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Abstract. Peer-to-peer systems that dynamically interact, collaborate
and share resources are increasingly being deployed in wide-area envi-
ronments. The inherent ad-hoc nature of these systems makes it difficult
to meet the Quality of Service (QoS) requirements of the distributed ap-
plications, thus having a direct impact on their scalability, efficiency and
performance. In this paper we propose adaptive algorithms to meet appli-
cations QoS demands and balance the load across multiple peers. These
comprise (a) resource management mechanisms to monitor resource loads
and application latencies and (b) self-organization algorithms to dynam-
ically select peers that maximize the probability of meeting the appli-
cations’ soft real-time and QoS requirements. Our algorithms use only
local knowledge and therefore scale well with respect to the size of the
network and the number of executing applications.

1 Introduction

In the last few years, the new emerging Peer-to-Peer (P2P) model has become
very attractive for developing large scale file systems [1-6] and sharing resources
(i.e., CPU cycles, memory, storage space, network bandwidth) [7, 8] over large
scale geographical areas. This is achieved by constructing an overlay network of
many nodes (peers) built on top of heterogeneous operating systems and net-
works. P2P systems present the evolution of the client-server model that was
primarily used to manage small-scale distributed environments. The most dis-
tinct characteristic in the P2P overlays is that there is symmetric communication
between the peers; each peer has both client and server role.

Many efforts have been made to improve resource usage, minimize network
latencies and reduce the volume of unnecessary traffic incurred in large-scale
P2P overlays. Two main approaches have emerged for constructing overlay net-
works: Structured and Unstructured overlays. Structured overlay networks [4,3,
5] are organized in such a way that objects are located at specific nodes in the
network and nodes maintain some state information, to enable efficient retrieval
of the objects. These sacrifice atomicity by mapping objects to particular nodes
and assume that all nodes are equal in terms of resources, which can lead to
bottlenecks and hot-spots. In unstructured overlay networks, on the other hand,



objects can be located at random nodes, and nodes are able to join the system
at random times and depart without a priori notification. Recent efforts have
shown that a self-organizing unstructured overlay protocol maintains an effi-
cient and connected topology when the underlying network fails, performance
changes, or nodes join and leave the network dynamically [9]. More advantages
of unstructured overlay networks include their ability for self-organization, for
adaptation to different loads, and for resiliency to node failures. Several efforts
have demonstrated that P2P systems can be used efficiently in the context of
multicast [10], distributed object-location [4, 3] and information retrieval [11].

However, hosting distributed, real-time applications with Quality of Service
(QoS) demands, such as predictable jitter and latency on P2P systems imposes
many challenges. These types of applications have distinctly different character-
istics from content-based or multicast applications traditional being deployed on
P2P systems. Examples of such applications include industrial process control
systems, avionics mission computing systems and mission-critical video process-
ing systems [12].

For example, consider a surveillance system that transfers public health, lab-
oratory, and clinical data over the Internet. In this example, both continuous
and discrete data (such as text, images, audio and video streams and control
information) needs to be collected from multiple nodes in the system. Person-
nel will then analyze the gathered data quickly and accurately to monitor dis-
ease trends, identify emerging infectious diseases or track potential bioterrorism
attacks. These have end-to-end soft real-time and QoS requirements on data
transmission, including fast and reliable transfer, and substantial throughput.
In addition, the audio and video streams may need to be transcoded to dif-
ferent formats or presentations (such as lower resolution) to transmit the data
over resource constrained links. To support the QoS demands of the distributed
applications, the P2P system must be flexible, predictable and adaptable.

Distributed and real-time applications have been successfully developed over
middleware technologies, such as OMG’s Common Object Request Broker Archi-
tecture (CORBA)[13], Microsoft’s Distributed Component Object Model (DCOM)
[14]), Sun’s Java Remote Method Invocation (RMI) [15] and the Simple Object
Access Protocol (SOAP) [16]. These typically rely on local management or the
use of centralized managers that have a global view of the system [17], [18], [19],
[20], [21].

In our view, the inherent advantages of the P2P systems, including scala-
bility, decentralization and ease of use makes it feasible to develop large-scale
distributed and real-time applications. However, current P2P systems are lim-
ited in capability because of lack of automated and decentralized management
mechanisms. There are two main reasons for this limitation: (1) in a large scale
system, each node cannot have an accurate global view of the system at all
times, since the state of the system changes much faster than it can be commu-
nicated to the peers, and (2) the P2P infrastructure can encompass resources
with different processing and communication capabilities, therefore, distributed
applications that execute over wide-area environments are subject to greater



variations due to unpredictable communication latencies and changing resource
availability.

