor
works slower it requires less energy. The DVS
approach reduces the voltage to reduce energy.
The Architectural adaptation will reduce
capacitance which reduces IPC and thus energy
consumption.

There are some important assumptions that the
algorithm makes:
“IPC is almost constant for different frames of
the same type at a given frequency”.
“IPC of a frame is almost independent of clock
frequency since little time is spent in memory
stalls”

“For a given frame type, instruction count varies
slowly from frame to frame”
“Assume hardware recognizes when a new frame
begins, type of frame, and its deadline”

There are two phases in the algorithm for
discrete DVS. The first, called profiling phase is
where it decides how much work can it be done
meeting the deadline. It orders the hardware
configurations in increasing order of energy per
instruction (EPI). The second called adaptation
phase will predict the next set of instructions for
the next frame of the same type. These phases
can be implemented by software or hardware.

Problems appear with continuous DVS systems
such as the Intel Xscale processor. Modifications
to the algorithm were made for this case which
includes working with minimum and maximum
frequencies that would meet the deadline and
correlate it with the discrete DVS algorithm. If it
misses a deadline in the discrete case it will
update the IPC and power values for the frame
that was completed. In the continuous case the
IPC for the architecture is updated after the
frame is computed.

The paper finds that most of the time
architectural adaptation and DVS combined
consume the least amount of energy but they also
find that DVS alone is responsible for the
greatest amount of energy savings being between
68-78% vs. 22% mean for the architectural
adaptation. The latter alone gives a very good
performance when a less aggressive architecture
is chosen and it has a high number of
instructions per frame. Otherwise, DVS will be
better.

Thorough Part: Newest Low Power
Consumption methods taken by the

leading Graphic Processor developers,
ATI and Nvidia
By: Ulises Amaya

These developers take an interesting

approach in their newest technologies combining
the software and hardware into a hybrid
technology. They expand it and use it not only
in the GPU but also in the main CPU itself as
well as to other critical parts or the hardware in a
given device. The idea is to have the best balance
between performance and power consumption
when the device is battery powered. Concerned
with the high power consumption mainly by the
primary CPU, GPU and Display in a mobile
device such as a laptop, the PowerMizer
technology from NvidiaTM controls different
parts of the hardware form both the hardware
itself and from software therefore constructing a
hybrid technology. The CPU consumes more
power than the GPU, so one approach that is
taken is to offload sophisticated geometry and
rendering calculations from the CPU and put
them into the GPU. They also add a highly
efficient hardware MPEG-2 decoder for DVD
playback allowing the CPU to run at its lower
possible power level. When dealing with the
display, the software allows the user to set the
limits of brightness and then the software will
Dim the display as needed in order to save as
much power as possible. Another technique used
is the DVS approach, using dynamic clock and
voltage scaling. The idea is to lower the
frequency or scale the voltage at which the GPU
operates in order to save energy as described
previously in this report. The last approach taken
by this technology is to use dynamic clock
gating. If the clock gating is zero, then the power
consumption is zero. This allows units in the
GPU that are not needed to shut down.
http://www.nvidia.com/object/feature_powermiz
er.html PowerMizer4_102803.pdf

POWERPLAYTM Technology from ATI extends
the dynamic clock speeds changes to happen not
only in the GPU but also in the video memory

clock. When detecting that the device is battery
powered the GPU core clock frequency and
voltage is dynamically scaled by using a
technology they call Power-On-Demand that acts
upon user activity which is constantly monitored.
Another technique used to save power is to lower
the refresh rate in the LCD screens which are a
major power consumption part of a laptop’s
hardware.

http://www.ati.com/products/pdf/powerplaywp2.
pdf

Summary of “ZR: A 3D API
Transparent Technology for Chunk

Rendering” [2]
By: Anna Majkowska

Chunk rendering, known also as zone

rendering (ZR), is a technique for reducing
memory bandwidth and thus achieving better
graphical performance. Chunk-based systems
sort graphic primitives and states into chunks,
which correspond to non-overlapping regions of
the graphics display. Each chunk is then
rendered separately, using on-die depth and color
caches. In this way all reads and writes to color
and depth buffers are performed on die, and only
final results are written to the frame buffer in
memory. This significantly reduces 3D graphic
bandwidth compared to conventional rendering,
where all read/write operations use the frame
buffer.

Chunk rendering also allows efficient anti-
aliasing with super-sampling technique and
increases the accuracy of blending, by using on-
die buffers with extended precision and higher
resolution than the frame buffer in memory. To
achieve even higher speed-up, multiple chunks
can be processed in parallel. As shown in [2]
chunk rendering requires fairly small changes in
the conventional rendering pipeline.