QoS properties in the P2P systems can be enabled in two ways: statically,
where we must ensure that adequate resources are available before the appli-
cation execution, or dynamically, where the resource usage is adjusted based
on runtime system monitoring. Examples of static QoS properties include peer
geographic location or specific platforms and hardware resources available at
the peers. Examples of dynamic QoS properties include runtime resource re-
allocation and re-prioritization to handle resource failures or changes in the
CPU and network load.

The objective of this work is to build self-managing large-scale P2P sys-
tems that are able to meet application QoS requirements. To achieve this, we
propose to use self-organization algorithms that revise peer connections dynam-
ically to minimize application latencies and distribute the resource load. These
work together with local resource management mechanisms for managing CPU
and network bandwidth and prioritizing application requests, and system-wide
management mechanisms that run across multiple peers to improve task execu-
tion latencies.

Towards this view we present an architecture with two important compo-
nents:

— A resource management framework to meet the end-to-end soft real-time
and QoS requirements of the distributed applications. The framework con-
sists of mechanisms for managing the local resources, prioritizing application
requests and propagating resource and timing measurements system-wide.
These mechanisms are decentralized, adaptive and use only local informa-
tion.

— Adaptive self-organization algorithms that improve application latencies and
balance the load across multiple peers to meet their end-to-end soft real-time
and QoS requirements. The decisions are made in a decentralized manner,
thus achieving system scalability.

We implemented the self-organization algorithms in our P2P middleware that
uses an unstructured communication protocol to establish connections between
the peers. We present empirical results over our P2P system that demonstrate
the adaptability, predictability and performance of our resource management
mechanisms.

The rest of the paper is organized as follows. Section 2 gives an overview
of our P2P architecture and presents the system model and metrics. In Section
3 we describe our self-organization algorithms. In Section 4 we discuss the ex-
perimental results. Section 5 presents related work and Section 6 concludes the

paper.
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Fig. 1. Our P2P System Architecture.

2 Design and Implementation Overview

A P2P system is modeled as an overlay network of nodes (peers!) in which
each peer comprises a Connection Manager, a Resource Manager and a Local
Scheduler, as shown in Figure 1.

The Connection Manager is responsible to manage the peer connections.
Each node keeps a small number of connections to other peers; the number of
connections is typically limited by the network bandwidth at the peer. Typically,
a XP 2000 Athlon PC workstation behind a 100Mbit/s network connection can
easily support 20 concurrent peer connections, while the same machine behind
a modem 56kbit/s connection can support 1-2 connections. As a result, remote
peer invocations may take a long time to complete due to nodes with high
latencies or limited network bandwidth, affecting the end-to-end performance of
the distributed applications. Peer connections are established as a result of new
peers joining the system or are triggered by the self-organization algorithms in
which each node tries to connect to better peers. For each peer connection ¢, the
Connection Manager at node p maintains the Geographical_in fo, that consists
of the network address and port number of the peer {IP address, port number}
and Peer_type,: whether the peer is immediate or indirect. The Connection
Manager creates and manages a number of connection threads for each peer
connection used to handle request and response messages coming from that
peer. All the requests coming from the peers, enter the Connection Manager’s
receiving queue.

! Two nodes p and q are called immediate peers if there is a direct connection between
the nodes. Two nodes p and ¢ are called indirect peers if there exists a communi-
cation path between the nodes. In some cases, two peers may not be connected at
all.



The Connection Manager constructs and maintains a horizon-based state
graph that stores peer resource utilization and application timing measurements
and also captures the relationships between the peers. The Connection Manager
obtains this information either by propagating updates periodically between the
peers, or by recording the parameters carried along with the messages. Note,
that, because of the large scale and dynamic nature of the system, the state graph
is local at each node and captures only a partial (limited) view of the system.
This view is bound by the horizon of the peer. The state graph is constructed
and updated dynamically based on the applications executing in the system and
the connections established and torn down by the peers.

The Connection Manager works in concert with the Local Resource Manager
that controls and monitors the access to the node’s local resources (e.g., CPU,
memory and network bandwidth) and profiles the behavior of the applications as
they execute. For example, if the Resource Manager reports that the processor
is overloaded (receiving queue size is full), the Connection Manager does not
accept new requests. These requests will be propagated to the node’s peers. Our
previous measurements [22] indicate that such profiling can be done at run-time
with less than 1% overhead, by invoking the /proc interface, but (1) a history
of measurements must be maintained and (2) the profiling frequency must be
carefully tuned dynamically to adequately capture the load fluctuations in the
peer.

The Local Scheduler in the node is responsible for specifying a local ordered
list (schedule) for the application object invocations based on the scheduling
algorithm implemented in the system. Our scheduling algorithm is based on the
Least Laxity Scheduling (LLS) algorithm that allows us to capture timing delays
as the applications execute across multiple processors in the system [23,24].

2.1 Application Tasks

Users request applications from the system that trigger the execution of tasks.
An application task is defined as a sequence of invocations of objects distributed
across multiple peers in the system. The execution of the task starts at the
user invocation and completes when a result is returned back to the user. A
task is executed by a single thread executing in sequence on one or more peers.
The execution times of the tasks are affected by the load on the peers and
the latencies on the communication links. If a node cannot execute the task
locally, it propagates the request to one of its peers. This process continues until
an appropriate node is found to execute the request. To provide a termination
condition so that requests are not propagated indefinitely in the network, we
associate a time_to_live (ttl) value with each task that determines the maximum
number of hops the task will propagate in the system. To avoid loops in task
propagation, we choose not to propagate requests that have previously arrived
at the same peer. When the execution finishes, a reply is generated that follows
the same path to be reported back to the user. Users may trigger the execution
of multiple tasks concurrently and asynchronously.



Each task t is characterized by the T'ask_id; which is a unique identifier that
distinguishes each task from the others, generated by the peer initiator of the
task. We represent as T'ask_type; the type of task (to be executed), carried along
with the message. Deadline; is the time interval, starting at user invocation
within which the task ¢ must complete, specified by the user. Project_latency;
is the estimated amount of time required for the task to complete. This includes
queueing delays and the latencies on communication links. Lazity, is computed
as the difference between the deadline and the projected latency of the task. The
laxity value determines the order with which the task will be executed in the
system. The task with the smallest laxity value has the highest priority.

3 System Resource Management

In this section, we describe our self-organization algorithm that uses resource
and timing measurements monitored locally and collected from remote peers.

3.1 Resource and Timing Measurements

The Resource Managers at the processors monitor the execution of the tasks
across multiple peers and record the peer-to-peer messages exchanged. The P2P
communication protocol [2] enables interoperability across peers on different
nodes in a large scale system and implemented using different languages. The
Connection Managers communicate through five message types (ping, pong,
request, reply, update), of which the ping and pong messages are used to
establish connections with remote peers. The Connection Manager sends a ping
message to establish a connection with a peer. A peer that receives the ping
message and chooses to accept the connection, replies with a pong message that
includes its IP address and port number for the requesting node to connect to.
The decisions to which peers to connect to or whether to accept an incoming
connection, are made by our self-organization algorithm.

For a remote task invocation, the Connection Manager constructs a request
message that carries the task operation. A request message includes the identifier
of the task task_id, a descriptor_id that uniquely characterizes the peer that
propagated the task last, and a hop_count that determines the maximum number
of times the task will be propagated to the system before it expires. When the
task finishes execution, the Connection Manager will generate a reply message
that carries along the return value of the invocation. It uses the descriptor_id
carried along with the messages, to propagate the result, through the same path,
back to the user. The Resource Manager attaches a timestamp with each of the
messages to measure peer connection times, local computation times and remote
task execution times.

The Resource Manager measures the local execution time of the tasks that
includes the processing time of the task at a peer and the queueing time at
the local Scheduler’s task queue. The processing time of the task depends on
the type of object to be executed, the parameters carried along with the task



and the speed of the processor. The queueing time is affected by the priority
(laxity value) of the task and the number of tasks currently being waiting at the
Scheduler’s queue.