Although the technique of chunk rendering has
been known since late 80’s, there remained two
unsolved problems which the authors address in

their paper: compatibility with existing 3D APIs
and display list footprint growth.

The compatibility issue is caused by traditional
APIs allowing applications to directly write or
read from the frame buffer during the process of
generating graphic primitives. Chunk rendering
requires the collection all states and primitives
before rendering a scene.

As shown in the paper, direct writes to the frame
buffer are fairly rare in typical graphics
applications. Some of them, such as 2D blits
(arrays of data), can be represented as 3D
primitives and split into chunks along with other
primitives. For events, which cannot be
represented as primitives (such as buffer locks in
order to read the frame buffer and modify it
depending on the read value), the authors
propose a serialization technique. When such an
event reaches the front end of the pipeline, the
pipeline is flushed and all chunks with primitives
collected so far are rendered. After the direct
write to the frame buffer is performed, chunk
rendering mode is restored. This technique does
not cause significant performance reduction
because serializing events are rare.

The issue of growth of display list footprint was
addressed by a series of optimizations in the
chunk rendering algorithm. The authors
concentrate on reducing state command
replication in chunks, as it dominates over the
issue of replicating primitives. Optimizations
include placing state commands only in chunks
which contain a corresponding primitive, passing
frequently occurring command parameters as
pointers and encoding groups of commands as an
aggregate state command.

The authors performed pre-silicon simulations,
which showed that with their implementation of
chunk rendering, total memory bandwidth
requirement is 2-3 times lower and 3D
performance 2-3 times higher than with
conventional pipelines (without chunk
rendering). The cost of architecture
modifications, including pipeline changes and
increase of on-die caches is low compared to the
performance benefits.

The described technology was implemented in
the Intel 830 integrated chip set. The test, with
use of 3DwinBench’00 and 3Dmark’00, showed
that the real performance gains were close to the
pre-silicon simulations.

As the authors have shown in the paper, their
chunk rendering technique offers significant
reduction of graphics memory bandwidth at
relatively low cost.

Thorough Part: how chunk rendering
is implemented in modern graphics

processors [3]
By: Anna Majkowska

The technique of chunk rendering is

implemented in the 845G chipset as a part of
integrated Intel Extreme Graphics, and used on
Pentium 4 platforms. The chipset uses 32 bits per
pixel graphics and shares memory resources with
the rest of the system, so reducing the memory
bandwidth becomes an important issue.

The use of zone rendering technique eliminated
the need for depth buffer reads and writes, by
processing only a single chunk in an on-die
cache. Now, that all depth calculations are done
on-chip, there is no need for a separate depth
buffer.

The lower memory bandwidth made it also
possible to use a simpler memory technology
and memory interface, which created substantial
savings in memory cost.

Architecture with chunk rendering can work
under higher fill rate requirements than
traditional architecture. Fill rate is the number of
pixels that can be drawn per unit of time. In
traditional architectures in scenes with a high
level of complexity each pixel will be redrawn
many times, when objects in the scene overlap.
In ZR systems all pixel operations are performed
in fast cache, and the fill rate requirement is
reduced to the number of the pixels in a scene.

The same technique is also used in PowerVR
graphics processors with an additional
optimization of grouping triangles into strips,
which maximizes memory usage efficiency.
Thanks to chunk rendering Hidden Space
Removal is performed at high speed, as each line
in a tile is processed in one clock cycle. All
blending operations are performed in True Color
(32 bits precision), while frame buffer has only
16 bits color depth.

The PowerVR MBX family includes MBX Lite
processors used in handheld devices and mobile
phones, and MBX Pro – for arcade machines and
video game consoles.

Summary of “Enhancing loop
buffering of media and

telecommunications applications using
low-overhead predication” [4]

By: Paul DiLorenzo

Most media and telecommunication
focused processors use the VLIW design. The
VLIW design is a good match with the media
and telecommunication applications. Although
in the embedded market, where most of the
media and telecommunication markets are in,
branch resolution and instruction fetch waste
cycles. Previous algorithms such as branch
predictors and instruction cache are too
expensive for the embedded market. Therefore,
these ideas were replaced with a loop buffer.