Upon the receipt of a reply message, the Resource Manager measures the end-
to-end latency of the task, as the time required for the task to complete, starting
at user invocation until the reply message is received back at the user. Thus,
the projected latency of the task includes the transmission times to propagate
the task from one peer to another and the local execution time of the task. The
transmission times are affected by the number of hops the task is propagated
and the available bandwidth on the communication links. The Resource Manager
measures the percentage of the processing load and the amount of memory used
during the task execution. It obtains this information by using system calls to
the /proc interface.

3.2 Resource and Timing Measurement Propagation

Self-organization is greatly affected by the frequency with which tasks execute in
the system and resource and timing measurements are propagated to the peers.
The Connection Manager triggers propagation of such measurements in two
cases: (1) as a result of the Resource Manager feedback that measures new re-
source loads and timing measurements at the peer, and (2) when the Connection
Manager detects an incoming or withdrawn peer connection. For example, when
a connection with a new peer is established, the Connection Manager propagates
its current resource and timing measurements to that peer.

Assuming that node p has m immediate peers, the Connection Manager at
p constructs an update message that carries an array of length [ for each of the
m immediate peers. The array is constructed based on the measurements stored
at p’s horizon-based state graph which capture resource and timing informa-
tion up to [ hops away. By bounding ! to a small number, we can control the
amount of information propagated to the peers. Each entry in the array includes
the following information: (IP address, port num, CPU load, network bandwidth,
immediate peers). Further, to regulate the rate of update propagation, the Con-
nection Manager can choose to send an update only if the resource measurements
have increased above an upper bound HIGH or if the peer is underutilized (below
LOW bound). The advantage is that the amount of network traffic is minimized.

Upon the receipt of an update message from an immediate peer p, node g
updates its local horizon-based state graph with p’s most recent resource and
timing measurements. The Connection Manager detects a new indirect peer, if
the array has a new entry and thus updates its state graph. Similarly, if a peer
has disconnected, the Connection Manager marks the peer as disconnected and
updates the corresponding connection times in the graph.

There are two importance observations in the measurement propagation.
First, there is a trade off between the accuracy of the resource utilization infor-
mation maintained by the Connection Manager peers and the frequency of the
update propagation. The higher the propagation frequency, the more accurate
the measurements stored. However, a high propagation frequency incurs a high



penalty due to the large number of messages that have to be sent. Second, the
accuracy of the information decreases as the number of hops between the peers
increases. To remedy this, we introduce levels of confidence through weights
(wo, wa, ---’wlfl)’zizo,..,l—l w; = 1, where the higher confidence goes to peers
one hop away.

3.3 Self-Organization

The goal in the peer-based organization algorithm is to improve task execution
times by connecting to faster or less loaded peers.

The Connection Manager uses the resource load measurements collected at
its horizon-based state graph, to estimate the projected latency of the tasks at
the immediate and indirect peers. Let p, be the average load on peer p and
Typ be the mean processing time of task ¢ on peer p. Assuming that p. is the
average load on the communication link ¢ and oy, is the mean transmission
time on each communication link ¢, the Connection Manager (using an M/M/1
queueing model) computes the projected latency of the tasks at peer p as:

: Otc Ttp
Projected_Latency, = +
’ zt: L=pe 1=pp

Once the projected task latencies have been estimated, the Connection Manager
evaluates the relative benefit of its peers. It uses a utility function based on
the resource loads and the task computation and communication latencies. Each
node computes the utility of both its immediate and indirect peers and tries to
connect to indirect peers with the highest utility. These are the peers that have
the highest probability of meeting the soft real-time requirements of the tasks.

The Connection Manager at node p estimates the effects on the task latencies
by considering the effects of increased or decreased processor loads and commu-
nication latencies on the times required to execute the tasks. The Connection
Manager estimates the increased latencies of the tasks currently executed at p as
a result of the new peer connection. A similar estimate is made for the reduced
times of the tasks run in the vicinity.

Thus, the Utility value of both its immediate and indirect peers, as follows:

Peer Util,(t) = a x Peer_Util,(t — 1) + § e~ Froi-Latency,

where « and 8 are used to balance between new and previously computed utility
values (o + 8 = 1). By using exponentially weighted averaging it allows us to
track current behavior with a large value yielding rapid response to changing
conditions, and a small value yielding more smoothing and less noise. If the
types of the executing tasks are stable, our algorithm approximates good peers
accurately. If the behavior changes dynamically, the stability of the system is
affected by the rate with which each node evaluates its peers and tries to connect
to better ones.

The peer-based algorithm determines important indirect peers as peers with
high utility values. It identifies immediate peers with low utility values as those



where the projected latency of the tasks propagated through those peers in-
creases and the tasks start missing their deadlines. Thus, the Connection Man-
ager at p identifies the peer ¢ with the highest Peer_Util, value for node p and
peer s with the lowest Peer_Utils as a candidate for replacement. Then, it probes
peer ¢ for a connection, by generating and sending a ping message. If the re-
mote peer ¢ accepts the connection, it replies with a pong message including its
geographical information {IP address, port number} to allow peer p to connect
to. If the maximum number of connections at p has exceeded, the Connection
Manager chooses to disconnect from the least important immediate peer.

3.4 Dynamic System Operation

In a large-scale system, the availability of the resources changes as a result
of new nodes becoming available, existing nodes failing or disconnecting, and
new tasks executing in the system. For example, the execution of a new task
increases the load on the processors and requires new projections of the task
latencies, triggering self-organization. If the relative utility of an indirect peer
increases over time, the node attempts to move closer to that peer and connect
to it directly. If the connection is acceptable, it is actually performed. As the
maximum number of connections allowed is exceeded or the latency on a peer is
too long, then immediate peers with less utility are removed.

One issue in self-organization is how to tear down connections from peers.
If a node disconnects from a peer whose tasks are currently being executed to
remote peers, the return path of the tasks may be disconnected and the re-
sult cannot be propagated back to the source. To avoid this problem, we define
a prior_disconnection period, during which two node temporarily remain con-
nected until the results from currently executing tasks are propagated back to
the source. During this time, the disconnected peer does not accept new tasks
for propagation or execution. Although this will incur some additional overhead,
it will allow all the tasks to complete.

The effectiveness of the system is affected by the frequency with which each
peer executes the self-organization algorithm to find peers with better utility
values. This can affect the stability of our system. To address this issue we
choose to restrict the maximum number of times per time interval that a peer
can make re-connections. This time interval is determined by considering the
characteristics of the tasks in the system.

4 TImplementation and Experimental Evaluation

4.1 Experimental Setup

To evaluate the working and performance of our self-organization algorithms
we performed empirical experiments. The platform for our implementation con-
sisted of Athlon XP2000 processors and Intel Pentium IV processors with 1GB
memory, running Mandrake Linux 9.0, over a 100Mbit/s network. We built a



P2P system running on these machines. The peers are implemented using the
C++ language and are multi-threaded. To simulate peers of different bandwidth
capabilities we limited the sending and receiving speed of the peers. Figure 2
illustrates the initial topology of the system. The thin lines represent peers with
slow communication links. The bandwidth on those slow peers was restricted
to 200KBytes, the bandwidth on the remaining peers was set to 1MByte. Slow
communication links introduce higher transmission overhead, especially when
the source sends messages at a high transmission speed. In those cases, self-
organization would be beneficial to both peers sending and receiving messages.

Fig. 2. System topology for the peer-based organization algorithm.

4.2 Application Tasks

We used soft real-time distributed multimedia tasks to drive the empirical eval-
uation of our system. In our scenarios, video streams were generated from the
sources and transmitted over the network from one peer to the other until they
reach the destination, where individual streams received from different sources
are assembled and displayed separately. The multimedia tasks needed to be
transcoded into a different format to reach resource-constrained client machines.
Examples of transcoding operations include changing video compression formats,
reducing video playback bit-rate and adjusting picture resolution.

The multimedia streams consist of a sequence of independent media units,
in the case of MPEG-1 format these are called Group of Pictures (GOPs). For
the experiments, our sources generated video streams of MPEG-1 format with
a resolution of 320x240 and a variable bit rate (VBR) of about 900Kbps, each
Group of Picture (GOP) consists of 12-13 frames which correspond to a 0.5
second playback time. The inter-arrival time between successive GOPs is 0.5
seconds. Transcoding services were implemented using the libavcodec library
[25], which is an open source media library.



In the experiment, our transcoding task was to reduce the bit-rate from
900Kbit/s to 150Kbit/s. The request generator fetches a GOP, encapsulates it
into a request message and forwards it to a peer. When the task finishes execution
at a peer, the Connection Manager encapsulates the result in a reply message
and sends it back to the request generator, following the same path. The tasks
had to travel an average of 2 hops to get transcoded. The figure shows that the
average transmission time is 70ms and the average transcoding time is computed
to about 53 milliseconds. However, our experiments showed that the transmission
times increase rapidly when network connections are slow (e.g., 200Kbit/s) or
when the tasks have to propagate more hops in the system. For GOPs of larger
data size the transcoding time also increases, although the increase is small.