A loop buffer is a “software-controlled, straight-
line-code with knowledge of counted loops.”
This allows certain portions of the code to be
buffered into the loop buffer which ultimately
provides a speedup. But, loop buffers cannot
handle control flow since, like the definition
above says, is designed as a straight-line-code.
This allows loops buffers to hold only simple
loops. Full predicate, as seen in Intel’s Itanium
processor, is a solution to this problem.

A full predicate implementation “allows the
compiler to have general control without

branches.” The drawback to this solution is the
high encoding cost which is unacceptable for
embedded processors. Therefore in media and
telecommunication processors they have
implemented partial predicate. In partial
predicate, there are additional instructions that
allow conditional moves or allowing condition
codes to guard some instructions for executing.
The problem with this solution is that they do not
allow if-conversion.

If-conversion makes “any acyclic region of
control flow into an equivalent single-entry
straight-line segment of code”, by converting the
code into predicated code. But the problem with
if-conversion is that it does not work with
nested-loops. This presents a problem in the
media and telecommunication area where matrix
operations almost always come in the form of a
nested loop.

In this paper, they present a compiler that
converts nested loops and makes use of if-
conversion techniques to enable 70 – 99% of
operations to come from a statically managed
256-instruction loop buffer. To complement this
improvement, they devised a predicate model
that will allow general if-conversion. This
improvement only takes a single bit to encode
which is a vast improvement in hardware
overhead compared to a full predicate solution.

Putting It All Together: How
described techniques can be used in

video game systems
By: Ulises Amaya, Paul DiLorenzo,

Anna Majkowska
Chunk rendering is a technique that

could prove to be useful in the video game
console area. The problem with this idea is that
the chunk rendering technique does not take into
account the problems and obstacles that are
inherent in the embedded market, such as cost
and energy while maintaining performance. We
present two methods that merge chunk rendering
with two embedded techniques to attack the cost

and energy problem in video game and mobile
game systems.

In video game systems such as Sony’s
Playstation 2 and Nintendo’s Gamecube, cost is
an important factor. Consoles must be
inexpensive to attract buyers and thereby build a
large market for games, which bring the bulk of
the profit. Chunk rendering can be introduced
without significant increase in the cost of the
processor, as required changes in the pipeline are
fairly small.

In computer graphics, including the chunk
rendering technique, loops are very common.
The inherent problem with loops is the wasted
cycles in branch resolution and instruction fetch.
Previously, we described a technique for
embedded systems to convert loops into straight-
line code that can be used inside loop buffers
instead of more costly techniques such as branch
predictors and instruction cache. By applying
this method to the chunk rendering technique, we
are able to provide performance boosts that
video game enthusiasts demand while keeping
the cost down.

An additional problem arises in mobile video
game systems such as Nintendo’s Gameboy. In
this arena cost is an important factor for the same
reasons explained above. But a more important
problem is energy, since these systems operate
on batteries. Users of these systems do not want
to go through batteries every hour.

Previously we described a technique to save
energy by using two types of hardware
adaptation: Architectural Adaptation and
Dynamic Voltage Scaling (or DVS). By
implementing these techniques, along with
chunk rendering, we can improve the
performance of the system and keep the energy
usage at a reasonable level. A potential danger
may be the increase in energy use as the on-die
cache size grows and the lack of a sufficiently
aggressive architecture to make the DVS
adaptation perform best. However, the displays
of handheld devices are fairly small, so chunks
can be made smaller as well, which will reduce
the need for large on-die caches. This will make

chunk rendering more suitable for embedded
systems by reducing the cost and energy of the
handheld video game device. For the
Architecture Adaptation, the architectural
approach could prove very useful given that
some architectures are less aggressive (i.e. low
IPC) and this is when it performs best.

We believe that by combining techniques
intended for embedded systems with those used
in computer graphics we can create new
solutions, which can improve efficiency and
conserve energy in different types of video
systems.

References:

[1] C.J. Hughes, J.Srinivasan and V. Adve, “Saving energy with architectural and frequency adaptations for
multimedia applications”, MICRO 2001

[2] E. Hsieh, V. Pentkowski, T. Piazza, “ZR: A 3D API Transparent Technology for Chunk Rendering”,
MICRO 2001

[3] Based on: “Zone Rendering White Paper”,
http://www.intel.com/support/graphics/intel845g/whitepaper.htm
and “PoverVR Tile-based rendering”,
http://www.pvrdev.com/pub/PC/doc/f/PowerVR%20Tile%20based%20rendering.htm

[3] J.W. Sias, H.C. Hunter, W.W. Hwu “Enhancing loop buffering of media and telecommunications
applications using low-overhead predication”, MICRO 2001