4.3 Performance Metrics

To evaluate the performance of our self-organization algorithms, we use the
following metrics:

— Miss ratio: represents the percentage of tasks that miss their deadlines. The
miss ratio is primarily affected by the utilization on the nodes and the com-
munication links. As the load on the nodes or the transmission times of the
tasks increase, the probability that the tasks miss their deadlines is higher.

— Task execution time: defined as the actual execution time of the task in the
system. The execution time depends on the computation time of the task that
includes transcoding time and queueing time, and the transmission latency
experienced at each hop along the path it travels.

— FEstimated Projected Latency: this is the estimated amount of time for the
task to execute, projected by the Connection Manager at the peers. The
task’s projected latency depends on (1) the accuracy of the measurements
recorded by the Resource Managers, (2) the feedback they provide to the
Connection Manager and (3) the frequency with which Connection Man-
agers propagate these measurements to their peers. For example, if the up-
date frequency is low, the peers may not have recent resource information
about their peers and therefore fail to estimate the task projected latencies
accurately.

4.4 Self-organization algorithm

We conducted three experiments to measure the performance, accuracy and
predictability of our self-organization algorithm.

End-to-End Task Execution Times. In the first experiment, we measured
the average end-to-end task execution times as a function of the number of
transcoding tasks executed in the system. The initial topology is shown in Figure
2, where the dotted lines represent the connections established as a result of
the organization algorithm. In this experiment, each peer runs the peer-based



organization algorithm. Due to lack of space, we report results only for node
0. Note, that, node 0 is connected to one fast peer 2 and two slow peers 1, 3.
Transmission tasks are generated from node 0 with deadlines of 500ms. Resource
and timing measurements are propagated at a rate of 200ms and self-organization
is triggered every 3-5 seconds.
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Fig. 3. Measured and estimated end-to-end task execution times as a function of the
number of tasks being executed in the system.

Figure 3 shows the average end-to-end execution times of the tasks. The
solid graph in the figure represents the actual execution times of the tasks,
measured by the Resource Managers. The dotted graph in the figure represents
the projected latencies of the tasks, estimated by the Connection Managers.

As tasks are generated, the execution times of the tasks increase. The reason
is that because node 0 has two slow peers, the tasks are not accepted for execution
at those peers, they are propagated to their own peers in the system. As a
result, their transmission latencies increase. The Connection Manager at node
0 observes the increase in the task execution times, and triggers the peer-based
organization algorithm. This will compute the relative utility values of the peers
and will select the peer 4 with the highest utility to connect to (as shown with
the dotted line in Figure 2). At this point, the maximum number of connections
for the node has being exceeded, and the node chooses to disconnect from peer
1 that has low utility value. This reduces the end-to-end execution times of the
tasks (shown by the decline in Figure 3). At a latter point during the execution,
the Connection Manager discovers another peer 5 with a high utility value and
chooses to connect to that peer directly and disconnect from its immediate peer
3. This will further improve the projected latencies of the tasks.

An important observation in this experiment is that the Connection Man-
agers accurately estimates the projected latencies of the tasks at all times, even
after organization. The reason is that the Connection Manager propagates the
new resource measurements to their peers, which are stored in their horizon-
based state graphs and are used to compute the new projected latencies for the
tasks.
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Fig. 4. Task miss ratio as a function of the number of tasks being executed in the
system.

Miss Ratio. Figure 4 shows the corresponding improvement to the miss ratio
of the tasks as a result of running the peer-based self-organization algorithm.
The figure shows that when the execution times of the tasks increase, tasks start
missing their deadlines. This is attributed to two factors: (1) the queueing delays
in the local Schedulers’ queues due to the large number of transcoding tasks
concurrently being executed in the system, and (2) the transmission latencies
experienced by the slow communication links and the number of hops that the
tasks are being propagated. For example, when the execution times are 600ms,
60% of the tasks miss their deadlines. After the first organization, the task miss
ratio drops to 35%. The second organization improves the task miss ratio even
further and eventually very few tasks miss their deadlines.
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Fig. 5. End-to-end task execution times as a function of different propagation frequen-
cies.

Effect of Propagation Frequency to Task Execution Times. In the last
experiment of the peer-based organization algorithm, we evaluated the effective-
ness of the resource and timing measurement propagation frequency to the task
execution times (Figure 5). In these, we varied the frequency with which Con-
nection Managers propagate feedback information to their peers from 200ms to
2000ms. Upon the receipt of new resource and timing measurements, the Con-
nection Managers will use the new measurements to decide to which peers to



propagate tasks that cannot be executed locally, or whether they need to run
the self-organization algorithm to connect to better peers.

When the frequency is high (200ms), the Connection Managers capture load
fluctuations at their peers accurately, and therefore the queueing and transmis-
sion latencies of the tasks does not increase further. However, if the frequency is
low, the Connection Managers do not accurately capture the load fluctuations at
their peers. As a result, the end-to-end execution times of the tasks increase, and
most of the tasks miss their deadlines. The frequency of propagation depends
on the characteristics of the tasks (such as number and distribution of requests,
and typical computation times) and resource and communication capabilities of
the peers. Our experiments indicate that a frequency of 200ms is adequate to
capture load fluctuations and transcode tasks end-to-end without missing their
deadlines.

5 Related Work

The task of organizing a large network of peers for efficient data access is a
very interesting problem that only recently has been addressed [26], [27], [28§],
[29], [30], [31]. However, the majority of this work has focused on file sharing
applications.

The first wave of the P2P systems [1], [32], [2], [33], [34] perform poorly
either because they rely on a centralized manager or they propose simplistic
routing mechanisms. For example, Gnutella [2] relies on flooding the network
with messages. Limewire [35] organizes the peers on static interest groups based
on their preferred music category.

Distributed hash tables (DHTs) have been proposed as an alternative ap-
proach for organizing peer-to-peer systems [36], [4], [5], [3], [37], [38], [39] that
improve performance by minimizing the number of hops to find the data. These
consist of two components: (1) a consistent hashing over a one-dimensional space,
and (2) an indexing mechanism to quickly navigate the space. These have the
disadvantage that (a) assume that all peers are inherently equal in terms of
resources, and (b) impose a a structure in the network by mapping objects to
particular nodes and therefore may require a slow connection to be heavily uti-
lized in order to discover a popular item. To the best of our knowledge, ours is
the first work, that proposes self-organizing algorithms based on the dynamic
properties of the peers to meet the distributed applications end-to-end QoS re-
quirements.

Recent efforts recognize the need to improve the performance of the overlay
network by partitioning peers into groups based on the round-trip time (RTT)
of the messages. In these, peers in the same group are closes to each other in
terms of latency. [40] et al present a binning scheme, and use landmark nodes
to determine the relative latencies for the peer partitioning. In [41], the authors
propose to construct an auxiliary network on top of the overlay network using
BGP information, and choose neighboring peers based on some random land-
mark nodes. Eugene et al [42] propose an approach that maps overlay peers



into individual points in Euclidean space and approximate the distances in IP
infrastructures using Euclidean distances. Other work proposes to incremen-
tally improve peer latencies by keeping a list of shortcuts in the routing table.
The shortcuts generally point to nodes with smaller latencies. These goals are
achieved either through interest-based locality [43], or through random sampling
techniques [44]. All of the above work only consider network connectivities and
may require extra services, such as node landmarks.

Several efforts have shown [45], [24,46,47] that to meet the applications’
end-to-end QoS requirements, we need knowledge of real-time task information
including the task’s deadline, resource requirements and execution times. Most
of them have shown that least laxity scheduling is an effective algorithm for
distributed scheduling in soft real-time distributed systems.

6 Conclusions

In this paper we have proposed two self-organization algorithms that improve
task execution times and system scalability in P2P systems. When a peer is
discovered to frequently provide good execution times, the peer-based algorithm
attempts to connect directly to that peer. If an underutilized peer discovers slow
or overutilized processors, it attempts to move closer to those peers to improve
the task execution times and balance the load across multiple processors. The
experimental results show that our self-organization algorithms can effectively
reduce the task end-to-end execution times, improve task miss ratio, and are able
to dynamically adapt to changes in resource availability or peer connections and
disconnections.
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